

Australia • Brazil • Mexico • Singapore • United Kingdom • United States

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

This is an electronic version of the print textbook. Due to electronic rights restrictions,
some third party content may be suppressed. Editorial review has deemed that any suppressed
content does not materially affect the overall learning experience. The publisher reserves the right
to remove content from this title at any time if subsequent rights restrictions require it. For
valuable information on pricing, previous editions, changes to current editions, and alternate
formats, please visit www.cengage.com/highered to search by ISBN#, author, title, or keyword for
materials in your areas of interest.

Important Notice: Media content referenced within the product description or the product
text may not be available in the eBook version.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

© 2020, 2017 Cengage Learning, Inc.
Unless otherwise noted, all content is © Cengage.

ALL RIGHTS RESERVED. No part of this work covered by the copyright
herein may be reproduced or distributed in any form or by any means,
except as permitted by U.S. copyright law, without the prior written
permission of the copyright owner.

Library of Congress Control Number: PCN to come.

ISBN: 978-0-357-11781-1

Cengage
20 Channel Center Street
Boston, MA 02210
USA

Cengage is a leading provider of customized learning solutions with
 employees residing in nearly 40 different countries and sales in more
than 125 countries around the world. Find your local representative at
www.cengage.com.

Cengage products are represented in Canada by Nelson Education, Ltd.

To learn more about Cengage platforms and services, register or access
your online learning solution, or purchase materials for your course, visit
www.cengage.com.

For product information and technology assistance, contact us at
Cengage Customer & Sales Support, 1-800-354-9706 or

support.cengage.com.

For permission to use material from this text or product,
submit all requests online at www.cengage.com/permissions.

Systems Analysis and Design, Twelfth Edition
Scott Tilley

SVP, Higher Education Product Management:

Erin Joyner

VP, Product Management: Mike Schenk

Product Director: Lauren Murphy

Product Team Manager: Kristin McNary

Product Manager: Jaymie Falconi

Product Assistant: Anna Goulart

Director, Learning Design: Rebecca von Gillern

Senior Manager, Learning Design: Leigh Hefferon

Learning Designer: Emily Pope

Vice President, Marketing – Science, Technology,

& Math: Jason Sakos

Senior Marketing Director: Michele McTighe

Executive Marketing Manager: Cassie Cloutier

Product Specialist: Mackenzie Paine

Director, Content Creation: Juliet Steiner

Senior Manager, Content Creation: Patty Stephan

Content Manager: Michele Stulga

Technical Editor: John Freitas

Director, Digital Production Services:

Krista Kellman

Digital Delivery Lead: Justin Maniaci

Designer: Lizz Anderson

Production Service/Composition: Lumina

Datamatics, Ltd.

Cover image: iStock.com/Nongkran_ch

Notice to the Reader
Publisher does not warrant or guarantee any of the products described herein or perform any independent analysis in connection with
any of the product information contained herein. Publisher does not assume, and expressly disclaims, any obligation to obtain and
include information other than that provided to it by the manufacturer. The reader is expressly warned to consider and adopt all safety
precautions that might be indicated by the activities described herein and to avoid all potential hazards. By following the instructions
contained herein, the reader willingly assumes all risks in connection with such instructions. The publisher makes no representations or
warranties of any kind, including but not limited to, the warranties of fitness for particular purpose or merchantability, nor are any such
representations implied with respect to the material set forth herein, and the publisher takes no responsibility with respect to such
material. The publisher shall not be liable for any special, consequential, or exemplary damages resulting, in whole or part, from the
readers’ use of, or reliance upon, this material.

Printed in the United States of America
Print Number: 01 Print Year: 2019

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

WCN: 02-300

iii

DEDICATION

To all of my students – past, present, and future

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

v

BRIEF CONTENTS
PHASE 1: SYSTEMS PLANNING 001

Chapter 1 Introduction to Systems Analysis and Design 002

Chapter 2 Analyzing the Business Case 044

Chapter 3 Managing Systems Projects 074

PHASE 2: SYSTEMS ANALYSIS 103

Chapter 4 Requirements Engineering 104

Chapter 5 Data and Process Modeling 144

Chapter 6 Object Modeling 180

Chapter 7 Development Strategies 200

PHASE 3: SYSTEMS DESIGN 227

Chapter 8 User Interface Design 228

Chapter 9 Data Design 268

Chapter 10 System Architecture 316

PHASE 4: SYSTEMS IMPLEMENTATION 351

Chapter 11 Managing Systems Implementation 352

PHASE 5: SYSTEMS SUPPORT AND SECURITY 399

Chapter 12 Managing Systems Support and Security 400

Glossary 453

Index 471

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

vi

TABLE OF CONTENTS

PHASE 1: SYSTEMS PLANNING

Chapter 1
Introduction to Systems Analysis
and Design
Learning Objectives 2

1.1 Information Technology 3
1.1.1 The Changing Nature of Information Technology 3
1.1.2 Systems Analysis and Design 4
1.1.3 What Does a Systems Analyst Do? 4

1.2 Information Systems 4
1.2.1 Hardware 5
1.2.2 Software 5
1.2.3 Data 6
1.2.4 Processes 7
1.2.5 People 7

Case in Point 1.1: Data Breaches 8

1.3 Internet Business Strategies 8
1.3.1 The Internet Model 8
1.3.2 B2C (Business-to-Consumer) 8
1.3.3 B2B (Business-to-Business) 9

1.4 Modeling Business Operations 9

1.5 Business Information Systems 11
1.5.1 Enterprise Computing 11
1.5.2 Transaction Processing 11
1.5.3 Business Support 12
1.5.4 Knowledge Management 13
1.5.5 User Productivity 14
1.5.6 Digital Assistants 15
1.5.7 Systems Integration 15

Case in Point 1.2: Autonomous Vehicles 15

1.6 Organizational Information Models 16
1.6.1 Functions and Organizational Levels 16
1.6.2 Top Managers 16
1.6.3 Middle Managers and Knowledge Workers 17
1.6.4 Supervisors and Team Leaders 17
1.6.5 Operational Employees 17

1.7 Systems Development 17
1.7.1 Structured Analysis 18
1.7.2 Object-Oriented Analysis 21
1.7.3 Agile Methods 22
1.7.4 Prototyping 24
1.7.5 Tools 24

1.8 The Information Technology Department 26
1.8.1 Application Development 27

Case in Point 1.3: Global Hotels and Momma’s Motels 27
1.8.2 Systems Support and Security 27
1.8.3 User Support 28
1.8.4 Database Administration 28
1.8.5 Network Administration 28
1.8.6 Web Support 28
1.8.7 Quality Assurance (QA) 28

1.9 The Systems Analyst 28
1.9.1 Role 28
1.9.2 Knowledge, Skills, and Education 29
1.9.3 Certification 31
1.9.4 Career Opportunities 32
1.9.5 Trends in Information Technology 33

A Question of Ethics 35

1.10 Summary 35

Key Terms 37

Exercises 42

Chapter 2
Analyzing the Business Case
Learning Objectives 44

2.1 Strategic Planning 45
2.1.1 Strategic Planning Overview 45

Case in Point 2.1: Pets for Rent 45
2.1.2 SWOT Analysis 45
2.1.3 The Role of the IT Department 46

2.2 Strategic Planning Tools 47

2.3 The Business Case 47

2.4 Systems Requests 49

2.5 Factors Affecting Systems Projects 50
2.5.1 Internal Factors 50
2.5.2 External Factors 52

2.6 Processing Systems Requests 54
2.6.1 Systems Request Forms 54
2.6.2 Systems Request Tools 54
2.6.3 Systems Review Committee 54

Case in Point 2.2: Attaway Airlines, Part One 55

2.7 Assessing Request Feasibility 56
2.7.1 Feasibility Studies 56
2.7.2 Operational Feasibility 57
2.7.3 Economic Feasibility 57
2.7.4 Technical Feasibility 58
2.7.5 Schedule Feasibility 58

2.8 Setting Priorities 59
2.8.1 Dynamic Priorities 59
2.8.2 Factors That Affect Priority 59
2.8.3 Discretionary and Nondiscretionary Projects 60

Case in Point 2.3: Attaway Airlines, Part Two 60

2.9 The Preliminary Investigation 60
2.9.1 Planning the Preliminary Investigation 61
2.9.2 Performing the Preliminary Investigation 61
2.9.3 Summarizing the Preliminary Investigation 68

A Question of Ethics 69

2.10 Summary 69

Key Terms 70

Exercises 72

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

vii Table of Contents

Chapter 3
Managing Systems Projects
Learning Objectives 74

3.1 Overview of Project Management 75
3.1.1 What Shapes a Project? 75
3.1.2 What Is a Project Triangle? 75
3.1.3 What Does a Project Manager Do? 76

3.2 Creating a Work Breakdown Structure 76
3.2.1 Gantt Charts 76
3.2.2 PERT/CPM Charts 77
3.2.3 Identifying Tasks in a Work Breakdown Structure 78

Case in Point 3.1: Sunrise Software 80
3.2.4 Factors Affecting Duration 80
3.2.5 Displaying the Work Breakdown Structure 81

3.3 Task Patterns 82
3.3.1 Using Task Boxes to Create a Model 82
3.3.2 Task Pattern Types 83
3.3.3 Working with Complex Task Patterns 84

Case in Point 3.2: Parallel Services 85

3.4 The Critical Path 85
3.4.1 Calculating the Critical Path 85

3.5 Project Monitoring and Control 87
3.5.1 Monitoring and Control Techniques 87
3.5.2 Maintaining a Schedule 87
3.5.3 Tasks and the Critical Path 87

3.6 Reporting 87
3.6.1 Project Status Meetings 88
3.6.2 Project Status Reports 88
3.6.3 Dealing with Problems 88

3.7 Project Management Software 89

3.8 Risk Management 93

3.9 Managing for Success 94

Case in Point 3.3: Just-in-Time Software 95
3.9.1 Business Issues 95
3.9.2 Budget Issues 95
3.9.3 Schedule Issues 96

A Question of Ethics 96

3.10 Summary 96

Key Terms 98

Exercises 100

PHASE 2 : SYSTEMS ANALYSIS

Chapter 4
Requirements Engineering
Learning Objectives 104

4.1 System Requirements 105
4.1.1 Types of Requirements 105
4.1.2 Requirements Challenges 106
4.1.3 Additional Considerations 107

4.2 Team-Based Techniques 108
4.2.1 Joint Application Development 109

Case in Point 4.1: North Hills College 111

4.2.2 Rapid Application Development 111
4.2.3 Agile Methods 113

4.3 Gathering Requirements 114

4.4 Gathering Requirements Through Interviews 116
4.4.1 The Interview Process 116

4.5 Gathering Requirements Using Other
 Techniques 121

4.5.1 Document Review 122
4.5.2 Observation 122
4.5.3 Questionnaires and Surveys 123
4.5.4 Interviews Versus Questionnaires 124
4.5.5 Brainstorming 125
4.5.6 Sampling 125
4.5.7 Research 126

Case in Point 4.2: CyberStuff 127

4.6 Gathering Requirements in Agile Projects 127

4.7 Representing Requirements 128
4.7.1 Natural Language 128

Case in Point 4.3: Digital Pen Transcription 129
4.7.2 Diagrams 129
4.7.3 Models 131

4.8 Validating and Verifying Requirements 133

4.9 Tools 134

A Question of Ethics 137

4.10 Summary 137

Key Terms 139

Exercises 142

Chapter 5
Data and Process Modeling
Learning Objectives 144

5.1 Logical Versus Physical Models 145

5.2 Data Flow Diagrams 145

5.3 Data Flow Diagram Symbols 146
5.3.1 Process Symbols 147
5.3.2 Data Flow Symbols 147
5.3.3 Data Store Symbols 149
5.3.4 Entity Symbols 151
5.3.5 Using DFD Symbols 152

5.4 Drawing Data Flow Diagrams 152

5.5 Drawing a Context Diagram 154

5.6 Drawing a Diagram 0 DFD 155

5.7 Drawing Lower-Level DFDs 158

Case in Point 5.1: Big Ten University 163

5.8 Data Dictionary 164
5.8.1 Documenting the Data Elements 164
5.8.2 Documenting the Data Flows 165
5.8.3 Documenting the Data Stores 166
5.8.4 Documenting the Processes 167
5.8.5 Documenting the Entities 167
5.8.6 Documenting the Records 167
5.8.7 Data Dictionary Reports 168

5.9 Process Description Tools in Modular Design 169
5.9.1 Process Descriptions in Object-Oriented Development 169
5.9.2 Modular Design 169

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

viii Table of Contents

5.9.3 Structured English 170
5.9.4 Decision Tables 170

Case in Point 5.2: Rock Solid Outfitters (Part 1) 174
5.9.5 Decision Trees 175

Case in Point 5.3: Rock Solid Outfitters (Part 2) 175

A Question of Ethics 176

5.10 Summary 176

Key Terms 177

Exercises 179

Chapter 6
Object Modeling
Learning Objectives 180

6.1 Object-Oriented Analysis 181

Case in Point 6.1: TravelBiz 181

6.2 Objects 181

6.3 Attributes 183

6.4 Methods 183

6.5 Messages 183

6.6 Classes 184

6.7 Relationships Among Objects and Classes 186

6.8 The Unified Modeling Language (UML) 187
6.8.1 Use Case Modeling 187
6.8.2 Use Case Diagrams 189

Case in Point 6.2: Hilltop Motors 189
6.8.3 Class Diagrams 190

Case in Point 6.3: Train the Trainers, Inc. 191
6.8.4 Sequence Diagrams 192
6.8.5 State Transition Diagrams 192
6.8.6 Activity Diagrams 193
6.8.7 Business Process Modeling 194

6.9 Tools 195

A Question of Ethics 195

6.10 Summary 195

Key Terms 197

Exercises 199

Chapter 7
Development Strategies
Learning Objectives 200

7.1 Traditional Versus Web-Based Systems
 Development 201

7.1.1 Traditional Development: In a traditional systems
 development environment 201
7.1.2 Web-Based Development: In a web-based systems
 development environment 202

7.2 Evolving Trends 202

7.3 In-House Software Development Options 203
7.3.1 Make or Buy Decision 203
7.3.2 Developing Software In-House 204
7.3.3 Purchasing a Software Package 205

7.3.4 Customizing a Software Package 206
7.3.5 Creating User Applications 207

Case in Point 7.1: Doug’s Sporting Goods 208

7.4 Outsourcing 208
7.4.1 The Growth of Outsourcing 208
7.4.2 Outsourcing Fees 209
7.4.3 Outsourcing Issues and Concerns 210

7.5 Offshoring 210

Case in Point 7.2: Turnkey Services 211

7.6 Software as a Service 211

7.7 Selecting a Development Strategy 211
7.7.1 The Systems Analyst’s Role 212
7.7.2 Analyzing Cost and Benefits 212
7.7.3 Cost-Benefit Analysis Checklist 213

Case in Point 7.3: Sterling Associates 214

7.8 The Software Acquisition Process 214
Step 1: Evaluate the Information System Requirements 214
Step 2: Identify Potential Vendors or Outsourcing Options 216
Step 3: Evaluate the Alternatives 217
Step 4: Perform Cost-Benefit Analysis 219
Step 5: Prepare a Recommendation 219

7.9 Completion of Systems Analysis Tasks 219
7.9.1 System Requirements Document 219
7.9.2 Presentation to Management 220
7.9.3 Transition to Systems Design 221

A Question of Ethics 222

7.10 Summary 222

Key Terms 224

Exercises 226

PHASE 3 : SYSTEMS DESIGN

Chapter 8
User Interface Design
Learning Objectives 228

8.1 User Interfaces 229

8.2 Human-Computer Interaction 230

Case in Point 8.1: Casual Observer Software 232

8.3 Seven Habits of Successful Interface Designers 232
8.3.1 Understand the Business 232
8.3.2 Maximize Graphical Effectiveness 232
8.3.3 Think like a User 233
8.3.4 Use Models and Prototypes 233
8.3.5 Focus on Usability 233
8.3.6 Invite Feedback 233
8.3.7 Document Everything 234

8.4 Guidelines for User Interface Design 234
8.4.1 Create an Interface That Is Easy to Learn and Use 234
8.4.2 Enhance User Productivity 235
8.4.3 Provide Flexibility 236
8.4.4 Provide Users with Help and Feedback 236
8.4.5 Create an Attractive Layout and Design 237
8.4.6 Enhance the Interface 238
8.4.7 Focus on Data Entry Screens 240
8.4.8 Use Validation Rules 243
8.4.9 Manage Data Effectively 245
8.4.10 Reduce Input Volume 245

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

ix Table of Contents

Case in Point 8.2: Boolean Toys 246

8.5 Source Document and Form Design 246

8.6 Printed Output 247
8.6.1 Report Design 248
8.6.2 Report Design Principles 248
8.6.3 Types of Reports 250

Case in Point 8.3: Lazy Eddie 251

8.7 Technology Issues 251
8.7.1 Output Technology 252
8.7.2 Input Technology 254

8.8 Security and Control Issues 255
8.8.1 Output Security and Control 255
8.8.2 Input Security and Control 256

8.9 Emerging Trends 257
8.9.1 Modular Design 257
8.9.2 Responsive Web Design 258
8.9.3 Prototyping 258

A Question of Ethics 260

8.10 Summary 260

Key Terms 262

Exercises 266

Chapter 9
Data Design
Learning Objectives 268

9.1 Data Design Concepts 269
9.1.1 Data Structures 269
9.1.2 Mario and Danica: A Data Design Example 269
9.1.3 Database Management Systems 271

9.2 DBMS Components 272
9.2.1 Interfaces for Users, Database Administrators, and

 Related Systems 273
9.2.2 Schema 273
9.2.3 Physical Data Repository 273

9.3 Web-Based Design 274

9.4 Data Design Terms 275
9.4.1 Definitions 275
9.4.2 Key Fields 276
9.4.3 Referential Integrity 279

9.5 Entity-Relationship Diagrams 280
9.5.1 Drawing an ERD 280
9.5.2 Types of Relationships 280
9.5.3 Cardinality 283

Case in Point 9.1: TopText Publishing 284

9.6 Data Normalization 284
9.6.1 Standard Notation Format 285
9.6.2 First Normal Form 286
9.6.3 Second Normal Form 287
9.6.4 Third Normal Form 290

Case in Point 9.2: CyberToys 291
9.6.5 Two Real-World Examples 291

9.7 Codes 297
9.7.1 Overview of Codes 297
9.7.2 Types of Codes 298
9.7.3 Designing Codes 299

Case in Point 9.3: Madera Tools 300

9.8 Data Storage and Access 301
9.8.1 Tools and Techniques 301
9.8.2 Logical Versus Physical Storage 302
9.8.3 Data Coding 303

9.9 Data Control 305

A Question of Ethics 306

9.10 Summary 306

Key Terms 308

Exercises 313

Chapter 10
System Architecture
Learning Objectives 316

10.1 Architecture Checklist 317
10.1.1 Corporate Organization and Culture 317
10.1.2 Enterprise Resource Planning (ERP) 317
10.1.3 Initial Cost and TCO 318
10.1.4 Scalability 319
10.1.5 Web Integration 319
10.1.6 Legacy Systems 319
10.1.7 Processing Options 320
10.1.8 Security Issues 320
10.1.9 Corporate Portals 320

Case in Point 10.1: ABC Systems 321

10.2 The Evolution of System Architecture 321
10.2.1 Mainframe Architecture 321
10.2.2 Impact of the Personal Computer 322
10.2.3 Network Evolution 322

10.3 Client/Server Architecture 323
10.3.1 The Client’s Role 324
10.3.2 Client/Server Tiers 325
10.3.3 Middleware 326
10.3.4 Cost-Benefit Issues 326
10.3.5 Performance Issues 327

10.4 The Impact of the Internet 327
10.4.1 Internet-Based Architecture 328
10.4.2 Cloud Computing 328
10.4.3 Web 2.0 329

10.5 E-Commerce Architecture 329
10.5.1 In-House Solutions 330
10.5.2 Packaged Solutions 331
10.5.3 Service Providers 331

Case in Point 10.2: Small Potatoes 332

10.6 Processing Methods 332
10.6.1 Online Processing 332
10.6.2 Batch Processing 333
10.6.3 Example 333

10.7 Network Models 334
10.7.1 The OSI Model 334
10.7.2 Network Topology 335
10.7.3 Network Devices 337

10.8 Wireless Networks 338
10.8.1 Standards 338
10.8.2 Topologies 339
10.8.3 Trends 339

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

x Table of Contents

Case in Point 11.2: Global Cooling 382
11.9.3 Data Conversion 382
11.9.4 Training 383
11.9.5 Post-Implementation Tasks 387

Case in Point 11.3: Yorktown Industries 391

A Question of Ethics 391

11.10 Summary 391

Key Terms 394

Exercises 398

PHASE 5 : SYSTEMS SUPPORT
AND SECURITY

Chapter 12
Managing Systems Support
and Security
Learning Objectives 400

12.1 User Support 401
12.1.1 User Training 401
12.1.2 Help Desks 401
12.1.3 Outsourcing Issues 403

12.2 Maintenance Tasks 403
12.2.1 Types of Maintenance 404
12.2.2 Corrective Maintenance 404
12.2.3 Adaptive Maintenance 406
12.2.4 Perfective Maintenance 406
12.2.5 Preventive Maintenance 407

Case in Point 12.1: Outback Outsourcing, Inc. 407

12.3 Maintenance Management 408
12.3.1 The Maintenance Team 408
12.3.2 Maintenance Requests 409
12.3.3 Establishing Priorities 410
12.3.4 Configuration Management 411
12.3.5 Maintenance Releases 412
12.3.6 Version Control 412
12.3.7 Baselines 414

12.4 System Performance Management 414
12.4.1 Fault Management 414
12.4.2 Performance and Workload Measurement 416
12.4.3 Capacity Planning 417

12.5 System Security 419
12.5.1 System Security Concepts 419
12.5.2 Risk Management 420
12.5.3 Attacker Profiles and Attacks 421

12.6 Security Levels 423
12.6.1 Physical Security 423

Case in Point 12.2: Outer Banks County 426
12.6.2 Network Security 426
12.6.3 Application Security 429
12.6.4 File Security 431
12.6.5 User Security 432
12.6.6 Procedural Security 434

Case in Point 10.3: Spider IT Services 340

10.9 Systems Design Completion 341
10.9.1 System Design Specification 341
10.9.2 User Approval 342
10.9.3 Presentations 342

A Question of Ethics 343

10.10 Summary 343

Key Terms 346

Exercises 350

PHASE 4 : SYSTEMS
IMPLEMENTATION

Chapter 11
Managing Systems Implementation
Learning Objectives 352

11.1 Quality Assurance 353
11.1.1 Software Engineering 353
11.1.2 Systems Engineering 353
11.1.3 International Organization for Standardization 355

11.2 Application Development 356
11.2.1 Review the System Design 356
11.2.2 Application Development Tasks 356
11.2.3 Systems Development Tools 357

11.3 Structured Development 359
11.3.1 Structure Charts 360
11.3.2 Cohesion and Coupling 361
11.3.3 Drawing a Structure Chart 362

11.4 Object-Oriented Development 364
11.4.1 Characteristics of Object-Oriented Development 365
11.4.2 Implementation of Object-Oriented Designs 366
11.4.3 Object-Oriented Cohesion and Coupling 366

11.5 Agile Development 367
11.5.1 Extreme Programming 368
11.5.2 User Stories 369
11.5.3 Iterations and Releases 369

11.6 Coding 369

11.7 Testing 370
11.7.1 Unit Testing 370
11.7.2 Integration Testing 372
11.7.3 System Testing 372

Case in Point 11.1: Your Move, Inc. 373

11.8 Documentation 373
11.8.1 Program Documentation 374
11.8.2 System Documentation 374
11.8.3 Operations Documentation 375
11.8.4 User Documentation 375
11.8.5 Online Documentation 376

11.9 Installation 378
11.9.1 Operational and Test Environments 378
11.9.2 System Changeover 379

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xi Table of Contents

Case in Point 12.3: Chain Link Consulting, Inc. 434

12.7 Backup and Recovery 435
12.7.1 Global Terrorism 435
12.7.2 Backup Policies 435
12.7.3 Business Continuity Issues 436

12.8 System Retirement 437

12.9 Future Challenges and Opportunities 438
12.9.1 Trends and Predictions 438
12.9.2 Strategic Planning for IT Professionals 440
12.9.3 IT Credentials and Certification 441

12.9.4 Critical Thinking Skills 442
12.9.5 Cyberethics 442

A Question of Ethics 443

12.10 Summary 443

Key Terms 446

Exercises 452

Glossary 453

Index 471

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xiii

PREFACE
The Shelly Cashman Series® offers the finest texts in computer education. We are

proud that our previous editions of Systems Analysis and Design have been so well
received by instructors and students. Systems Analysis and Design, 12th edition
 continues with the innovation, quality, and reliability you have come to expect.

The Shelly Cashman Series development team carefully reviewed our pedagogy and
analyzed its effectiveness in teaching today’s student. Contemporary students read less
but need to retain more. As they develop and perform skills, students must know how to
apply the skills to different settings. Today’s students need to be continually engaged and
challenged to retain what they’re learning. With this book, we continue our commitment
to focusing on the user and how they learn best.

Facing a challenging global marketplace, companies need strong IT resources to sur-
vive and compete effectively. Many of today’s students will become the systems analysts,
managers, and IT professionals of tomorrow. This text will help prepare them for those
roles.

Overview
Systems Analysis and Design, 12th edition offers a practical, streamlined, and

updated approach to information systems development. Systems analysis and design is a
disciplined process for creating high-quality enterprise information systems. An informa-
tion system is an amalgam of people, data, and technology to provide support for busi-
ness functions. As technology evolves, so does systems analysis. The book emphasizes
the role of the systems analyst in a dynamic, business-related environment. A systems
analyst is a valued team member who helps plan, develop, and maintain information
systems. Analysts must be excellent communicators with strong analytical and critical
thinking skills. They must also be business savvy, technically competent, and be equally
comfortable working with managers and programmers. Throughout the book, real-
world examples emphasize critical thinking and IT skills.

Many two- and four-year colleges and schools use this book in information systems
and computer science curriculums. The 12th edition includes expanded coverage of
emerging technologies, such as agile methods, cloud computing, and mobile applica-
tions. This new material complements the updated treatment of traditional approaches
to systems analysis and design.

Using this book, students learn how to translate business requirements into informa-
tion systems that support a company’s strategic objectives. Case studies and assignments
teach analytical reasoning, critical thinking, and problem-solving skills. Numerous proj-
ects, assignments, and end-of-chapter exercises are provided, along with detailed instruc-
tor support material.

Objectives of This Text

Systems Analysis and Design, 12th edition is intended for a three credit-hour introduc-
tory systems analysis and design course. This text is designed to:

• explain systems analysis and design using an appealing full-color format, numerous
screenshots and illustrations, and an easy-to-read style that invites students to learn.

• introduce project management concepts early in the systems development process.

• challenge students with a Question of Ethics mini-case in each chapter that asks
them to respond to real-life ethical issues in an IT environment.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xiv Preface

• provide multi-method coverage, including a comparison of structured, object-
oriented, and agile systems development methods.

• explain how IT supports business requirements in today’s intensely competitive envi-
ronment, and

• describe major IT developments and trends.

New and Updated Features in This Edition

Systems Analysis and Design, 12th edition offers these exciting new and updated
features:

• Reexamined structure and subject coverage to ensure students can identify and focus
on the main content readily. Confirmed that related content has been aligned under
comprehensive section headings to maintain a clear flow of topics and reduce dis-
traction.

• A renewed emphasis on aligning learning objectives with chapter content and assess-
ments. The learning objectives have been updated and carefully reworded so that
instructors know what to focus on, and students know what is expected of them.
The questions, discussion topics, and projects have all been updated to better assess
student mastery of the material.

• Updated or replaced many Case in Point mini-cases to ensure learners are exposed to
relevant and current examples of real-world business applications of key concepts.

• Updated examples of CASE tools reflecting web-based and/or open source offerings.
These tools are often free and are representative of modern systems analysis
solutions.

• Updated screenshots to Microsoft Office 2019 products and Visible Analyst 2016.

Organization of This Text

Systems Analysis and Design, 12th edition contains 12 chapters that teach valuable
cross-functional skills. The chapters are organized into five phases: planning, analysis,
design, implementation, and support and security. A four-part Systems Analyst’s Toolkit,
now available as an online appendix, reflects the most recent changes in today’s systems
analysis tools and also includes invaluable resources. Cross-functional toolkits provide
students with the basic skills sought after by organizations hiring systems analysts.

Phase 1: Systems Planning

• Chapter 1 – Introduction to Systems Analysis and Design: Chapter 1 provides an
introduction to systems analysis and design by describing the role of information
technology in today’s dynamic business environment.

• Chapter 2 – Analyzing the Business Case: Chapter 2 explains how systems projects
get started and how to evaluate a project proposal to determine its feasibility.

• Chapter 3 – Managing Systems Projects: Chapter 3 describes how to use project
management tools and techniques, and how to plan, schedule, monitor, and report
on IT projects.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xv Preface

Phase 2: Systems Analysis

• Chapter 4 – Requirements Engineering: Chapter 4 describes the requirements engi-
neering process: gathering facts about a systems project, preparing documentation,
and creating models that will be used to design and develop the system.

• Chapter 5 – Data and Process Modeling: Chapter 5 discusses data and process
modeling techniques that analysts use to show how the system transforms data into
useful information.

• Chapter 6 – Object Modeling: Chapter 6 discusses object modeling techniques that
analysts use to create a logical model.

• Chapter 7 – Development Strategies: Chapter 7 considers various development strat-
egies for the new system and plans for the transition to the systems design phase.

Phase 3: Systems Design

• Chapter 8 – User Interface Design: Chapter 8 explains how to design an effective
user interface and how to handle data security and control issues.

• Chapter 9 – Data Design: Chapter 9 focuses on the data design skills that are neces-
sary for a systems analyst to construct the physical model of the information system.

• Chapter 10 – System Architecture: Chapter 10 describes system architecture, which
translates the logical design of an information system into a physical blueprint.

Phase 4: Systems Implementation

• Chapter 11 – Managing Systems Implementation: Chapter 11 describes application
development, documentation, testing, training, data conversion, and system change-
over.

Phase 5: Systems Support and Security

• Chapter 12 – Managing Systems Support and Security: Chapter 12 describes systems
support and security tasks that continue throughout the useful life of the system,
including maintenance, security, backup and disaster recovery, performance measure-
ment, and system retirement.

Online Appendix: The Systems Analyst’s Toolkit

• Toolkit Part A – Communication Tools: Part A of the toolkit discusses communica-
tion tools that can help the analyst write clearly, speak effectively, and deliver power-
ful presentations.

• Toolkit Part B – CASE Tools: Part B describes CASE tools that be can used to
design, construct, and document an information system.

• Toolkit Part C – Financial Analysis Tools: Part C demonstrates financial analysis
tools that can used to measure project feasibility, develop accurate cost-benefit esti-
mates, and make sound decisions.

• Toolkit Part D – Internet Resource Tools: Part D describes Internet resource tools
that can be used to locate information, obtain reference material, and monitor IT
trends and developments.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xvi Features

FEATURES
CHAPTER LEARNING TOOLS AND HOW THEY WILL HELP YOU

Case In Point: Each chapter includes three brief cases that provide a contextual business
example for students focused on the key issues covered in the chapter.
A Question of Ethics: A realistic ethical issue is presented at the end of each chapter.
These examples force you to examine your reactions and how you would respond to
common workplace situations.
Chapter Exercises: The chapter exercises are directly related to the learning objectives.
Your answers to the 10 questions will show that you understand the key points. Five
discussion topics and five projects offer opportunities to dig deeper and learn even more.

MINDTAP FOR SYSTEMS ANALYSIS AND DESIGN

MindTap for Systems Analysis and Design, 12th edition is a personalized, fully online,
digital learning platform of content, assignments, and services that engages students and
encourages them to think critically while allowing instructors to easily set their course
through simple customization options.

MindTap is designed to help students master the skills they need in today’s work-
force. Research shows employers need critical thinkers, troubleshooters, and creative
problem-solvers to stay relevant in our fast paced, technology-driven world. MindTap
helps students achieve this with assignments and activities that provide hands-on prac-
tice and real-life relevance. They are guided through assignments that help them master
basic knowledge and understanding before moving on to more challenging problems.

MindTap is designed around learning objectives and provides the analytics and
reporting to easily see where the class stands in terms of progress, engagement, and
completion rates. Students can access eBook content in the MindTap Reader, which
offers highlighting, note-taking, search and audio, and mobile access. Learn more at
www.cengage.com/mindtap.
ConceptClips: ConceptClip videos focus learners on a key concept in each chapter and
are designed to deepen their understanding of the topic.
Running Case: Based on feedback from readers and instructors, we’ve created a new
running case to replace the SCR Case from previous editions. The case challenges learn-
ers to apply key systems analysis and design concepts and skills to a realistic scenario
they would encounter in the workplace. The case brings the key concepts and skills of
the chapter together in an authentic assignment. The look and feel of the case tool has
also been updated to be an authentic, immersive experience for students.

INSTRUCTOR RESOURCES

We are dedicated to providing you all the tools you need to make your class a success.
Information on all supplementary materials can be found on the password-protected
website at login.cengage.com. If you need help accessing this page, please contact your
Cengage representative.
The Instructor Resources include the following:

• Online Appendix: The Systems Analyst’s Toolkit: A 4-part online appendix reflects
the most recent changes in today’s systems analysis tools.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

xvii About The Author

• Instructor’s Manual: Contains lecture notes summarizing the chapter sections, figures
and boxed elements found in every chapter, teacher tips, classroom activities, and
quick quizzes in Microsoft Word files.

• PowerPoint Presentations: A multimedia lecture presentation system provides slides
for each chapter, based on chapter objectives.

• Figure Files: Illustrations for every figure in the text in electronic form.

• Solutions to Exercises: Includes solutions for end-of-chapter exercises.

• Test Bank and Test Engine: Test banks include questions for every chapter, featuring
objective-based and critical thinking question types, page number references, and fig-
ure references when appropriate. Cengage Learning Testing powered by Cognero is a
flexible, online system that allows you to:

• author, edit, and manage test bank content from multiple Cengage Learning solutions.

• create multiple test versions in an instant.

• deliver tests from your LMS, your classroom, or wherever you want.

ABOUT THE AUTHOR
With the 12th edition, Scott Tilley becomes the sole author of Systems Analysis and

Design in the Shelly Cashman Series. Dr. Tilley is an emeritus professor at the Florida
Institute of Technology, president and founder of the Center for Technology & Society,
president and co-founder of Big Data Florida, president of the Space Coast chapter of
the International Council of Systems Engineering (INCOSE), and a Space Coast Writers’
Guild Fellow. In addition to this book, he is the author or editor of numerous other pub-
lications, including Software Testing in the Cloud: Migration & Execution (Springer,
2012), Testing iOS Apps with Hadoop Unit: Rapid Distributed GUI Testing (Morgan
& Claypool, 2014), The Vicious Swans (And Other Tall Tales) (Precious Publishing,
2017), Dreams (Anthology Alliance, 2018), and Technical Justice (CTS Press, 2019). He
wrote the weekly “Technology Today” column for Florida Today (Gannett) from 2010
to 2018. He holds a Ph.D. in computer science from the University of Victoria.

ACKNOWLEDGMENTS
A book like Systems Analysis and Design would not be possible without the help and
support of a great many people, both past and present. Harry Rosenblatt’s contributions
to previous editions of the book provided the foundation for the current edition. His
foresight made updating the material much easier than it might otherwise have been.

Textbooks these days are much more than just printed books; they are educational
platforms that have many moving parts. This means putting together an updated edition
of a book like this, particularly on an aggressive schedule, is a challenge. I’m pleased to
say that the entire production team rose to the occasion. Thanks to Jaymie Falconi,
Michele Stulga, Emily Pope, and Maria Garguilo at Cengage for all of their help. Thanks
to John Freitas for providing new screenshots of programs and applications. Any errors
or omissions in this edition of the text are purely my responsibility.

Finally, sincere thanks to the instructors and students who offered feedback and com-
ments. We have tried to address your concerns and incorporate your suggestions. As this
field is constantly evolving, we strongly encourage your participation in helping us provide
the freshest, most relevant information possible. We will certainly continue to listen carefully.
If you have any questions or comments, please contact us through your local representative.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1

PHASE 1SYSTEMS PLANNING

DELIVERABLE
Preliminary investigation report

Systems planning is the first of five phases in the systems development life cycle. It’s always a
good idea to know whether a project fits the company’s overall strategy. A systems project that
does not align with corporate strategies should not be approved. The role of an information
system is to support business goals.

Chapter 1 focuses on an introduction to systems analysis and design by describing the role
of information technology in today’s dynamic business environment. This includes information
systems, Internet business strategies, modeling business operations, business information
systems, organizational information models, systems development, the information technology
department, and the role of the systems analyst.

Chapter 2 focuses on analyzing the business case, explains how systems projects get started, and
describes how to evaluate a project proposal to determine its feasibility. This includes strategic
planning and strategic planning tools, the business case, systems requests, factors affecting
systems projects, processing systems requests, assessing request feasibility, setting priorities, and
the preliminary investigation.

Chapter 3 focuses on managing systems projects. This includes an overview of project
management, creating a work breakdown structure, task patterns, the critical path, project
monitoring and control, reporting, project management software, risk management, and
managing for success.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 1 Introduction to Systems Analysis and Design

C O N T E N T S
1.1 Information Technology
1.2 Information Systems
 Case in Point 1.1: Data Breaches
1.3 Internet Business Strategies
1.4 Modeling Business Operations
1.5 Business Information Systems
 Case in Point 1.2: Autonomous Vehicles
1.6 Organizational Information Models
1.7 Systems Development
1.8 The Information Technology Department
 Case in Point 1.3: Global Hotels and Momma’s

Motels
1.9 The Systems Analyst
 A Question of Ethics
1.10 Summary

Key Terms
Exercises

CHAPTER 1 Introduction to
Systems Analysis
and Design

Chapter 1 is the first of three chapters in the sys-
tems planning phase. This chapter explains the role of
information technology in today’s dynamic business
environment. This chapter describes the development
of information systems, systems analysis and design con-
cepts, and various systems development methods. This
chapter also summarizes the role of the information
technology department and its people in the enterprise.

The chapter includes three “Case in Point” dis-
cussion questions to help contextualize the concepts
described in the text. The “Question of Ethics” invites
examination of the ACM’s code of ethics and those of a
developing systems analyst.

L E A R N I N G O B J E C T I V E S
When you finish this chapter, you should be able to:

1. Describe the impact of information technology
on society

2. Describe the five main components of an
 information system

3. Explain Internet business strategies and
 relationships, including B2C and B2B

4. Explain how to use business profiles and models

5. Understand the seven types of information
 systems used in business

6. Describe the types of information the four
classes of users need

7. Distinguish among structured analysis, object-
oriented analysis, and agile systems development
methods

8. List the tools that enable the systems analyst
to develop, manage, and maintain large-scale
 information systems

9. Explain the seven main functions of the
 information technology department

10. Describe the roles and responsibilities of a
 systems analyst within the enterprise

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3

Phase 1 Systems Planning

1.1 Information Technology

1.1 InformatIon technology

Information technology (IT) refers to the combination
of hardware, software, and services that people use to
manage, communicate, and share information. Compa-
nies use information as a way to increase productivity,
deliver quality products and services, maintain customer
loyalty, and make sound decisions. In a global economy
with intense competition, information technology can
mean the difference between success and failure.

More than ever, business success depends on infor-
mation technology. IT is driving a new digital economy,
where advances in hardware, software, and connectivity
can provide enormous benefits to businesses and indi-
viduals. Although economic trends affect IT spending
levels, most companies give IT budgets a high priority, in
good times or bad. The reason is simple: during periods
of growth, companies cannot afford to lag behind the
IT curve. Conversely, when the economy slows down,
firms often use IT to reduce operating costs and improve
efficiency.

Information technology also has profound influence on modern life. Although
fictitious, the headlines in Figure 1-1 offer dramatic examples of how information
technology issues such as data privacy, mobile devices, and social media affects our
society. We live in a world where we can be traced, analyzed, and surveilled without
our knowledge. This raises many important questions, such as how to secure personal
data while still providing useful functionality and business value.

The following sections provide a sense of IT history, an overview of systems
analysis and design, and a description of the systems analyst’s role.

1.1.1 The Changing Nature of Information Technology
The history of IT is a fascinating study of human progress and achievement. We are
dazzled by the latest and greatest technology, just as our parents and grandparents
were astonished by the arrival of television, space flight, and personal computing.
It is important for IT professionals, who live and work in this exciting world, to
realize that each technology advance is part of a long-term process that often brings
 dramatic change but never really ends. The story of IBM is a good example.

As its name suggests, International Business Machines was a major supplier of office
equipment and typewriters long before the modern computer era. Herman Hollerith,
who invented a card that identified characters by the location of punched holes,
founded IBM’s predecessor company in 1896. A deck of hundreds or even thousands of
these cards could store data that was easily sorted, queried, and printed by machines.
This system sounds archaic now, but punch card technology was a huge advance that
revolutionized the business world and was in use into the 1960s and beyond.

Today, IBM is a globe-spanning company with several hundred thousand employees.
It has succeeded in part by constantly adapting to its changing business environment.
For example, while it was once known primarily as a hardware company, today IBM
makes a significant part of its revenue from software and services. It also invests in
its people and tries to hire the best talent available. The result is that IBM has more
 patents and more Noble Prize winners than any other IT company in history.

Five More States Ban

Driver Texting

Web Sales Surge as Gas Prices Rise

Identity Theft:

Are Your Kids

Safe?

Can Google Avoid Global Censorship?

Privacy or Security: Must We Choose?

Social Media
Explodes!

What’s Up With Facebook?

Digital Cure for
Health Care Costs

Another Home Run
for Apple?

FIGURE 1-1 These headlines illustrate the enormous
impact of information technology on our lives.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4

Chapter 1 Introduction to Systems Analysis and Design

1.2 Information Systems

1.1.2 Systems Analysis and Design
Systems analysis and design is a step-by-step process for developing high-quality
information systems. An information system combines technology, people, and data
to provide support for business functions such as order processing, inventory control,
human resources, accounting, and many more. Some information systems handle
routine day-to-day tasks, while others can help managers make better decisions, spot
marketplace trends, and reveal patterns that might be hidden in stored data.

Talented people, including a mix of managers, users, network administrators, web
designers, programmers, and systems analysts, typically develop information systems.
Capable IT professionals like these are always in demand, even in a slow economy.
For example, notice how many positions related to information technology and infor-
mation systems are available in the Melbourne, Florida area, as shown on Monster.
com’s job search website in Figure 1-2.

FIGURE 1-2 Monster.com is an example of an online job search website that IT professionals can use.
Source: Monster.com

1.1.3 What Does a Systems Analyst Do?
A systems analyst is a valued member of the IT department team who helps plan,
develop, and maintain information systems. Analysts must be excellent communica-
tors with strong analytical and critical thinking skills. Because systems analysts trans-
form business requirements into IT projects, they must be business-savvy as well as
technically competent and be equally comfortable with managers and programmers,
who sometimes have different points of view.

Most companies assign systems analysts to the IT department, but analysts can
also report to a specific user area such as marketing, sales, or accounting. As a mem-
ber of a functional team, an analyst is better able to understand the needs of that
group and how IT supports the department’s mission. Smaller companies often use
consultants to perform systems analysis work on an as-needed basis.

On any given day, an analyst might be asked to document business processes, test
hardware and software packages, design input screens, train users, and plan e-commerce
websites. A systems analyst may occasionally manage IT projects, including tasks,
resources, schedules, and costs. To keep managers and users informed, the analyst con-
ducts meetings, delivers presentations, and writes memos, reports, and documentation.

Section 1.9 lists typical skills and education requirements, certifications, career
opportunities, and the possible impact of future IT trends for systems analysts.

1.2 InformatIon SyStemS

A system is a set of related components that produces specific results. For exam-
ple, specialized systems route Internet traffic, manufacture microchips, and control
complex entities like the Hubble telescope, which took the amazing image shown in

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5

Phase 1 Systems Planning

1.2 Information Systems

Figure 1-3. A mission-critical system is one that is vital to a
 company’s operations. An order processing system, for exam-
ple, is mission-critical because the company cannot do business
without it.

Every system requires input data. For example, a computer
receives data when a key is pressed or when a menu command
is selected. In an information system, data consists of basic
facts that are the system’s raw material. Information is data
that has been transformed into output that is valuable to users.

An information system has five key components, as shown
in Figure 1-4: hardware, software, data, processes, and people.

1.2.1 Hardware
Hardware consists of everything in the physical layer of the
information system. For example, hardware can include
servers, workstations, networks, telecommunications
equipment, fiber-optic cables, mobile devices, scanners, digital
capture devices, and other technology-based infrastructure.
A large concentration of networked computers working
together is called a data center. As new technologies emerge,
manufacturers race to market the innovations and reap the rewards.

Hardware purchasers today face a wide array of technology choices and
decisions. In 1965, Gordon Moore, a cofounder of Intel, predicted that the
number of transistors on an integrated circuit chip would double about
every 24 months. His concept, called Moore’s law, has remained valid for
over 50 years. Fortunately, as hardware became more powerful, it also
became much less expensive. Large businesses with thousands or millions
of sales transactions require company-wide information systems and pow-
erful servers, which are often now in the cloud, such as those shown in
Figure 1-5.

1.2.2 Software
Software refers to the programs that control the hardware and produce the
desired information or results. Software consists of system software and
application software.

System software manages the hardware components, which can include
a single computer or a global network with many thousands of clients. Either the
hardware manufacturer supplies the system software or a company purchases it
from a vendor. Examples of system software include the operating system, security
software that protects the computer from intrusion, device drivers that communicate
with hardware such as printers, and utility programs that handle specific tasks such
as data backup and disk management. System software also controls the flow of data,
provides data security, and manages network operations. In today’s interconnected
business world, network software is vitally important.

Application software consists of programs that support day-to-day business
 functions and provide users with the information they need. Examples of company-wide
applications, called enterprise applications, include order processing systems, payroll
systems, and company communications networks. On a smaller scale, individual users
can boost productivity with tools such as spreadsheets, presentation software, and
 database management systems.

FIGURE 1-3 Consider the amazing technology
that enabled the Hubble telescope to capture this
image.
Source: Courtesy of the Hubble Heritage Team (AURA/STScI/NASA)

Hardware

Software

Data

Processes

People

S

Y

S

T

E

M

FIGURE 1-4 An information
system needs these components.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

6

Chapter 1 Introduction to Systems Analysis and Design

1.2 Information Systems

Application software includes horizontal and vertical systems. A horizontal system
is a system, such as an inventory or payroll application, that can be adapted for use in
many different types of companies. A vertical system is designed to meet the unique
requirements of a specific business or industry, such as an online retailer, a medical
practice, or an auto dealership.

Most companies use a mix of software that is acquired at various times. When
planning an information system, a company must consider how a new system
will interface with older systems, which are called legacy systems. For example, a
new human resources system might need to exchange data with a legacy payroll
application.

1.2.3 Data
Data is the raw material that an information system transforms into useful informa-
tion. For example, an information system using a relational database can store data
in various locations, called tables. By linking the tables, the system can display the
specific information that the user needs—no more and no less. Figure 1-6 shows a
payroll system that stores data in four separate tables. Notice that the linked tables
work together to supply 19 different data items. A user can display any or all data
items and filter the data to fit defined limits. In this example, the user requested a list
of employees who live in a certain city and worked more than 40 hours in the last
pay period. Jane Doe’s name was the first to display.

The growth of big data has given rise to new ways of storing, searching,
and managing data. Traditional relational models are still used, but so-called
NoSQL databases are gaining in popularity due to their ability to scale to extremely
large and unstructured datasets.

FIGURE 1-5 Cloud computing provides the enormous storage and speed that modern IT systems need.
Oleksiy Mark/Shutterstock.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7

Phase 1 Systems Planning

1.2 Information Systems

1.2.4 Processes
Processes describe the tasks and business functions that users, managers, and IT staff
members perform to achieve specific results. Processes are the building blocks of an
information system because they represent actual day-to-day business operations. To
build a successful information system, analysts must understand business processes
and document them carefully.

1.2.5 People
People who have an interest in an information system are called stakeholders. Stake-
holders include the management group responsible for the system, the users (some-
times called end users) inside and outside the company who will interact with the
system, and IT staff members, such as systems analysts, programmers, and network
administrators, who develop and support the system.

Each stakeholder group has a vital interest in the information system, but
most experienced IT professionals agree that the success or failure of a system
usually depends on whether it meets the needs of its users. For that reason, it is
essential to understand user requirements and expectations throughout the devel-
opment process.

Jane Doe’s
Payroll

Data

FIGURE 1-6 In a typical payroll system using a relational model, data is stored in separate tables that are linked to
form an overall database.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

8

Chapter 1 Introduction to Systems Analysis and Design

1.3 Internet Business Strategies

1.3 Internet BuSIneSS StrategIeS

To design successful systems, systems analysts must understand a company’s business
operations. Each situation is different. For example, a retail store, a medical practice,
and a hotel chain all have unique information systems requirements. As the business
world changes, systems analysts can expect to work in new kinds of companies that
will require innovative IT solutions.

Business today is being shaped by three major trends: rapidly increasing globalization,
technology integration for seamless information access across a wide variety of devices
such as laptops and smartphones, and the rapid growth of cloud-based computing and
software services. These trends are being driven by the immense power of the Internet.

1.3.1 The Internet Model
Internet-based commerce is called e-commerce (electronic commerce). Internet-based
systems involve various hardware and software designs, but a typical model is a series of
web pages that provides a user interface, which communicates with database manage-
ment software and a web-based data server. On mobile devices, the user interacts with
the system with an app, but the same back-end services are accessed. As Internet-based
commerce continues to grow, career opportunities will expand significantly for IT pro-
fessionals such as web designers, database developers, and systems analysts.

1.3.2 B2C (Business-to-Consumer)
Using the Internet, consumers can go online to purchase an enormous variety of prod-
ucts and services. This new shopping environment allows customers to do research,
compare prices and features, check availability, arrange delivery, and choose payment
methods in a single convenient session. Many companies, such as airlines, offer incen-
tives for online transactions because web-based processing costs are lower than tradi-
tional methods. By making flight information available online to last-minute travelers,
some airlines also offer special discounts on seats that might otherwise go unfilled.

B2C (business-to-consumer) is changing traditional business models and creating
new ones. For example, a common business model is a retail store that sells a product
to a customer. To carry out that same transaction on the Internet, the company must
develop an online store and deal with a totally different set of marketing, advertising,
and profitability issues.

Some companies have found new ways to use established business models. For
example, Airbnb and VRBO have transformed the traditional hospitality service
industry into a popular and successful way for individuals to rent their properties.
Other retailers seek to enhance the online shopping experience by offering gift advi-
sors, buying guides, how-to clinics, and similar features. In the e-commerce battles,
the real winners are online consumers, who have more information, better choices,
and the convenience of shopping at home.

CASE IN POINT 1.1: Data Breaches

A data breach occurs when a hacker gains illegal access to a system and steals personal data,
such as credit card numbers or home addresses. With more of our information stored in
the cloud, data breaches are becoming increasingly common. Research recent news articles
about large-scale data breaches, summarize why they occurred, and suggest how they might be
 prevented in the future.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

9

Phase 1 Systems Planning

1.4 Modeling Business Operations

1.3.3 B2B (Business-to-Business)
Although the business-to-consumer (B2C) sector is more familiar to retail customers,
the volume of B2B (business-to-business) transactions is many times greater. Industry
observers predict that B2B sales will increase sharply as more firms seek to improve
efficiency and reduce costs.

Initially, electronic commerce between two companies used a data sharing arrange-
ment called electronic data interchange (EDI). EDI enabled computer-to-computer
data transfer, usually over private telecommunications lines. Firms used EDI to
plan production, adjust inventory levels, or stock up on raw materials using data
from another company’s information system. As B2B volume soared, company-to-
company transactions migrated to the Internet, which offered standard protocols,
universal availability, and low communication costs. The main advantage of the web
is that it offers seamless communication between different hardware and software
 environments, anywhere and anytime.

Because it allows companies to reach the global marketplace, B2B is especially
important to smaller suppliers and customers who need instant information about
prices and availability. In an approach that resembles an open marketplace, some B2B
sites invite buyers, sellers, distributors, and manufacturers to offer products, submit
specifications, and transact business.

Most large firms and government agencies use supply chain management (SCM)
software. A supply chain refers to all the companies who provide materials, services, and
functions needed to provide a product to a customer. For example, a Sherwin-Williams
customer who buys a gallon of paint is at the end of a chain that includes the raw mate-
rial sources, packaging suppliers, manufacturers, transporters, warehouses, and retail
stores. Because SCM is complex and dynamic, specialized software helps businesses
manage inventory levels, costs, alternate suppliers, and much more.

1.4 modelIng BuSIneSS operatIonS

Systems analysts use modeling to represent company operations and information needs.
Modeling produces a graphical representation of a concept or process that systems
developers can analyze, test, and modify. A systems analyst can describe and simplify an
information system by using a set of business, data, object, network, and process models.

A business profile is an overview of a company’s mission, functions, organization,
products, services, customers, suppliers, competitors, constraints, and future direction.
Although much of this information is readily available, a systems analyst usually
needs to do additional research and fact-finding to fill out missing or incomplete
information. A business profile is the starting point for the modeling process, and
a systems analyst can describe and simplify an information system by using a set of
business models and business process models.

A business model describes the information that a system must provide. Analysts
also create models to represent data, objects, networks, and other system components.
Although the models might appear to overlap, they actually work together to describe
the same environment from different points of view.

Business process modeling involves a business profile and a set of models that
 document business operations. Model-based systems engineering (MBSE) is one of
the leading methods used by systems analysts to develop information systems.

A business process is a specific set of transactions, events, and results that can be
described and documented. A business process model (BPM) graphically displays one
or more business processes, such as handling an airline reservation, filling a product
order, or updating a customer account. The sales order example in Figure 1-7 shows a
simple model that includes an event, three processes, and a result.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

10

Chapter 1 Introduction to Systems Analysis and Design

1.4 Modeling Business Operations

A rough sketch might be sufficient to document a simple business process. For
complex models, analysts can choose computer-based tools that use business process
modeling notation (BPMN). BPMN includes standard shapes and symbols to
 represent events, processes, workflows, and more. Multipurpose application such as
Microsoft Visio or online diagramming tools such as draw.io can be used to create
BPMN models. Notice that the draw.io model in Figure 1-8 uses BPMN symbols to
represent the same sales order process shown in Figure 1-7.

Check Customer
Status

Verify Customer
Credit

Enter Customer
Order Data

Receive
Sales
Order

Completed
Sales
Order

FIGURE 1-8 This sample uses business process
modeling notation (BPMN) to represent the same
events, processes, and workflow shown in Figure 1-7.
Source: Drawio.com

FIGURE 1-9 Lucidchart allows you to drag and drop various symbols and connect them to model a business process.
Source: Lucid Software Inc.

Process

Check Customer
Status

Process

Verify Customer
Credit

Process

Enter Customer
Order Data

Event

Receive Sales
Order

Result

Completed Sales
Order

FIGURE 1-7 A simple business model might consist
of an event, three processes, and a result.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

11

Phase 1 Systems Planning

1.5 Business Information Systems

Systems developers often use multipurpose charting tools such as Lucidchart to
display business-related models. Lucidchart is a popular tool that systems analysts
can use to create business process diagrams, flowcharts, organization charts, network
diagrams, floor plans, project timelines, and workflow diagrams, among others.
Figure 1-9 shows how to drag and drop various symbols from the left pane into the
drawing on the right and connect them to show a business process.

1.5 BuSIneSS InformatIon SyStemS

In the past, IT managers identified an information system based on its primary
users. For example, administrative staff used office systems, operational people
used operational systems, middle managers used decision support systems, and top
 managers used executive information systems.

Today, those traditional labels no longer apply. For example, all employees,
including top managers, use office productivity systems to do their jobs. Similarly,
operational users often require decision support systems to do their jobs. As business
changes, information use also changes, and now it makes more sense to identify a
 system by its functions and features, rather than by its users. A new set of system
definitions includes enterprise computing systems, transaction processing systems,
business support systems, knowledge management systems, user productivity systems,
digital assistants, and systems integration.

1.5.1 Enterprise Computing
Enterprise computing refers to information systems that support company-wide
 operations and data management requirements. Walmart’s inventory control system,
Boeing’s production control system, and Hilton Hotels’ reservation system are exam-
ples of enterprise computing systems. The main objective of enterprise computing is
to integrate a company’s primary functions (such as production, sales, services, inven-
tory control, and accounting) to improve efficiency, reduce costs, and help managers
make key decisions. Enterprise computing also improves data security and reliability
by imposing a company-wide framework for data access and storage.

In many large companies, applications called enterprise resource planning
(ERP) systems provide cost-effective support for users and managers throughout
the company. For example, a car rental company can use ERP to forecast customer
demand for rental cars at hundreds of locations. Because of its growth and poten-
tial, many hardware and software vendors target the enterprise computing market
and offer a wide array of products and services. For example, Figure 1-10 highlights
SAP’s leading ERP solutions. SAP is a Germany company that is a market leader in
 enterprise application software.

By providing a company-wide computing environment, many firms have been able
to achieve dramatic cost reductions. Other companies have been disappointed in the
time, money, and commitment necessary to implement ERP successfully. A potential
disadvantage is that ERP systems generally impose an overall structure that might
or might not match the way a company operates. ERP is described in more detail in
Chapter 7, which discusses development strategies.

1.5.2 Transaction Processing
Transaction processing (TP) systems process data generated by day-to-day business
operations. Examples of TP systems include customer order processing, accounts
receivable, and warranty claim processing.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

12

Chapter 1 Introduction to Systems Analysis and Design

1.5 Business Information Systems

TP systems perform a series of tasks whenever a specific transaction occurs. In
the example shown in Figure 1-11, a TP system verifies the customer’s data, checks
the customer’s credit status, checks the stock status, posts to accounts receivable,
adjusts the inventory level, and updates the sales file. TP systems typically involve
large amounts of data and are mission-critical systems because the enterprise cannot
 function without them.

TP systems are efficient because they process a
set of transaction-related commands as a group
rather than individually. To protect data integrity,
however, TP systems ensure that if any single
 element of a transaction fails, the system does not
process the rest of the transaction.

1.5.3 Business Support
Business support systems provide job-related
information support to users at all levels of a
company. These systems can analyze transactional
data, generate information needed to manage and
control business processes, and provide informa-
tion that leads to better decision making.

FIGURE 1-10 SAP is a leading vendor of ERP solutions that can boost productivity.
Source: SAP

FIGURE 1-11 A single sales transaction consists of six separate
tasks, which the TP system processes as a group.

Check
Stock
Status

Post to
Accounts

Receivable

Update
Sales File

Verify
Customer

Data

1

2

3 4

5

6

Check
Credit
Status

Adjust
Inventory

Levels
2 5

Sales
Transaction

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

13

Phase 1 Systems Planning

1.5 Business Information Systems

The earliest business computer systems replaced manual tasks, such as payroll
processing. Companies soon realized that computers also could produce valu-
able information. The new systems were called management information systems
(MIS) because managers were the primary users. Today, employees at all levels
need information to perform their jobs, and they rely on information systems for
that support.

A business support system can work hand in hand with a TP system. For exam-
ple, when a company sells merchandise to a customer, a TP system records the sale,
updates the customer’s balance, and makes a deduction from inventory. A related busi-
ness support system highlights slow-
or fast-moving items, customers
with past-due balances, and inven-
tory levels that need adjustment.

To compete effectively, firms
must collect production, sales,
and shipping data and update the
company-wide business support
system immediately. Automated
data acquisition is possible using
technology such as radio frequency
identification (RFID), which uses
high- frequency radio waves to track
 physical objects, such as the shirt
shown in Figure 1-12. Major retail-
ers such as Walmart, which requires
its suppliers to add RFID tags to
all items, have fueled RFID’s dra-
matic growth by tracking products
throughout the retail process.

An important feature of a
business support system is decision
support capability. Decision support
helps users make decisions by creating a computer model and applying a set of
variables. For example, a truck fleet dispatcher might run a series of what-if scenarios
to determine the impact of increased shipments or bad weather. Alternatively, a retailer
might use what-if analysis to determine the price it must charge to increase profits by a
specific amount while volume and costs remain unchanged.

1.5.4 Knowledge Management
Knowledge management systems use a large database called a knowledge base that
allows users to find information by entering keywords or questions in normal English
phrases. A knowledge management system uses inference rules, which are logical rules
that identify data patterns and relationships.

The WolframAlpha website, shown in Figure 1-13, describes itself as a “compu-
tational knowledge engine.” It has a sophisticated natural language front end that
understands user queries in several domains. As shown in the figure, these domains
include mathematics, science and technology, society and culture, and everyday life.
WolframAlpha relies upon a large knowledge base spanning multiple websites and its
own proprietary algorithms to provide users with detailed answers to their questions
on many different topics. The results are displayed using a mix of multimedia, includ-
ing mathematical equations if appropriate.

FIGURE 1-12 With an RFID tag, items can be tracked and monitored throughout
the retail process.
Tatchaphol/Shutterstock.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

14

Chapter 1 Introduction to Systems Analysis and Design

1.5 Business Information Systems

1.5.5 User Productivity
Companies provide employees at all levels with technology that improves
 productivity. Examples of user productivity systems include email, voice mail, video
and web conferencing, word processing, automated calendars, database management,
spreadsheets, desktop publishing, presentation graphics, company intranets, and inte-
grated mobile computing systems. User productivity systems also include groupware,
which enables users to share data, collaborate on projects, and work in teams. One
popular groupware product is Slack, shown in Figure 1-14. Slack provides common
app integration and unified communication channels for distributed teams.

FIGURE 1-13 WolframAlpha describes itself as a “computational knowledge engine.”
Source: Wolfram Alpha LLC

FIGURE 1-14 Slack is a popular groupware application that provides common app
integration and unified communication channels for distributed teams.
Source: Slack.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

15

Phase 1 Systems Planning

1.5 Business Information Systems

When companies first installed word processing systems, managers expected to
reduce the number of employees as office efficiency increased. That did not happen,
primarily because the basic nature of clerical work changed. With computers
 performing the repetitive work, office personnel were able to handle tasks that
required more judgment, decision making, and access to information.

Computer-based office work expanded rapidly as companies assigned more
responsibility to employees at lower organizational levels. Relatively inexpensive
hardware, powerful networks, corporate downsizing, and a move toward employee
empowerment also contributed to this trend. Today, administrative assistants and
company presidents alike are networked, use computer workstations, and share cor-
porate data to perform their jobs.

1.5.6 Digital Assistants
Rapid advances in natural language processing have made a
new type of business information system possible: the personal
 digital assistant. These systems are combinations of knowledge
management systems and user productivity systems, enhanced
with artificial intelligence and machine learning capabilities.
They are typically cloud based and can be embedded in
 hardware devices of various sizes and types.

Digital assistants are exemplified by products such as
 Amazon.com’s Alexa, Apple’s Siri, and Google Assistant. Users
speak to these applications just as they would speak to a real
person. The device replies in a human-sounding voice. These
services increase their capabilities over time. They can inte-
grate with other software applications and actual hardware,
such as controlling lights at home or the temperature at the
office. An image of the Amazon Echo Dot, which is a smart
speaker powered by Alexa, is shown in Figure 1-15.

1.5.7 Systems Integration
Most large companies require systems that combine transaction processing, business sup-
port, knowledge management, and user productivity features. For example, suppose an
international customer makes a warranty claim. A customer service representative enters
the claim into a TP system, which updates two other systems: a knowledge management
system that tracks product problems and warranty activity and a quality control system
with decision support capabilities. A quality control engineer uses what-if analysis to
determine if the firm should make product design changes to reduce warranty claims.
In this example, a TP system is integrated with a knowledge management system and a
business support system with decision support features.

FIGURE 1-15 Amazon.com’s Echo Dot, a digital
assistant embedded in a smart speaker powered
by Alexa.
Source: Amazon.com, Inc.

CASE IN POINT 1.2: autonomous Vehicles

Imagine you work for a large automotive company. Your manager asks you to look into integrat-
ing a digital assistant into a new vehicle for the next production year. How would understanding
your company’s business profile help you complete this task?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

16

Chapter 1 Introduction to Systems Analysis and Design

1.6 Organizational Information Models

1.6 organIzatIonal InformatIon modelS

Corporate organizational structure has changed considerably in recent years. In an
effort to increase productivity, many companies reduced the number of management
levels and delegated responsibility to operational personnel. Although modern organi-
zation charts tend to be flatter, an organizational hierarchy still exists in most firms.

1.6.1 Functions and Organizational Levels
A typical organizational model identifies business functions and organizational levels,
as shown in Figure 1-16. Within the functional areas, operational personnel report to
supervisors and team leaders. The next level includes middle managers and knowl-
edge workers, who, in turn, report to top managers. In a corporate structure, the top
managers report to a board of directors elected by the company’s shareholders.

Organizational Levels

Top
Managers

Middle Managers
and

Knowledge
Workers

Supervisors and Team
Leaders

Operational Employees

IT Human
Resources

AccountingProduction

Marketing Sales

Business Functions

FIGURE 1-16 A typical organizational model identifies business functions and organizational levels.

A systems analyst must understand the company’s organizational model to recog-
nize who is responsible for specific processes and decisions and to be aware of what
information is required by whom.

1.6.2 Top Managers
Top managers develop long-range plans, called strategic plans, which define the com-
pany’s overall mission and goals. To plot a future course, top managers ask questions
such as “How much should the company invest in information technology?”, “How
much will Internet sales grow in the next five years?”, or “Should the company build
new factories or contract out production functions?”

Strategic planning affects the company’s future survival and growth, including
long-term IT plans. Top managers focus on the overall business enterprise and use IT
to set the company’s course and direction. To develop a strategic plan, top managers
also need information from outside the company, such as economic forecasts, technol-
ogy trends, competitive threats, and governmental issues.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

17

Phase 1 Systems Planning

1.7 Systems Development

1.6.3 Middle Managers and Knowledge Workers
Just below the top management level, most companies have a layer of middle manag-
ers and knowledge workers. Middle managers provide direction, necessary resources,
and performance feedback to supervisors and team leaders. Because they focus on a
somewhat shorter time frame, middle managers need more detailed information than
top managers but somewhat less than supervisors who oversee day-to-day operations.
For example, a middle manager might review a weekly sales summary for a three-
state area, whereas a local sales team leader would need a daily report on customer
sales at a single location.

In addition to middle managers, every company has people called knowledge
workers. Knowledge workers include systems analysts, programmers, accountants,
researchers, trainers, human resource specialists, and other professionals. Knowledge
workers also use business support systems, knowledge management systems, and user
productivity systems. Knowledge workers provide support for the organization’s basic
functions. Just as a military unit requires logistical support, a successful company
needs knowledge workers to carry out its mission.

1.6.4 Supervisors and Team Leaders
Supervisors, often called team leaders, oversee operational employees and carry out
day-to-day functions. They coordinate operational tasks and people, make necessary
decisions, and ensure that the right tools, materials, and training are available. Like
other managers, supervisors and team leaders need decision support information,
knowledge management systems, and user productivity systems to carry out their
responsibilities.

1.6.5 Operational Employees
Operational employees include users who rely on transaction processing systems to
enter and receive data they need to perform their jobs. In many companies, oper-
ational users also need information to handle tasks and make decisions that were
assigned previously to supervisors. This trend, called empowerment, gives employees
more responsibility and accountability. Many companies find that empowerment
improves employee motivation and increases customer satisfaction.

1.7 SyStemS development

Many options exist for developing information systems, but the most popular
 alternatives are structured analysis, which is a traditional method that still is widely
used, object-oriented (O-O) analysis, which is a more recent approach that many
 analysts prefer, and agile methods, which include the latest trends in software devel-
opment. Figure 1-17 provides an overview of the three methods, which are discussed
in the following sections.

Although most projects utilize one approach, it is not unusual for systems devel-
opers to mix and match methods to gain a better perspective. In addition to these
three main development methods, some organizations choose to develop their own
in-house approaches or use techniques offered by software suppliers, tool vendors, or
consultants. Many alternatives exist, and IT experts agree that no single development
method is best in all cases. An approach that works well for one project might have
disadvantages or risks in another situation. The important thing is to understand the
various methods and the strengths and weaknesses of each approach.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

18

Chapter 1 Introduction to Systems Analysis and Design

1.7 Systems Development

Regardless of the development strategy, people, tasks, timetables, and costs must
be managed effectively. Complex projects can involve dozens of people, hundreds of
tasks, and many thousands of dollars. Project management is the process of planning,
scheduling, monitoring, controlling, and reporting upon the development of an infor-
mation system. Chapter 3 describes project management tools and techniques in detail.

1.7.1 Structured Analysis
Structured analysis is a traditional systems development technique that is time
tested and easy to understand. Structured analysis uses a series of phases, called the

FIGURE 1-17 Comparison of structured, object-oriented, and agile development methods.

STRUCTURED
ANALYSIS

OBJECT-ORIENTED
ANALYSIS

AGILE
METHODS

Description Represents the system in terms
of data and the processes that
act upon that data. System
development is organized
into phases, with deliverables
and milestones to measure
progress. The waterfall model
typically consists of five
phases: requirements, design,
construction, testing, and
maintenance & evolution. Iteration
is possible among the phases.

Views the system in terms
of objects that combine
data and processes. The
objects represent actual
people, things, transactions,
and events. Compared to
structural analysis, O-O
phases tend to be more
interactive. Can use the
waterfall model or a model
that stresses greater
iteration.

Stresses intense team-based
effort. Breaks development
into cycles, or iterations,
that add functionality. Each
cycle is designed, built, and
tested in an ongoing process.
Attempts to reduce major
risks by incremental steps in
short time intervals.

Modeling
Tools

Data flow diagrams (DFDs) and
process descriptions, which are
described in Chapter 5. Also,
business process modeling.

Various object-oriented
diagrams depict system
actors, methods, and
messages, which are
described in Chapter 6.
Also, business process
modeling.

Tools that enhance
communication, such as
collaborative software,
brainstorming, and
whiteborads. Business
process modeling works well
with agile methods.

Pros Traditional method that has
been very popular over time.
Relies heavily on written
documentation. Frequent phase
iteration can provide flexibility
comparable to other methods.
Well-suited to traditional
project management tools and
techniques.

Integrates easily
with object-oriented
programming languages.
Code is modular and
reusable, which can reduce
cost and development
time. Easy to maintain
and expand because new
objects can be created using
inherited properties.

Very flexible and efficient in
dealing with change. Stresses
team interaction and reflects
a set of community-based
values. Frequent deliverables
constantly validate the
project and reduce risk.

Cons Changes can be costly,
especially in later phases.
Requirements are defined
early, and can change during
development. Users might not
be able to describe their needs
until they can see examples of
features and functions.

Somewhat newer method
might be less familiar
to development team
members. Interaction of
objects and classes can be
complex in larger systems.

Team members need a
high level of technical
and communications
skills. Lack of structure
and documentation can
introduce risk factors.
Overall project might be
subject to scope change as
user requirements change.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

19

Phase 1 Systems Planning

1.7 Systems Development

systems development life cycle (SDLC), to plan, analyze, design, implement, and
 support an information system. Although structured analysis evolved many years
ago, it remains a popular systems development method. Structured analysis is based
on an overall plan, similar to a blueprint for constructing a building, so it is called a
 predictive approach.

Structured analysis uses a set of process models to describe a system graphically.
Because it focuses on processes that transform data into useful information,
 structured analysis is called a process-centered technique. In addition to modeling
the processes, structured analysis also addresses data organization and structure,
 relational database design, and user interface issues.

A process model shows the data that flows in and out of system processes. Inside
each process, input data is transformed by business rules that generate the output.
Figure 1-18 shows a process model that was created with the Visible Analyst CASE
tool. The model, which represents a school registration system, is a called a data flow
diagram (DFD) because it uses various symbols and shapes to represent data flow,
processing, and storage. DFDs are discussed in more detail in Chapter 5.

INPUT

OUTPUT

FIGURE 1-18 This Visible Analyst screen shows a process model for a school registration system. The REGISTER STUDENTS process
accepts input data from two sources and transforms it into output data.
Source: Visible Systems Corporation

Structured analysis uses the SDLC to plan and manage the systems development
process. The SDLC describes activities and functions that all systems developers per-
form, regardless of which approach they use. In the waterfall model, the result of each
phase is called a deliverable, which flows into the next phase.

Some analysts see a disadvantage in the built-in structure of the SDLC because
the waterfall model does not emphasize interactivity among the phases. This criticism
can be valid if the SDLC phases are followed too rigidly. However, adjacent phases
can and do interact, as shown by the circular arrows in Figure 1-19, and interaction
among several phases is not uncommon. Used in this manner, the traditional model is
not as different from agile methods as it might appear to be.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

20

Chapter 1 Introduction to Systems Analysis and Design

1.7 Systems Development

The SDLC model usually includes five steps,
which are described in the following sections: systems
 planning, systems analysis, systems design, systems
implementation, and systems support and security.

SYSTEMS PLANNING: The systems planning phase
usually begins with a formal request to the IT depart-
ment, called a systems request, which describes prob-
lems or desired changes in an information system or
a business process. In many companies, IT systems
planning is an integral part of overall business plan-
ning. When managers and users develop their business
plans, they usually include IT requirements that gen-
erate systems requests. A systems request can come
from a top manager, a planning team, a department
head, or the IT department itself. The request can be
very significant or relatively minor. A major request
might involve a new information system or the
upgrading of an existing system. In contrast, a minor
request might ask for a new feature or a change to the
user interface.

The purpose of this phase is to perform a
 preliminary investigation to evaluate an IT-related
 business opportunity or problem. The preliminary
investigation is a critical step because the outcome will
affect the entire development process. A key part of
the preliminary investigation is a feasibility study that
reviews anticipated costs and benefits and recommends
a course of action based on operational, technical,
 economic, and time factors.

Suppose a systems analyst receives a request for
a system change or improvement. The first step is to
determine whether it makes sense to launch a prelim-
inary investigation at all. Before a conclusion can be

reached, more information about the business operations may be needed. After an
investigation, the systems analyst might determine that the information system func-
tions properly, but users need more training. In some situations, a business process
review may be recommended rather than an IT solution. In other cases, a full-scale
systems review may be necessary. If the development process continues, the next step
is the systems analysis phase.

SYSTEMS ANALYSIS: The purpose of the systems analysis phase is to build a logical
model of the new system. The first step is requirements engineering, where the analyst
investigates business processes and documents what the new system must do to sat-
isfy users. Requirements engineering continues the investigation that began during the
systems planning phase. To understand the system, fact-finding using techniques such
as interviews, surveys, document review, observation, and sampling is performed. The
fact-finding results are used to build business models, data and process models, and
object models.

The deliverable for the systems analysis phase is the system requirements
 document. The system requirements document describes management and user
requirements, costs, and benefits and outlines alternative development strategies.

Systems
Planning

Systems
Analysis

• Preliminary
 investigation
 report

• System
 requirements
 document

• System
 design
 specification

• Functioning
 system

• Fully
 operational
 system

Systems
Implementation

Systems
Design

Systems
Security and

Support

Systems
Planning

Systems
Design

Systems
Security and

Support

Systems
Analysis
Systems

S t

Systems
Implementation

stems

Syste

FIGURE 1-19 Development phases and deliverables are
shown in the waterfall model. The circular symbols indicate
interaction among the phases.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

21

Phase 1 Systems Planning

1.7 Systems Development

SYSTEMS DESIGN: The purpose of the systems design phase is to create a physical
model that will satisfy all documented requirements for the system. At this stage, the user
interface is designed, and necessary outputs, inputs, and processes are identified. In addi-
tion, internal and external controls are designed, including computer-based and manual
features, to guarantee that the system will be reliable, accurate, maintainable, and secure.
During the systems design phase, the application architecture is also determined, which
programmers will use to transform the logical design into program modules and code.

The deliverable for this phase is the system design specification, which is presented
to management and users for review and approval. Management and user involve-
ment are critical to avoid any misunderstanding about what the new system will do,
how it will do it, and what it will cost.

SYSTEMS IMPLEMENTATION: During the systems implementation phase, the new
system is constructed. Whether the developers use structured analysis or O-O meth-
ods, the procedure is the same—programs are written, tested, and documented, and
the system is installed. If the system was purchased as a package, systems analysts
configure the software and perform any necessary modifications. The objective of the
systems implementation phase is to deliver a completely functioning and documented
information system. At the conclusion of this phase, the system is ready for use. Final
preparations include converting data to the new system’s files, training users, and per-
forming the actual transition to the new system.

The systems implementation phase also includes an assessment, called a systems
evaluation, to determine whether the system operates properly and if costs and bene-
fits are within expectations.

SYSTEMS SUPPORT AND SECURITY: During the systems support and security
phase, the IT staff maintains, enhances, and protects the system. Maintenance
changes correct errors and adapt to changes in the environment, such as new tax
rates. Enhancements provide new features and benefits. The objective during this
phase is to maximize return on the IT investment. Security controls safeguard the
system from both external and internal threats. A well-designed system must be
secure, reliable, maintainable, and scalable. A scalable design can expand to meet
new business requirements and volumes. Information systems development is always
a work in progress. Business processes change rapidly, and most information systems
need to be updated significantly or replaced after several years of operation. For
example, a web-based system may need more servers added to cope with increased
workload.

1.7.2 Object-Oriented Analysis
Whereas structured analysis treats processes and data as separate components,
object-oriented analysis combines data and the processes that act on the data as
objects. Systems analysts use O-O to model real-world business processes and opera-
tions. The result is a set of software objects that represent actual people, things, trans-
actions, and events. Using an O-O programming language, a programmer then writes
the code that creates the objects.

An object is a member of a class, which is a collection of similar objects. Objects
possess characteristics called properties, which the object inherits from its class or
possesses on its own. As shown in Figure 1-20, the class called PERSON includes
INSTRUCTOR and STUDENT. Because the PERSON class has a property called
Address, a STUDENT inherits the Address property. A STUDENT also has a property
called Major that is not shared by other members of the PERSON class.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

22

Chapter 1 Introduction to Systems Analysis and Design

1.7 Systems Development

In O-O design, built-in processes called
 methods can change an object’s properties. For
example, in an online catalog store, an ORDER
object might have a property called STATUS that
changes when a CUSTOMER object clicks to
place, confirm, or cancel the order.

One object can send information to another
object by using a message. A message requests
specific behavior or information from another
object. For example, an ORDER object might send
a message to a CUSTOMER object that requests
a shipping address. When it receives the message,
the CUSTOMER object supplies the information.
The ORDER object has the capability to send the
message, and the CUSTOMER object knows what
actions to perform when it receives the message.
O-O analysis uses object models to represent data
and behavior and to show how objects affect other
objects. By describing the objects and methods
needed to support a business operation, a systems

developer can design reusable components that speed up
system implementation and reduce development cost.

Object-oriented methods usually follow a series of
analysis and design phases that are similar to the SDLC,
although there is less agreement on the number of phases and
their names. In an O-O model, the phases tend to be more
interactive. Figure 1-21 shows an O-O development model
where planning, analysis, and design tasks interact to produce
prototypes that can be tested and implemented. The result
is an interactive model that can accurately depict real-world
business processes.

O-O methodology is popular because it provides an easy
transition to O-O programming languages such as C++,
Java, and Swift. Chapter 6 covers O-O analysis and design,
with a detailed description of O-O terms, concepts, tools,
and techniques.

1.7.3 Agile Methods
Development techniques change over time. For example, struc-
tured analysis is a traditional approach, and agile methods are
the newest development. Structured analysis builds an overall
plan for the information system, just as a contractor might use

a blueprint for constructing a building. Agile methods, in contrast, attempt to develop a
system incrementally by building a series of prototypes and constantly adjusting them to
user requirements. As the agile process continues, developers revise, extend, and merge
earlier versions into the final product. An agile approach emphasizes continuous feed-
back, and each incremental step is affected by what was learned in the prior steps.

Although relatively new to software development, the notion of iterative develop-
ment can be traced back to Japanese auto firms that were able to boost productivity
by using a flexible manufacturing system, where team-based effort and short-term
milestones helped keep quality up and costs down. Agile methods have attracted a
wide following and an entire community of users, as shown in Figure 1-22.

PERSON

Name

Address

Date of Birth

INSTRUCTOR

Name

Address

Date of Birth

Office Location

Office Phone

Email

STUDENT

Name

Address

Date of Birth

GPA

Advisor

Inherited

properties

Other

properties

FIGURE 1-20 The PERSON class includes INSTRUCTOR and
STUDENT objects, which have inherited properties and their own
properties.

Prototypes

Testing

Planning

Design
Analysis

Design

Planning

Analysis

Testin

types

FIGURE 1-21 In a typical O-O development model,
planning, analysis, and design tasks interact continuously
to generate prototypes that can be tested.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

23

Phase 1 Systems Planning

1.7 Systems Development

Agile methods typically use a spiral model, which represents a series of iterations,
or revisions, based on user feedback. As the process continues, the final product grad-
ually evolves. An agile approach requires intense interactivity between developers
and individual users and does not begin with an overall objective. Instead, the agile
process determines the end result. Proponents of the spiral model believe that this
approach reduces risks and speeds up software development.

FIGURE 1-22 Scrum.org is a popular website supporting the agile community.
Source: Scrum.org

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

24

Chapter 1 Introduction to Systems Analysis and Design

1.7 Systems Development

Barry Boehm, a noted software engineering professor, initially suggested spiral
models in the 1990s. He stated that each iteration, or phase, of the model must have
a specific goal that is accepted, rejected, or changed by the user or client. Thus, each
iteration produces feedback and enhancements, which enable the team to reach the
overall project goal. Typically, each iteration in a spiral model includes planning,
risk analysis, engineering, and evaluation. The repeated iterations produce a series of
prototypes, which evolve into the finished system. Notice that these phases resemble
SDLC tasks, which also can be iterative.

Numerous other adaptive variations and related methods exist, and most IT
 developers expect this trend to continue in the future. Two examples are Scrum,
which is discussed in Chapter 4, and Extreme Programming (XP), which is discussed
in Chapter 11.

Although agile methods are becoming popular, analysts should recognize that
these approaches have advantages and disadvantages. By their nature, agile methods
can allow developers to be much more flexible and responsive but can be riskier than
more traditional methods. For example, without a detailed set of system require-
ments, certain features requested by some users might not be consistent with the com-
pany’s larger game plan.

Other potential disadvantages of agile methods can include weak documentation,
blurred lines of accountability, and too little emphasis on the larger business picture.
Also, unless properly implemented, a long series of iterations might actually add to
project cost and development time. The bottom line is that systems analysts should
understand the pros and cons of any approach before selecting a development method
for a specific project.

1.7.4 Prototyping
Structured analysis, object-oriented analysis, and agile methods can all employ
prototyping as a supporting systems development method. Prototyping tests sys-
tem concepts and provides an opportunity to examine input, output, and user
interfaces before final decisions are made. A prototype is an early working version
of an information system. Just as an aircraft manufacturer tests a new design in
a wind tunnel, systems analysts construct and study information system proto-
types. A prototype can serve as an initial model that is used as a benchmark to
evaluate the finished system, or the prototype itself can develop into the final
version of the system. Either way, prototyping speeds up the development process
significantly.

A possible disadvantage of prototyping is that important decisions might be made
too early, before business or IT issues are understood thoroughly. A prototype based
on careful fact-finding and modeling techniques, however, can be an extremely valu-
able tool.

1.7.5 Tools
All systems development methods must be supported by tools to enable the systems
analyst to develop, manage, and maintain large-scale information systems. These tools
go by various names, including application lifecycle management (ALM), also called
product lifecycle management (PLM); integrated development environments (IDE);
and computer-aided systems engineering (CASE), also called computer-aided software
engineering. CASE tools provide an overall framework for systems development and
support a wide variety of design methodologies, including structured analysis and
object-oriented analysis.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

25

Phase 1 Systems Planning

1.7 Systems Development

Tools make it easier to build an information system, thereby boosting IT
 productivity and improving the quality of the finished product. After developing a
model, many CASE tools can generate program code, which speeds the implementation
 process. Figure 1-23 shows the website for Polarion, an ALM solution from Siemens
that is part of their larger suite of offerings. Figure 1-24 shows the website for
 Microsoft Visual Studio, a leading IDE. Figure 1-25 shows the website for Cameo
Systems Modeler, a leading MBSE CASE tool.

FIGURE 1-23 Polarion is a unified application lifecycle management (ALM) solution from Siemens.
Source: Siemens Product Lifecycle Management Software Inc.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

26

Chapter 1 Introduction to Systems Analysis and Design

1.8 The Information Technology Department

1.8 the InformatIon technology department

The IT department develops and maintains information systems. The IT group
 provides technical support, which includes seven main functions: application
 development, systems support and security, user support, database administration,
network administration, web support, and quality assurance. These functions overlap
considerably and often have different names in different companies.

The structure of the IT department varies among companies, as does its name
and placement within the organization. In a small firm, one person might handle

FIGURE 1-24 Microsoft Visual Studio is a fully-featured integrated development environment (IDE).
Source: Microsoft Corporation

FIGURE 1-25 Cameo Systems Modeler is a cross-platform collaborative Model-Based Systems Engineering
(MBSE) environment.
Source: No Magic, Inc.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

27

Phase 1 Systems Planning

1.8 The Information Technology Department

all computer support activities and services, whereas a large corporation might
require many people with specialized skills to provide information systems support.
 Figure 1-26 shows a typical IT organization in a company that has networked PCs,
enterprise-wide databases, centralized processing, and web-based operations.

Director
Information Technology

Application
Development

Systems Support
and Security

User
Support

Database
Administration

Quality
Assurance (QA)

Web
 Support

Network
Administration

IT Department

FIGURE 1-26 Depending on its size, an IT department might have separate organization units for these
functions, or they might be combined into a smaller number of teams.

1.8.1 Application Development
The IT application development group typically provides leadership and overall guidance,
but teams consisting of users, managers, and IT staff members develop the systems them-
selves. A popular model for information systems development is a project-oriented team
with IT professionals providing overall coordination, guidance, and technical support.

CASE IN POINT 1.3: GloBal hotels anD momma’s motels

Suppose you work in the IT department of Global Hotels, a multinational hotel chain. Global
Hotels runs several specialized business support systems, including a guest reservations system
that was developed in-house to meet the requirements of a large company with worldwide
operations. Guests can make one-stop online reservations by visiting Global’s website, which has
links to all major travel industry sites.

Global Hotels just acquired Momma’s, a regional chain of 20 motels. Momma’s uses
a vertical reservations package suitable for small- to medium-sized businesses and a
generic accounting and finance package. Should Momma’s use Global Hotels’ information
systems or continue with its own? In your answer, consider issues such as business
 profiles, business processes, system interactivity, and e-commerce. What additional
 information would be helpful to you in making a recommendation?

1.8.2 Systems Support and Security
Systems support and security provides vital protection and maintenance services for
system hardware and software, including enterprise computing systems, networks,
transaction processing systems, and corporate IT infrastructure. The systems support
and security group implements and monitors physical and electronic security hardware,
software, and procedures. This group also installs and supports operating systems, tele-
communications software, and centralized database management systems. In addition,
systems support and security technicians provide technical assistance to other groups
in the IT department. If a site has a large number of remote clients, the systems support
group often includes a deployment team that installs and configures the workstations.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

28

Chapter 1 Introduction to Systems Analysis and Design

1.9 The Systems Analyst

1.8.3 User Support
User support provides users with technical information, training, and productivity
support. The user support function usually is called a help desk. A help desk’s staff
trains users and managers on application software such as email, word processing,
spreadsheets, and graphics packages. User support specialists answer questions, trou-
bleshoot problems, and serve as a clearinghouse for user problems and solutions.

1.8.4 Database Administration
Database administration involves data design, management, security, backup, and
access. In small- and medium-sized companies, an IT support person performs those
roles in addition to other duties. Regardless of company size, mission-critical database
applications require continuous attention and technical support.

1.8.5 Network Administration
Business operations depend on networks that enable company-wide information sys-
tems. Network administration includes hardware and software maintenance, support,
and security. In addition to controlling user access, network administrators install,
configure, manage, monitor, and maintain network applications. Network administra-
tion is discussed in more detail in Chapter 10.

1.8.6 Web Support
Web support is a vital technical support function. Web support specialists design and
construct web pages, monitor traffic, manage hardware and software, and link web-
based applications to the company’s information systems. Reliable, high-quality web
support is especially critical for companies engaged in e-commerce.

1.8.7 Quality Assurance (QA)
Many large IT departments also use a quality assurance (QA) team that reviews
and tests all applications and systems changes to verify specifications and software
quality standards. The QA team usually is a separate unit that reports directly to IT
management.

1.9 the SyStemS analySt

A systems analyst investigates, analyzes, designs, develops, installs, evaluates, and
maintains a company’s information systems. To perform those tasks, a systems ana-
lyst constantly interacts with users and managers within and outside the company.
The following sections describe a systems analyst’s role, knowledge, skills, education,
certifications, and career opportunities.

1.9.1 Role
A systems analyst helps develop IT systems that support business requirements. To
succeed, analysts often must act as translators. For example, when they describe
business processes to programmers, they must speak a language that programmers
will understand clearly. Typically, the analyst builds a series of models, diagrams,
and decision tables and uses other descriptive tools and techniques. Similarly, when

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

29

Phase 1 Systems Planning

1.9 The Systems Analyst

communicating with managers, the analyst often must translate complex technical
issues into words and images that nontechnical people can grasp. To do this, the ana-
lyst uses various presentation skills, models, and communication methods.

Analysts are often the company’s best line of defense against an IT disaster—a system
that is technically sound but fails because it does not meet the needs of users and manag-
ers. When this occurs, poor communication is usually to blame. For an analyst, the most
valuable skill is the ability to listen. An effective analyst will involve users in every step of
the development process and listen carefully to what they have to say. As the process con-
tinues, the analyst will seek feedback and comments from the users. This input can pro-
vide a valuable early warning system for projects that might otherwise go off the track.

1.9.2 Knowledge, Skills, and Education
A successful systems analyst needs technical knowledge, oral and written commu-
nication skills, an understanding of business operations, and critical thinking skills.
Educational requirements vary widely depending on the company and the position.
In a rapidly changing IT marketplace, a systems analyst must manage his or her own
career and have a plan for professional development.

TECHNICAL KNOWLEDGE: State-of-the-art knowledge is extremely import-
ant in a rapidly changing business and technical environment. The Internet offers
numerous opportunities to update technical knowledge and skills. Many IT pro-
fessionals go online to learn about technical developments, exchange experiences,
and get answers to questions. For example, the International Council on Systems
 Engineering (INCOSE), shown in Figure 1-27, is one of the leading organizations
offering systems analysts a wealth of information, news, training, support communi-
ties, and more. Analysts also maintain their skills by attending training courses, both

FIGURE 1-27 INCOSE is one of the leading organizations offering systems analysts a wealth of information,
news, training, communities, and more.
Source: INCOSE - International Council on Systems Engineering

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

30

Chapter 1 Introduction to Systems Analysis and Design

1.9 The Systems Analyst

on-site and online. Networking with colleagues is another way to keep up with new
 developments, and membership in professional associations also is important.

COMMUNICATION SKILLS: A systems analyst needs strong oral and written
 communication skills and the ability to interact with people at all levels, from oper-
ational staff to senior executives. Often, the analyst must work with people outside
the company, such as software and hardware vendors, customers, and government
officials. Analysts often coordinate IT project teams, where they use communication
skills to guide and motivate team members.

BUSINESS SKILLS: A systems analyst works closely with managers, supervisors, and
operational employees. To be effective, he or she must understand business operations
and processes, communicate clearly, and translate business needs into requirements
that can be understood by programmers and systems developers. A successful analyst
is business-oriented, curious, comfortable with financial tools, and able to see the big
picture. Chapter 2 describes some basic concepts, including strategic planning, SWOT
analysis, and feasibility tests.

CRITICAL THINKING SKILLS: Most educators agree that critical thinking skills
include the ability to compare, classify, evaluate, recognize patterns, analyze cause and
effect, and apply logic. Critical thinkers often use a what-if approach, and they have
the ability to evaluate their own thinking and reasoning.

Critical thinking skills are valuable in the IT industry, where employers seek
job candidates who can demonstrate these skills and bring them to the workplace.
 Figure 1-28 shows the website for Critical Thinking Community, a nonprofit
 organization that provides encouragement and resources for critical thinkers.

FIGURE 1-28 The Critical Thinking Community is a nonprofit organization that provides encouragement and
resources for critical thinkers.
Source: Foundation for Critical Thinking

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

31

Phase 1 Systems Planning

1.9 The Systems Analyst

EDUCATION: Companies typically require systems analysts to have a college degree
in information systems, computer science, or business, and some IT experience usually
is required. For higher-level positions, many companies require an advanced degree.
Sometimes, educational requirements can be waived if a candidate has significant
experience, skills, or professional certifications.

1.9.3 Certification
Many hardware and software companies offer certification for IT professionals.
 Certification verifies that an individual demonstrated a certain level of knowledge and
skill on a standardized test. Certification is an excellent way for IT professionals to
learn new skills and gain recognition for their efforts. Although certification does not
guarantee competence or ability, many companies regard certification as an import-
ant credential for hiring or promotion. Certification is discussed in more detail in
Chapter 12.

In addition to traditional hardware and software certifications, some firms are
exploring ways to assess critical thinking skills, as shown in Figure 1-29. These skills
include perception, organization, analysis, problem solving, and decision making.
Whether or not formal certification is involved, these skills are extremely valuable to
IT professionals and the employers who hire them.

FIGURE 1-29 Employers like to hire people who can think logically and effectively.
Source: Pearson Education

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

32

Chapter 1 Introduction to Systems Analysis and Design

1.9 The Systems Analyst

1.9.4 Career Opportunities
The demand for systems analysts is expected to remain strong. Companies will
need systems analysts to apply new information technology, and the explosion in
 e-commerce will fuel IT job growth. The systems analyst position is a challenging and
rewarding one that can lead to a top management position. With an understanding
of technical and business issues, a systems analyst has an unlimited horizon. Many
 companies have presidents and senior managers who started in IT departments as
 systems analysts.

The responsibilities of a systems analyst at a small firm are different from those
at a large corporation. Working at a small or large company is a matter of personal
choice.

JOB TITLES: First, do not rely on job titles alone. Some positions are called systems
analysts but involve only programming or technical support. In other cases, systems
analyst responsibilities are found in positions titled computer specialist, programmer,
programmer/analyst, systems designer, software engineer, and various others. Be sure
the responsibilities of the job are stated clearly when considering a position.

COMPANY ORGANIZATION: Find out everything about the company and where
the IT department fits in the organization chart: Where are IT functions performed,
and by whom? A firm might have a central IT group but decentralize the systems
development function. This situation sometimes occurs in large conglomerates, where
the parent company consolidates information that actually is developed and managed
at the subsidiary level.

COMPANY SIZE: A smaller firm might provide more variety. However, a larger com-
pany with state-of-the-art systems provides opportunities for specialization. Although
there might be more responsibility in a smaller company, the promotional opportuni-
ties and financial rewards could be greater in larger companies. Working as an inde-
pendent consultant is also an option. Many consulting firms have been successful in
offering their services to smaller business enterprises that do not have the expertise to
handle systems development on their own.

SALARY, LOCATION, AND FUTURE GROWTH: Finally, consider salary, location,
and the company’s prospects for future growth and success. Initial impressions from
employment interviews with the company and its people are important. Most impor-
tantly, review short- and long-term goals very carefully before deciding which posi-
tion is most suitable.

CORPORATE CULTURE: In addition to having goals, methods, and information
systems requirements, every firm has an underlying corporate culture. A corporate
culture is the set of beliefs, rules, traditions, values, and attitudes that define a com-
pany and influence its way of doing business. To be successful, a systems analyst must
understand the corporate culture and how it affects the way information is managed.
Companies sometimes include statements about corporate culture in their mission
statements, which are explained in Chapter 2.

A systems analyst must understand the firm’s culture and find it comfortable. If
the company encourages personal growth and empowerment, work is much more
enjoyable. For example, consider the Salesforce corporate culture described in
 Figure 1-30. A company like Salesforce is likely to attract, retain, and motivate the
best and brightest people. In fact, Salesforce ranked #1 in Fortune’s 21st annual list of
the country’s greatest places to work.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

33

Phase 1 Systems Planning

1.9 The Systems Analyst

1.9.5 Trends in Information Technology
Systems analysts need to track trends in information technology because technologi-
cal changes affect business operations, career opportunities, and enterprise strategies.
Very few areas evolve as fast as information technology. Each year sees evolutionary
developments in current technology, such as faster processors, wider network band-
width, and increased storage capabilities. Once in a while, a truly transformative
change occurs, such as the injection of artificial intelligence applications across the
enterprise or a revolution in the basic tenets of computation with the nascent intro-
duction of quantum computing.

Some of the key trends that are disrupting information technology include agile
methods, artificial cloud computing, data science, mobile devices, service orientation,
and social media networks. These trends can affect education and training needs, give
rise to new certifications, and open lucrative career opportunities.

Agile methods have already been discussed in this chapter and are covered in
more detail later in the book. The agile movement is a significant trend in informa-
tion technology that all systems analysts should follow. It started as a response to
the heavyweight process models and was initially used for smaller teams, but interest
in agile methods has grown to encompass almost all application areas and business
organizations.

Cloud computing is in many ways a return to the past: a model of shared com-
puting and data storage resources accessed from remote clients, rather like the main-
frame era. However, cloud computing is different in that it offers virtualized resources
that can grow to accommodate increased requirements as needed. It’s also different in

FIGURE 1-30 A corporate culture like Salesforce is likely to attract, retain, and motivate the best and
brightest people.
Source: salesforce.com, inc.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

34

Chapter 1 Introduction to Systems Analysis and Design

1.9 The Systems Analyst

that buying capacity on demand from a thriving vendor marketplace can reduce the
capital costs needed for in-house computing infrastructure. It also presents additional
security needs to address.

If cloud computing represents the computational aspect of processing, data science
represents the data aspect. The world is producing more and more data at an
 incredible rate. New tools and techniques are being developed to manage these large
datasets. Areas such as machine learning and predictive analytics are experiencing
tremendous growth as companies try to apply artificial intelligence techniques to the
problem of big data. As depicted in Figure 1-31, many of the developments related
to big data are driving trends in information technology—trends the systems analyst
must follow to stay current.

FIGURE 1-31 Big data is driving many new developments in information technology.
Rafal Olechowski/Shutterstock.com

Mobile devices and the app ecosystem that goes with them are a revolutionary
development in information technology. The shift of computing capabilities to “the
edge” of the network has put unprecedented power in the hands of end users. Smart-
phones are the most common computing device on the planet, and systems analysts
will need to know about the role of apps and the effect of the bring your own device
(BYOD) movement in the enterprise.

Traditionally, IT companies were identified as product-oriented or service-
oriented. Product-oriented firms manufactured computers, routers, or microchips,
while service-oriented companies included consultants, vendors, software devel-
opers, and service providers. Today, those distinctions are gone. Most successful
IT companies offer a mix of products, services, and support. Value-added services
such as consulting, software, and technical support often are more profitable than
hardware sales.

Social media rides on some of the trends mentioned earlier, such as cloud
 computing, data science, mobile devices, and service orientation. However, social
media has had arguably the most profound influence on society. Witness the popularity
of Facebook, with over 2 billion users worldwide. Companies tap into the power of
social media, coupled with location-aware apps, to create truly innovative solutions
that are changing the face of information technology.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

1.10 Summary 35

Phase 1 Systems Planning

1.10 Summary

Information technology (IT) refers to the combination of hardware, software, and
 services that people use to manage, communicate, and share information. Technology
is changing rapidly, and IT professionals must prepare for the future. IT supports
business operations, improves productivity, and helps managers make decisions.
 Systems analysis and design is the process of developing information systems that
transform data into useful information, and systems analysts are IT team members
who help plan, develop, and maintain information systems.

The essential components of an information system are hardware, software, data,
processes, and people. Hardware consists of everything in the physical layer of the
information system. Software consists of system software, which manages the hard-
ware components, and application software, which supports day-to-day business
operations. Data is the raw material that an information system transforms into use-
ful information. Processes describe the tasks and functions that users, managers, and
IT staff members perform. People who interact with a system include users, from both
within and outside the company.

Most successful companies offer a mix of products, technical and financial
services, consulting, and customer support. A rapidly growing business category
is the Internet-dependent firm, which relies solely on Internet-based operations.
 E-commerce includes business-to-consumer (B2C) sales, and business-to-business
(B2B) transactions that use Internet-based digital marketplaces or private electronic
data interchange (EDI) systems.

A systems analyst starts with a business profile, which is an overview of company
functions, and then he or she creates a series of business models that represent busi-
ness processes, which describe specific transactions, events, tasks, and results. Ana-
lysts use business process modeling tools to document complex operations. Systems
analysts use modeling, prototyping, and computer-aided systems engineering (CASE)
tools. Modeling produces a graphical representation of a concept or process, whereas
prototyping involves the creation of an early working model of the information or its
components.

A QUESTION OF ETHICS

You are enjoying your job as a summer intern in the IT department of a local company.
At lunch yesterday, several people were discussing ethical issues. You learned that some of
them belong to IT organizations that have ethical codes to guide members and set profes-
sional standards. For example, your supervisor belongs to the Association for Computing
Machinery (ACM), which has over 100,000 members from more than 100 countries and a
website at acm.org. Your supervisor said that the ACM code of ethics is important to her
and would definitely influence her views. On the other hand, one of the senior program-
mers believes that his own personal standards would be sufficient to guide him if ethical
questions were to arise.

Because you are excited about your career as an IT professional, you decide to
visit ACM’s website to examine the code of ethics and make up your own mind. After
you do so, would you tend to agree more with your supervisor or with the senior
programmer?

iStock.com/faberfoto_it

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

36

Chapter 1 Introduction to Systems Analysis and Design

1.10 Summary

Based on their functions and features, business information systems are identified
as enterprise computing systems, transaction processing systems, business support
systems, knowledge management systems, user productivity systems, digital assistants,
or systems integration. In most companies, significant overlap and integration exists
among the various types of information systems.

A typical organization structure includes top managers, middle managers and
knowledge workers, supervisors and team leaders, and operational employees. Top
managers develop strategic plans, which define an overall mission and goals. Middle
managers provide direction, resources, and feedback to supervisors and team leaders.
Knowledge workers include various professionals who function as support staff.
Supervisors and team leaders oversee operational employees. Each organizational
level has a different set of responsibilities and information needs.

Three popular system development approaches are structured analysis, which is a
traditional method that still is widely used, object-oriented analysis (O-O), which is a
more recent approach that many analysts prefer, and agile methods, which include the
latest trends in software development.

Structured analysis uses a series of phases, called the systems development life
cycle (SDLC) that usually is shown as a waterfall model. Structured analysis uses an
overall plan, similar to a blueprint for constructing a building, so it is called a predic-
tive approach. This method uses a set of process models to describe a system graphi-
cally and also addresses data organization and structure, relational database design,
and user interface issues.

Object-oriented analysis combines data and the processes that act on the data into
things called objects that represent people, things, transactions, and events. Objects
have characteristics, called properties, and built-in processes, called methods, and can
send information to other objects by using messages. Using an O-O programming
language, a programmer then writes the code that creates the objects. Object-oriented
methods usually follow a series of analysis and design phases similar to the SDLC,
but the phases are more interactive.

Agile methods are the newest development approach and attempt to develop a
system incrementally by building a series of prototypes and constantly adjusting them
to user requirements. Agile methods typically use a spiral model, which represents a
series of iterations, or revisions, based on user feedback. The repeated iterations pro-
duce a series of prototypes, which evolve into the finished system.

Regardless of the development strategy, people, tasks, timetables, and costs must
be managed effectively using project management tools and techniques, which are
described in detail in Chapter 3.

The IT department develops, maintains, and operates a company’s information
systems. IT staff members provide technical support, including application develop-
ment, systems support, user support, database administration, network administra-
tion, web support, and quality assurance. These functions overlap considerably and
often have different names in different companies.

In addition to technical knowledge, a systems analyst must understand the busi-
ness, think critically, and communicate effectively. Valuable credentials such as certi-
fications are available to systems analysts. A systems analyst’s responsibilities depend
on a company’s organization, size, and culture. Systems analysts need to consider sal-
ary, location, and future growth potential when making a career decision.

Some of the key trends in information technology include agile methods, artificial
cloud computing, data science, mobile devices, service orientation, and social media
networks.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 37

Phase 1 Systems Planning

agile methods Systems development methods that attempt to develop a system incrementally by build-
ing a series of prototypes and constantly adjusting them to user requirements. Related to adaptive
methods.

app A software application that runs on a mobile device, such as a smartphone or tablet.

application lifecycle management (ALM) Activities that cover the entire SDLC, including requirements,
design, development, testing, and deployment and management of software applications.

application software Software programs, such as email, word processors, spreadsheets, and graphics
packages, used by employees in typical office scenarios.

artificial intelligence The attempt to recreate natural intelligence through software in machines.

B2B (business-to-business) A commercial exchange (e.g., products or services) between businesses, typi-
cally enabled by the Internet or electronic means.

B2C (business-to-consumer) A commercial exchange (e.g., products or services) between businesses and
consumers conducted over the Internet.

big data Extremely large datasets (e.g., petabytes) requiring nontraditional approaches to deal with
them. Sometimes characterized by three terms: volume, variety, and velocity.

bring your own device (BYOD) An equipment management model where employees are in charge of
their devices (e.g., computers, tablets, smartphones) at work, not the IT department. This includes
device selection and setup, program installation and updating, and network connectivity (including
security).

business model A graphical representation of business functions that consist of business processes, such
as sales, accounting, and purchasing.

business process A description of specific events, tasks, and desired results.

business process model (BPM) A graphical representation of one or more business processes.

business process modeling notation (BPMN) A standard set of shapes and symbols used to represent
events, processes, and workflows in computer-based modeling tools.

business profile A definition of a company’s overall functions, processes, organization, products, ser-
vices, customers, suppliers, competitors, constraints, and future direction.

business rules How a system handles data and produces useful information. Business rules, also called
business logic, reflect the operational requirements of the business. Examples include adding the
proper amount of sales tax to invoices, calculating customer balances and finance charges, and deter-
mining whether a customer is eligible for a volume-based discount.

business support systems Provide job-related information support to users at all levels of a company.

CASE tools Powerful software used in computer-aided systems engineering (CASE) to help systems ana-
lysts develop and maintain information systems.

certification A credential an individual earns by demonstrating a certain level of knowledge and skill on
a standardized test.

class A term used in object-oriented modeling to indicate a collection of similar objects.

computer-aided software engineering (CASE) A technique that uses powerful programs called CASE
tools to provide an overall framework for systems development. The tools support a wide variety of
design methodologies, including structured analysis and object-oriented analysis. Also referred to as
computer-aided systems engineering.

computer-aided systems engineering (CASE) See computer-aided software engineering (CASE).

corporate culture A set of beliefs, rules, traditions, values, and attitudes that define a company and influ-
ence its way of doing business.

Key Terms

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

38

Chapter 1 Introduction to Systems Analysis and Design

Key Terms

critical thinking skills The ability to compare, classify, evaluate, recognize patterns, analyze cause and
effect, and apply logic. Such skills are valued in the IT industry.

data The raw material or basic facts used by information systems.

data center A large concentration of networked computers working together.

data flow diagram (DFD) Graphical representation of the system, showing it stores, processes, and trans-
forms data into useful information.

data science Interdisciplinary field that blends computer science, math and statistics, and business meth-
ods to analyze large datasets. Involves artificial intelligence, machine learning and predictive analytics,
and visualization techniques.

deliverable A polished, final product, suitable for its intended use. End products or deliverables often
coincide with the completion of each SDLC phase.

e-commerce (electronic commerce) Transactions (e.g., buying and selling of goods and information) that
occur on the Internet. Includes both business-to-consumer and business-to-business.

electronic data interchange (EDI) A process that involves computer-to-computer transfer of data
between companies.

empowerment A business practice that places more responsibility and accountability throughout all lev-
els of an organization.

enterprise applications Company-wide applications, such as order processing systems, payroll systems,
and company communications networks.

enterprise computing Information systems that support company-wide data management requirements,
such as airline reservations or credit card billing systems.

enterprise resource planning (ERP) A process that establishes an enterprise-wide strategy for IT
resources. ERP defines a specific architecture, including standards for data, processing, network, and
user interface design.

feasibility study An initial investigation to clearly identify the nature and scope of the business opportu-
nity or problem. Also called preliminary investigation.

groupware Programs that run on a network that enable users to share data, collaborate on projects, and
work in teams. Also called workgroup software.

hardware The physical layer of the information system, to include computers, networks, communica-
tions equipment, and other technology-based infrastructure.

help desk A centralized resource staffed by IT professionals that provides users with the support they
need to do their jobs. A help desk has three main objectives: to show people how to use system
resources more effectively, to provide answers to technical or operational questions, and to make
users more productive by teaching them how to meet their own information needs.

horizontal system A basic system, such as an inventory or payroll package, that is commonly used by a
variety of companies.

inference rules Instructions that direct a knowledge management system to identify data patterns and
relationships.

information Data that has been changed into a useful form of output.

information system A combination of information technology, people, and data to support business
requirements. The five key components are hardware, software, data, processes, and people.

information technology (IT) A combination of hardware, software, and telecommunications systems
that support business operations, improve productivity, and help managers make decisions.

integrated development environments (IDE) An application for building other software applications.
Typically includes a visual code editor, an integrated compiler, a debugger, a configuration manage-
ment system, and a test framework.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 39

Phase 1 Systems Planning

iterative An adaptive method typically uses a spiral development model, which builds on a series of
iterations.

knowledge base A popular systems development technique that uses a group of users, managers, and IT
professionals who work together to gather information, discuss business needs, and define the new
system requirements.

legacy system An older system that is typically less technologically advanced than currently available systems.

machine learning An application of computer science and artificial intelligence that uses automated
approaches to pattern recognition and predictive analytics based on large datasets.

management information system (MIS) A computer-based information system used in business planning,
control, decision making, and problem solving.

mission-critical system An information system that is vital to a company’s operations.

model-based systems engineering (MBSE) An approach to systems engineering that relies on domain
models, rather than traditional documents, to design large-scale systems and convey information
between engineers.

modeling A process that produces a graphical representation of a concept or process that systems devel-
opers can analyze, test, and modify.

Moore’s law A prediction that computing power would double every 18 to 24 months due to increased
miniaturization of electronic components.

NoSQL databases Database systems that use a flat, nontabular (nonrelational) structure to store and
process large-scale datasets.

object In object-oriented analysis or programming, an object represents a real person, place, event, or
transaction.

object-oriented (O-O) analysis The act of understanding an information system by identifying things
called objects. An object represents a real person, place, event, or transaction. Object-oriented analysis
is a popular approach that sees a system from the viewpoint of the objects themselves as they function
and interact with the system.

personal digital assistant A program that responds to user requests through a natural interface, such as
regular speech, to provide assistance to general-purpose queries. Often embedded in devices such as
Internet-connected speakers and smartphones.

preliminary investigation An initial analysis to clearly identify the nature and scope of the business
opportunity or problem. Also called feasibility study.

process Procedure or task that users, managers, and IT staff members perform. Also, the logical rules
of a system that are applied to transform data into meaningful information. In data flow diagrams, a
process receives input data and produces output that has a different content, form, or both.

product lifecycle management (PLM) See application lifecycle management (ALM).

product-oriented Companies that manufacture computers, routers, or microchips.

project management The process of planning, scheduling, monitoring, controlling, and reporting upon
the development of an information system.

properties In object-oriented (O-O) analysis, characteristics that objects inherit from their class or pos-
sess on their own.

prototype An early, rapidly constructed working version of the proposed information system.

radio frequency identification (RFID) Technology that uses high-frequency radio waves to track physical
objects.

requirements engineering Used in the systems planning phase of the SDLC. It involves using various
fact-finding techniques, such as interviews, surveys, observation, and sampling, to describe the current
system and identify the requirements for the new system.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

40

Chapter 1 Introduction to Systems Analysis and Design

Key Terms

scalable The ability of a system to expand to meet new business requirements and volumes.

service-oriented A company that primarily offers information or services or sells goods produced by
others.

software A program run by computers for a specific function or task.

spiral model A development model with a series of iterations, or revisions, based on user feedback.

stakeholder Anyone who is affected by the company’s performance, such as customers, employees, sup-
pliers, stockholders, and members of the community.

strategic plans The long-range plans that define the corporate mission and goals. Typically defined by
top management, with input from all levels.

structured analysis A traditional systems development technique that uses phases to plan, analyze,
design, implement, and support an information system. Processes and data are treated as separate
components.

supply chain A traditional systems development technique that uses phases to plan, analyze, design,
implement, and support an information system. Processes and data are treated as separate
components.

supply chain management (SCM) The coordination, integration, and management of materials, infor-
mation, and finances as they move from suppliers to customers, both within and between com-
panies. In a totally integrated supply chain, a customer order could cause a production planning
system to schedule a work order, which in turn could trigger a call for certain parts from one or
more suppliers.

system A set of related components that produces specific results.

system design specification A document that presents the complete design for the new information sys-
tem, along with detailed costs, staffing, and scheduling for completing the next SDLC phase, systems
implementation. Also called the technical design specification or the detailed design specification.

system requirements document A document that contains the requirements for the new system, describes
the alternatives that were considered, and makes a specific recommendation to management. It is the
end product of the systems analysis phase.

system software Programs that control the computer, including the operating system, device drivers that
communicate with hardware, and low-level utilities.

systems analysis and design The process of developing information systems that effectively use hard-
ware, software, data, processes, and people to support the company’s business objectives.

systems analysis phase The second SDLC phase. The purpose of this phase is to build a logical model of
the new system.

systems analyst A person who plans, analyzes, and implements information systems. They may work
internally within a company’s IT department or be hired by a company as an independent consultant.

systems design phase The third SDLC phase. The purpose of systems design is to create a blueprint for
the new system that will satisfy all documented requirements, whether the system is being developed
in-house or purchased as a package.

systems development life cycle (SDLC) Activities and functions that systems developers typically per-
form, regardless of how those activities and functions fit into a particular methodology. The SDLC
model includes five phases: (1) systems planning, (2) systems analysis, (3) systems design, (4) systems
implementation, and (5) systems support and security.

systems implementation phase The fourth phase of the SDLC. During this phase, the new system is con-
structed—programs are written, tested, and documented, and the system is installed.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 41

Phase 1 Systems Planning

systems planning phase The first phase of the SDLC. During this phase, the systems project gets started.
The project proposal is evaluated to determine its feasibility. The project management plan is formu-
lated, with the help of CASE tools where appropriate.

systems request A formal request to the IT department that describes problems or desired changes in an
information system or business process. It might propose enhancements for an existing system, the
correction of problems, or the development of an entirely new system.

systems support and security phase During the systems support and security phase of the SDLC, the IT
staff maintains, enhances, and protects the system.

technical support Technical support is necessary to support the wide variety of IT systems and users. It
includes six main functions: application development, systems support, user support, database admin-
istration, network administration, and web support. These functions overlap considerably and often
have different names in different companies.

transaction processing (TP) systems Operational systems used to process day-to-day recurring business
transactions, such as customer billing.

user productivity systems Applications that provide employees of all levels a wide array of tools to
improve job performance. Examples include email, word processing, graphics, and company intranets.

users Stakeholders inside and outside the company who will interact with the system.

vertical system A system designed to meet the unique requirements of a specific business or industry,
such as a web-based retailer or auto-supply store.

waterfall model The traditional model of software development. A graph that depicts the result of each
SDLC phase flowing down into the next phase.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

42

Chapter 1 Introduction to Systems Analysis and Design

Exercises

Exercises

Questions
1. What is information technology, and why is it important to society?
2. What are the five main components of an information system?
3. Explain how ridesharing services such as Uber and Lyft are disrupting traditional taxicab business

models.
4. Describe the business profile of a home improvement store like Home Depot or Lowe’s and how it is

used.
5. What are the seven types of information systems used in business?
6. What types of information do the four organizational levels common to many businesses need?
7. Compare three systems development methods.
8. Name the tools that enable the systems analyst to develop, manage, and maintain large-scale informa-

tion systems.
9. Summarize the seven main functions of the IT department.

10. What are the roles and responsibilities of a systems analyst in a modern business?

Discussion Topics
1. Some experts believe that the growth in e-commerce will cause states and local governments to lose

tax revenue, unless Internet transactions are subject to sales tax. What is one argument that supports
this view and one that opposes it?

2. When team members are geographically dispersed, communication becomes more challenging.
Explain how groupware can increase user productivity in this context.

3. Under what circumstances should a systems analyst recommend an agile methodology over structured
development or object-oriented analysis?

4. Should the IT director report to the company president or somewhere else? Does it matter?
5. Rapid advancements in areas such as machine learning and predictive analytics in data science are

affecting the daily operations of many IT departments. What should a systems analyst do to stay
current?

Projects
1. Contact three people at your school who use information systems. List their positions, the information

they need, the systems they use, and the business functions they perform.
2. Visit three websites to learn more about agile system development. Prepare a list of the sites you vis-

ited and a summary of the results.
3. Model-based systems engineering (MBSE) is one of the leading methods used by systems analysts to

develop information systems. Cameo Systems Modeler is one of the leading tools supporting MBSE.
Research magazine articles and the web to learn more about this tool’s capabilities. Identify three of
its strengths in terms of improving the quality of the finished product.

4. Explore the Critical Thinking Community website at criticalthinking.org. Identify three important
topics currently being discussed and describe your findings.

5. Compare the corporate culture of three leading IT companies and show how their statement of values
could attract (or repel) systems analysts from joining their organization.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 2 Analyzing the Business Case

C O N T E N T S
2.1 Strategic Planning
 Case in Point 2.1: Pets for Rent
2.2 Strategic Planning Tools
2.3 The Business Case
2.4 Systems Requests
2.5 Factors Affecting Systems Projects
2.6 Processing Systems Requests
 Case in Point 2.2: Attaway Airlines, Part One
2.7 Assessing Request Feasibility
2.8 Setting Priorities
 Case in Point 2.3: Attaway Airlines, Part Two
2.9 The Preliminary Investigation
 A Question of Ethics
2.10 Summary

Key Terms
Exercises

CHAPTER 2 Analyzing the
Business Case

Chapter 2 explains how to analyze a business case. This
chapter also explains why it is important to understand
business operations and requirements, how IT projects
support a company’s overall strategic plan, how systems
projects get started, and how systems analysts conduct
a feasibility study and perform preliminary investiga-
tions, which concludes with a report to management.
Fact-finding techniques that begin at this point and carry
over into later development phases are also described.

The chapter includes three “Case in Point”
 discussion questions to help contextualize the concepts
described in the text. The “Question of Ethics” asks the
systems analyst to consider the implications of granting
preferential treatment to a system enhancement
request when the request originates with a friend of the
 project’s manager.

L E A R N I N G O B J E C T I V E S
When you finish this chapter, you should be able
to:

1. Describe the strategic planning process.

2. Conduct a SWOT analysis.

3. Explain how tools can support strategic
planning.

4. Explain the concept of a business case.

5. Summarize the six main reasons for systems
requests.

6. Describe the two factors affecting systems
projects.

7. Explain how systems requests are processed.

8. Explain how systems request feasibility is
assessed.

9. Explain how systems requests are prioritized.

10. Conduct a preliminary investigation.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

45

Phase 1 Systems Planning

2.1 Strategic Planning

2.1 Strategic Planning

Strategic planning is the process of identifying long-term organizational goals, strate-
gies, and resources. A strategic plan looks beyond day-to-day activities and focuses on
a horizon that is three, five, ten, or more years in the future. The IT team must deliver
IT resources to support the firm’s long-term strategic goals. Therefore, IT managers
and systems analysts must understand and participate in strategic planning activities.

IT managers have to prepare for long-range needs, such as a new data warehouse,
even as they handle immediate problems, such as a logic bug in the payroll system. In
most companies, the IT team reviews each IT-related proposal, project, and systems
request to determine if it presents a strong business case, or justification.

The following sections provide an overview of strategic planning, a description of
SWOT analysis, and a look at the role of the IT department.

2.1.1 Strategic Planning Overview
Strategic planning starts with a mission statement that reflects the firm’s vision, pur-
pose, and values. Mission statements usually focus on long-term challenges and goals,
the importance of the firm’s stakeholders, and a commitment to the firm’s role as a
corporate citizen. For example, Google’s mission statement posted on their website is
stated succinctly as, “… to organize the world’s information and make it universally
accessible and useful.”

With the mission statement as a backdrop, a firm develops short-term goals and
objectives. For example, the company might establish one-year, three-year, and five-
year goals for expanding market share. To achieve those goals, the company might
develop a list of shorter-term objectives. If it wants to increase online orders by
30% next year, a company might set quarterly objectives with monthly milestones.
High-priority objectives are called critical success factors. A critical success factor is
one that must be achieved to fulfill the company’s mission.

Objectives also might include tactical plans, such as creating a new website and
training a special customer support group to answer email inquiries. Finally, the objec-
tives translate into day-to-day business operations, supported by IT and other corporate
resources. The outcome is a set of business results that affect company stakeholders.

CASE IN POINT 2.1: Pets for rent

Pets for Rent is an innovative company that brings puppies to corporate meetings.
The company’s CEO says that having puppies in a room with employees in an informal setting
helps break down communication barriers and fosters a greater sense of teamwork and com-
radery. Since this is a new company, the CEO has asked you if a mission statement is necessary.
After you review the chapter material, write a brief memo with your views. Be sure to include
good (and not-so-good) examples of actual mission statements that you find on the web.

2.1.2 SWOT Analysis
The letters SWOT stand for strengths, weaknesses, opportunities, and threats. A SWOT analysis can focus
on a specific product or project, an operating division, the entire company, or the mission statement itself.
The overall aim is to avoid seeking goals that are unrealistic, unprofitable, or unachievable.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

46

Chapter 2 Analyzing the Business Case

2.1 Strategic Planning

An enterprise SWOT analysis usually begins with these questions:

• What are our strengths, and how can we use them to achieve our business goals?

• What are our weaknesses, and how can we reduce or eliminate them?

• What are our opportunities, and how do we plan to take advantage of them?

• What are our threats, and how can we assess, manage, and respond to the pos-
sible risks?

A SWOT analysis examines a
firm’s technical, human, and finan-
cial resources. In Figure 2-1, the
bulleted lists show samples of typical
strengths, weaknesses, opportunities,
and threats for an organization con-
sidering expanding their web-based
online operations.

As the SWOT process contin-
ues, management reviews specific
resources, business operations, and
valuable assets. For example, suppose
that the company owns an important
patent. A SWOT review for the patent
might resemble Figure 2-2.

There is no standard approach to
strategic planning. Some managers
believe that a firm’s mission state-
ment should contain an inspirational
message to its stakeholders. Others
feel that unless a firm starts with a
realistic SWOT assessment, it might
develop a mission statement that is
unachievable. Most companies view

the strategic planning process as a dynamic interaction, where the company’s mission
statement reflects a long-term horizon, but sets forth goals that are achievable and
consistent with real-world conditions.

2.1.3 The Role of the IT Department
A systems analyst should be interested in strategic planning because it reflects a
higher level of involvement in supporting the direction of the project. For example,
while working on the same project, one analyst might say, “I am using a CASE tool,”
while another might say, “I am helping the company succeed in a major new business
venture.” Systems analysts should focus on the larger, strategic role of the IT depart-
ment even as they carry out their day-to-day technical tasks.

Experienced analysts know that planning is essential for IT project success, and it
must start as early as possible. Careful planning can help assure that:

• The project supports overall business strategy and operational needs.

• The project scope is well defined and clearly stated.

• The project goals are realistic, achievable, and tied to specific statements,
assumptions, constraints, factors, and other inputs.

STRENGTHS

• Excellent web design staff
• Low systems analyst
 turnover
• Recently upgraded network

WEAKNESSES

• Still using several legacy
 systems
• Budget increase was turned
 down
• Documentation needs updating

OPPORTUNITIES

• Well-positioned for expansion
• Can be first with new
 software
• High potential for B2B
 growth

• Aggressive new web
 competition
• Impact of new FCC rules
• Other firms offer better
 benefits

THREATS

FIGURE 2-1 A SWOT analysis might produce results similar to those
shown here.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

47

Phase 1 Systems Planning

2.3 The Business Case

During the planning process, manage-
ment and IT should be closely linked. In
the past, a typical IT department handled
all aspects of systems development and
consulted users only when, and if, the
department wanted user input. Today,
systems development is much more
team-oriented. New approaches to systems
development, such as agile methods,
 typically involve groups of users, managers,
and IT staff working together right from
the start of the project.

Although team-oriented development
is the norm, some companies still see the
role of the IT department as a gatekeeper,
responsible for screening and evaluating
systems requests. Should the IT department
perform the initial evaluation, or should
a cross-functional team do it? The answer
probably depends on the company’s size, the nature of the system request, and the
scale of the project. For example, in smaller companies or firms where only one per-
son has IT skills, that person acts as a coordinator and consults closely with users and
managers to evaluate systems requests. Larger firms are more likely to use an evalua-
tion team or a systems review committee.

2.2 Strategic Planning toolS

Irrespective of the development strategy used, many organizations still rely on the IT
group to provide guidance when it comes to selecting tools to support strategic plan-
ning activities. Some analysts stick to traditional text-based methods, using Microsoft
Word tables, to provide structure and clarity. Others prefer a spreadsheet, such as
Microsoft Excel, because it is easy to display priorities and the relative importance of
planning assumptions.

A more sophisticated approach is to use a CASE tool to define and document the
overall environment. Such tools can integrate various statements, entities, data ele-
ments, and graphical models into an overall structure. The result is more consistency,
better quality, and much less effort for the system analyst. Figure 2-3 shows a cloud-
based road mapping software product from Aha! that provides integrated support for
product strategy visioning and strategy development.

There are other strategic planning “tools” that are not CASE tools, but more tech-
niques that are sometimes supported by software programs. For example, mind maps,
balanced scorecards, and gap analysis are all valuable techniques that can be part of stra-
tegic planning in an organization. An important role for the systems analyst is to know
when each of these tools and techniques can best be used in particular project contexts.

2.3 the BuSineSS caSe

During the systems planning phase, the IT team reviews a request to determine if
it presents a strong business case. The term business case refers to the reasons, or

Strengths

• Our patent covers valuable
 technology that we can use in
 popular products.

Opportunities

• We can use the technology in
 more products, license it to
 others, or seek more patents.

Threats

• A competitor might develop
 similar technology that does
 not legally infringe our patent.

Weaknesses

• Our patent has a limited life.
 When it expires, the technology
 will no longer be protected.

Patent

SWOT Analysis of a Corporate Patent

FIGURE 2-2 This SWOT analysis example focuses on a specific asset: a
company patent.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

48

Chapter 2 Analyzing the Business Case

2.3 The Business Case

justification, for a proposal. To perform the review, the analyst must consider the
company’s overall mission, objectives, and IT needs.

A business case should be comprehensive yet easy to understand. It should
describe the project clearly, provide the justification to proceed, and estimate the proj-
ect’s financial impact. Specifically, the business case should answer questions such as
the following:

• Why are we doing this project?

• What is the project about?

• How does this solution address key business issues?

• How much will it cost and how long will it take?

• Will we suffer a productivity loss during the transition?

• What is the return on investment and payback period?

• What are the risks of doing the project? What are the risks of not doing the
project?

• How will we measure success?

• What alternatives exist?

Examples of business cases, both good and bad, can be found online. Just search
for “sample business case” and examine the structure and content of some of the sam-
ples available. It is particularly instructive to compare and contrast business cases for
different areas, such as those for government contracts versus private enterprises.

FIGURE 2-3 Aha! provides integrated support for product strategy visioning.
Source: Aha! Labs Inc.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

49

Phase 1 Systems Planning

2.4 Systems Requests

2.4 SyStemS requeStS

The starting point for most information
systems projects is called a systems request,
which is a formal way of asking for IT
support. A systems request might propose
enhancements for an existing system, the
correction of problems, the replacement
of an older system, or the development of
an entirely new information system that is
needed to support a company’s current and
future business needs.

As Figure 2-4 shows, the six main reasons
for systems requests are stronger controls,
reduced cost, more information, better per-
formance, improved service to customers, and
more support for new products and services.

STRONGER CONTROLS: A system must
have effective controls to ensure that data
is secure and accurate. This is becoming
increasingly important given the number
of data breaches that seem to occur on a
daily basis. Some common security con-
trols include passwords, various levels
of user access, and encryption, or coding
data to keep it safe from unauthorized
users. Hardware-based security controls
include biometric devices that can identify
a person by a retina scan or by mapping
a fingerprint pattern. The technology uses
infrared scanners that create images with
thousands of measurements of personal
physical characteristics, as shown in
 Figure 2-5, which displays Apple’s Face ID
security mechanism on the iPhone.

In addition to being secure, data also
must be accurate. Controls should mini-
mize data entry errors whenever possible.
For example, if a user enters an invalid
customer number, the order processing
system should reject the entry immedi-
ately and prompt the user to enter a valid
number. Data entry controls must be effective without being excessive. If a system
requires users to confirm every item with an “Are you sure? Y/N” message, internal
users and customers might complain that the system is not user-friendly.

REDUCED COST: The current system could be expensive to operate or maintain
as a result of technical problems, design weaknesses, or the changing demands of the
business. It might be possible to adapt the system to newer technology or upgrade
it. On the other hand, cost-benefit analysis might show that a new system would be
more cost effective and provide better support for long-term objectives.

FIGURE 2-4 Six main reasons for systems requests.

Systems
Request

Stronger
Controls

More
Information

Reduced
Cost

Improved
Service

More
Support

Better
Performance

FIGURE 2-5 Apple Face ID uses advanced machine learning to recognize users.
Source: Apple Inc.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

50

Chapter 2 Analyzing the Business Case

2.5 Factors Affecting Systems Projects

MORE INFORMATION: The system might produce information that is insuf-
ficient, incomplete, or unable to support the company’s changing information
needs. For example, a system that tracks customer orders might not be capable of
analyzing and predicting marketing trends. In the face of intense competition and
rapid product development cycles, managers need the best possible information
to make major decisions on planning, designing, and marketing new products and
services.

BETTER PERFORMANCE: The current system might not meet performance require-
ments. For example, it might respond slowly to data inquiries at certain times, or it
might be unable to support company growth. Performance limitations also result
when a system that was designed for a specific hardware configuration becomes
obsolete when new hardware is introduced.

IMPROVED SERVICE: Systems requests often are aimed at improving service to cus-
tomers or users within the company. For instance, allowing mutual fund investors to
check their account balances on a website, storing data on rental car customer prefer-
ences, or creating an online college registration system are all examples of providing
valuable services and increased customer satisfaction.

MORE SUPPORT FOR NEW PRODUCTS AND SERVICES: New products and
 services often require new types or levels of IT support. For example, a software
 vendor might offer an automatic upgrade service for subscribers; or a package deliv-
ery company might add a special service for RFID-tagged shipments. In situations like
these, it is most likely that additional IT support will be required. At the other end of
the spectrum, product obsolescence can also be an important factor in IT planning. As
new products enter the marketplace, vendors often announce that they will no longer
provide support for older versions. A lack of vendor support would be an important
consideration in deciding whether or not to upgrade.

2.5 FactorS aFFecting SyStemS ProjectS

Internal and external factors affect every business decision that a company makes,
and IT projects are no exception. Figure 2-6 shows internal and external factors that
shape corporate IT choices.

2.5.1 Internal Factors
Internal factors include the strategic plan, top managers, user requests, information
technology department, existing systems and data, and company finances.

STRATEGIC PLAN: A company’s strategic plan sets the overall direction for the
firm and has an important impact on IT projects. Company goals and objectives that
need IT support will generate systems requests and influence IT priorities. A strategic
plan that stresses technology tends to create a favorable climate for IT projects that
extends throughout the organization.

TOP MANAGERS: Because significant resources are required, top management usu-
ally initiates large-scale projects. Those decisions often result from strategic business
goals that require new IT systems, more information for decision making processes,
or better support for mission-critical information systems.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

51

Phase 1 Systems Planning

2.5 Factors Affecting Systems Projects

USER REQUESTS: As users rely more heavily on information systems to perform
their jobs, they are likely to request even more IT services and support. For example,
sales reps might request improvements to the company’s website, a more powerful
sales analysis report, a network to link all sales locations, or an online system that
allows customers to obtain the status of their orders instantly. Or, users might not
be satisfied with the current system because it is difficult to learn or lacks flexibility.
They might want information systems support for business requirements that did not
even exist when the system was first developed.

INFORMATION TECHNOLOGY DEPARTMENT: Systems project requests come also
from the IT department itself. IT staff members often make recommendations based
on their knowledge of business operations and technology trends. IT proposals might
be strictly technical matters, such as replacement of certain network components, or
suggestions might be more business oriented, such as proposing a new reporting or
data collection system.

EXISTING SYSTEMS AND DATA: Errors or problems in existing systems can trigger
requests for systems projects. When dealing with older systems, analysts sometimes
spend too much time reacting to day-to-day problems without looking at underlying
causes. This approach can turn an information system into a patchwork of correc-
tions and changes that cannot support the company’s overall business needs. This
problem typically occurs with legacy systems, which are older systems that are less
technologically advanced. When migrating to a new system, IT planners must plan
the conversion of existing data, which is described in detail in Chapter 11.

COMPANY FINANCES: A company’s financial status can affect systems projects.
If the company is going through a difficult time, the project may be postponed until
there is more cash available to finance the effort. On the other hand, if the company
is enjoying financial success, the decision to embark on a new project may be easier to
make.

FIGURE 2-6 Internal and external factors that affect IT projects.

Technology

Competitors

The Economy Customers

Government Suppliers

Strategic
Plan

Top
Managers

User
Requests

IT
Department

Existing
Systems
and Data

Company
Finances

Internal Factors

External Factors

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

52

Chapter 2 Analyzing the Business Case

2.5 Factors Affecting Systems Projects

2.5.2 External Factors
External factors include technology, suppliers, customers, competitors, the economy,
and government.

TECHNOLOGY: Changing technology is a major force affecting business and soci-
ety in general. For example, the rapid growth of telecommunications, coupled with
increased computing power and continuous miniaturization of electronic compo-
nents, has created entire new industries and technologies, including the proliferation
of smartphones and the app ecosystem.

Technology also dramatically reshapes existing business operations.
The success of scanner technology resulted in universal bar coding that
now affects virtually all products. Some industry experts predict that
bar code technology, which is over 40 years old, will be overshadowed
in the future by electronic product code (EPC) technology that uses
RFID tags to identify and monitor the movement of each individual
product, from the factory floor to the retail checkout counter.

Quick Response codes (QR Codes), as shown in Figure 2-7, are like
bar codes but square in shape. They contain more information than
traditional bar codes, but less than RFID tags. They do have the advan-
tage of being less expensive to use than RFID tags, and they can be
printed on almost anything—including online advertisements.

The Internet-of-Things (IOT) is a newer development that involves
almost all electronic devices communicating with one another over a com-
puter network. The communication can use radio signals, as with RFID
tags, digital messages, or other means. IoT devices can act as sensors, send-

ing important information to centralized data storage and processing nodes. IoT devices
also raise new security and privacy concerns that the systems analyst must consider.

SUPPLIERS: With the growth of electronic data interchange (EDI), relationships with
suppliers are critically important. For example, an automobile company might require
that suppliers code their parts in a certain manner to match the auto company’s inven-
tory control system. EDI also enables just-in-time (JIT) inventory systems that rely on
computer-to-computer data exchange to minimize unnecessary inventory. The purpose
of a JIT system is to provide the right products at the right place at the right time.

Blockchain technology is a promising mechanism for managing supply chains more
powerfully than before. Blockchain provides a distributed ledger system that is effi-
cient, secure, transparent. Large companies such as IBM are already using blockchain
to improve operations for their customers, such as the Food Trust product shown in
Figure 2-8 that Walmart uses for tracking food safety from grower to consumer.

FIGURE 2-7 QR Code.
Source: http://www.qrstuff.com using URL http://amazon.com/

author/stilley

FIGURE 2-8 IBM Blockchain.
Source: IBM Corporation

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

53

Phase 1 Systems Planning

2.5 Factors Affecting Systems Projects

CUSTOMERS: Customers are vitally important to any business. Information systems
that interact with customers usually receive top priority. Many companies implement
customer relationship management (CRM) systems that integrate all customer-related
events and transactions, including marketing, sales, and customer service activities.
Vendor-oriented CRM systems often interconnect with supply chain management
(SCM) systems, which were discussed in Chapter 1. CRM components can provide
automated responses to sales inquiries, online order processing, and inventory track-
ing. Some suppliers use robots for order fulfillment, such as the Kiva robots shown in
Figure 2-9 that Amazon.com uses in their warehouses.

Another RFID application is called electronic proof of delivery (EPOD). Using
EPOD, a supplier uses RFID tags on each crate, case, or shipping unit to create a dig-
ital shipping list. The customer receives the list and scans the incoming shipment. If a
discrepancy is detected, it is reported and adjusted automatically. Because they would
be expensive to investigate manually, small shipping inconsistencies might not other-
wise be traced. This is an example of technology-related cost control.

COMPETITORS: Competition drives many information systems decisions. For
example, if one cellular telephone provider offers a new type of digital service, other
firms must match the plan in order to remain competitive. New product research and
development, marketing, sales, and service all require IT support.

THE ECONOMY: Economic activity has a powerful influence on corporate
 information management. In a period of economic expansion, firms need to be ready
with scalable systems that can handle additional volume and growth. Predicting the
business cycle is not an exact science, and careful research and planning are important.

GOVERNMENT: Federal, state, and local government regulations directly affect
the design of corporate information systems. For example, up-to-date IRS reporting
requirements must be designed into a payroll package.

FIGURE 2-9 Amazon Robotics’ Kiva robots.
Justin Sullivan/Staff/Getty Images News/Getty Images

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

54

Chapter 2 Analyzing the Business Case

2.6 Processing Systems Requests

2.6 ProceSSing SyStemS requeStS

In most organizations, the IT department receives more systems requests than it can handle.
Many organizations assign responsibility for evaluating systems requests to a group of
key managers and users. Many companies call this group a systems review committee
or a computer resources committee. Regardless of the name, the objective is to use the
 combined judgment and experience of several analysts to evaluate project requests.

2.6.1 Systems Request Forms
Many organizations use a special form for systems requests, similar to the online sam-
ple shown in Figure 2-10. A properly designed form streamlines the request process and
ensures consistency. The form must be easy to understand and include clear instruc-
tions. It should include enough space for all required information and should indicate

what supporting documents
are needed. Most companies
use online systems request
forms that users submit elec-
tronically because the form can
be processed automatically.

When a systems request
form is received, a systems ana-
lyst or IT manager examines it
to determine what IT resources
are required for the preliminary
investigation. A designated
person or a committee then
decides whether to proceed
with a preliminary investiga-
tion. Sometimes, a situation
requires an immediate response.
For example, if the problem
involves a mission-critical sys-
tem, an IT maintenance team
must restore normal operations

immediately. When the system is functioning properly, the team conducts a review and
prepares a systems request to document the work that was performed.

2.6.2 Systems Request Tools
When the number of requests submitted through automated forms becomes significant,
or if the requests can originate from internal sources as well as external customers,
special-purpose systems request tools can be used to help manage the workflow. For
example, Figure 2-11 illustrates the service request capabilities from Integrify that cap-
tures, manages, and routes requests to systems analysts based on definable business
rules. In this way, requests are tracked and analyzed for improved performance.

2.6.3 Systems Review Committee
Most large companies use a systems review committee to evaluate systems requests.
Instead of relying on a single individual, a committee approach provides a variety of
experience and knowledge. With a broader viewpoint, a committee can establish pri-
orities more effectively than an individual, and one person’s bias is less likely to affect
the decisions.

FIGURE 2-10 Example of an online systems request form.
Source: Florida Institute of Technology

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

55

Phase 1 Systems Planning

2.6 Processing Systems Requests

A typical committee consists of
the IT director and several manag-
ers or representatives from other
departments. The IT director usu-
ally serves as a technical consultant
to ensure that committee members
are aware of crucial issues, prob-
lems, and opportunities.

Although a committee offers
many advantages, some disadvan-
tages exist. For example, action
on requests must wait until the
committee meets. Another poten-
tial disadvantage of a committee is
that members might favor projects
requested by their own departments,
and internal political differences
could delay important decisions.

Many smaller companies rely
on one person to evaluate system
requests instead of a committee. If
only one person has the necessary IT skills and experience, that person must consult
closely with users and managers throughout the company to ensure that business and
operational needs are considered carefully.

Whether one person or a committee is responsible, the goal is to evaluate the
requests and set priorities. Suppose four requests must be reviewed:

1. The marketing group wants to analyze current customer spending habits and
forecast future trends.

2. The technical support group wants a cellular link, so service representatives can
download technical data instantly.

3. The accounting department wants to redesign customer statements and allow
Internet access.

4. The production staff wants an inventory control system that can exchange data
with major suppliers.

Which projects should the firm pursue? What criteria should be applied? How
should priorities be determined? To answer those questions, the individual or the
committee must assess the feasibility of each request.

CASE IN POINT 2.2: AttAwAy Airlines, PArt one

You are the IT director at Attaway Airlines, a small regional air carrier. You chair the
 company’s systems review committee, and you currently are dealing with strong
 disagreements about two key projects. The marketing manager says it is vital to have a new
computerized reservation system that can provide better customer service and reduce oper-
ational costs. The vice president of finance is equally adamant that a new accounting system
is needed immediately because it will be very expensive to adjust the current system to new
federal reporting requirements. The VP outranks the marketing manager, and the VP is your
boss. The next meeting, which promises to be a real showdown, is set for 9:00 a.m. tomor-
row. How will you prepare for the meeting? What questions and issues should be discussed?

FIGURE 2-11 A service request management system from Integrify.
Source: Integrify

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

56

Chapter 2 Analyzing the Business Case

2.7 Assessing Request Feasibility

2.7 aSSeSSing requeSt FeaSiBility

As described in Chapter 1, a systems request must pass several tests to see whether
it is worthwhile to proceed further. The first step is to identify and weed out sys-
tems requests that are not feasible. For example, a request would not be feasible if it
required hardware or software that the company already had rejected.

Even if the request is feasible, it might not be necessary. For example, a request
for multiple versions of a report could require considerable design and programming
effort. A better alternative might be to download the server data to a personal computer-
based software package and show users how to produce their own reports. In this
case, training users would be a better investment than producing reports for them.

Sometimes assessing request feasibility is quite simple and can be done in a few
hours. If the request involves a new system or a major change, however, extensive
fact-finding and investigation in the form of feasibility studies are required.

2.7.1 Feasibility Studies
As shown in Figure 2-12, a feasibility study uses four main yardsticks to measure a
proposal: operational feasibility, economic feasibility, technical feasibility, and sched-
ule feasibility.

How much effort should go into a feasibility study depends on nature of the
request. For example, if a department wants an existing report sorted in a different
order, the analyst can decide quickly whether the request is feasible. On the other
hand, a proposal by the marketing department for a new market research system to
predict sales trends would require much more effort. In either case, the systems ana-
lyst should ask these important questions:

• Is the proposal desirable in an operational sense? Is it a practical approach that will
solve a problem or take advantage of an opportunity to achieve company goals?

• Is the proposal technically feasible? Are the necessary technical resources and
people available for the project?

• Is the proposal economically desirable?
What are the projected savings and costs?
Are other intangible factors involved, such
as customer satisfaction or company image?
Is the problem worth solving, and will
the request result in a sound business
investment?

• Can the proposal be accomplished
within an acceptable time frame?

To obtain more information about a
systems request, initial fact-finding might
be accomplished by studying organization
charts, performing interviews, reviewing
current documentation, observing oper-
ations, and surveying users. Sometimes,
developing prototypes can provide addi-
tional insight into the feasibility of the
request. If the systems request is approved,
more intensive fact-finding will continue
during the systems analysis phase.

FIGURE 2-12 A feasibility study examines operational, technical, economic,
and schedule factors.

Feasible? • Will benefits
 exceed costs?

Economic

• Will it be easy to
 learn and use?

Operational

• Can we do it in
 time?

Schedule

• Do we have the
 tech resources?

Technical

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

57

Phase 1 Systems Planning

2.7 Assessing Request Feasibility

2.7.2 Operational Feasibility
Operational feasibility means that a proposed system will be used effectively after it
has been developed. If users have difficulty with a new system, it will not produce the
expected benefits. Organizational culture can also affect operational feasibility. For
instance, a system that works well in a highly structured workplace might be very
unpopular in a more relaxed corporate culture. Operational feasibility is difficult to
measure with precision but must be studied very carefully. The following questions
would help predict a system’s operational feasibility:

• Does management support the project? Do users support the project? Is the cur-
rent system well liked and effectively used? Do users see the need for change?

• Will the new system result in a workforce reduction? If so, what will happen to
the affected employees?

• Will the new system require training for users? If so, is the company prepared
to provide the necessary resources for training current employees?

• Will users be involved in planning the new system right from the start?

• Will the new system place any new demands on users or require any operating
changes? For example, will any information be less accessible or produced less
frequently? Will performance decline in any way? If so, will an overall gain to
the organization outweigh individual losses?

• Will customers experience adverse effects in any way, either temporarily or
permanently?

• Will any risk to the company’s image or goodwill result?

• Does the development schedule conflict with other company priorities?

• Do legal or ethical issues need to be considered?

2.7.3 Economic Feasibility
Economic feasibility means that the projected benefits of the proposed system out-
weigh the estimated costs usually considered the total cost of ownership (TCO),
which includes ongoing support and maintenance costs, as well as acquisition costs.
To determine TCO, the analyst must estimate costs in each of the following areas:

• People, including IT staff and users

• Hardware and equipment

• Software, including in-house development as well as purchases from vendors

• Formal and informal training, including peer-to-peer support

• Licenses and fees

• Consulting expenses

• Facility costs

• The estimated cost of not developing the system or postponing the project

Tangible costs, such as those listed above, usually can be measured in dollars. But
intangible costs also must be considered. For example, low employee morale might not
have an immediate dollar impact, but certainly will affect the company’s performance.

In addition to costs, tangible and intangible benefits to the company must be assessed.
The systems review committee will use those figures, along with the cost estimates, to
decide whether to pursue the project beyond the preliminary investigation phase.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

58

Chapter 2 Analyzing the Business Case

2.7 Assessing Request Feasibility

Tangible benefits are benefits that can be measured in dollars. Tangible benefits
result from a decrease in expenses, an increase in revenues, or both. Examples of tan-
gible benefits include the following:

• A new scheduling system that reduces overtime

• An online package tracking system that improves service and decreases the
need for clerical staff

• A sophisticated inventory control system that cuts excess inventory and elimi-
nates production delays

Intangible benefits are advantages that are difficult to measure in dollars but are
important to the company. Examples of intangible benefits include the following:

• A user-friendly system that improves employee job satisfaction

• A sales tracking system that supplies better information for marketing decisions

• A new website that enhances the company’s image

The development timetable must also be considered, because some benefits might
occur as soon as the system is operational, but others might not take place until later.

2.7.4 Technical Feasibility
Technical feasibility refers to the technical resources needed to develop, purchase,
install, or operate the system. When assessing technical feasibility, an analyst should
consider the following points:

• Does the company have the necessary hardware, software, and network
resources? If not, can those resources be acquired without difficulty?

• Does the company have the needed technical expertise? If not, can it be acquired?

• Does the proposed platform have sufficient capacity for future needs? If not,
can it be expanded?

• Will a prototype be required?

• Will the hardware and software environment be reliable? Will it integrate with
other company information systems, both now and in the future? Will it inter-
face properly with external systems operated by customers and suppliers?

• Will the combination of hardware and software supply adequate performance?
Do clear expectations and performance specifications exist?

• Will the system be able to handle future transaction volume and company
growth?

Keep in mind that systems requests that are not currently technically feasible can
be resubmitted as new hardware, software, or expertise becomes available. Develop-
ment costs might decrease, or the value of benefits might increase enough that a sys-
tems request eventually becomes feasible. Conversely, an initially feasible project can
be rejected later.

2.7.5 Schedule Feasibility
Schedule feasibility means that a project can be implemented in an acceptable time
frame. When assessing schedule feasibility, a systems analyst must consider the inter-
action between time and costs. For example, speeding up a project schedule might
make a project feasible, but much more expensive.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

59

Phase 1 Systems Planning

2.8 Setting Priorities

Other issues that relate to schedule feasibility include the following:

• Can the company or the IT team control the factors that affect schedule
feasibility?

• Has management established a firm timetable for the project?

• What conditions must be satisfied during the development of the system?

• Will an accelerated schedule pose any risks? If so, are the risks acceptable?

• Will project management techniques be available to coordinate and control the
project?

• Will a project manager be appointed?

Chapter 3 describes various project management tools and techniques.

2.8 Setting PrioritieS

After rejecting systems requests that are not feasible, the systems review committee
must establish priorities for the remaining items. If tools are used as part of the review
process, the requests may already be in a partially or fully sorted order. The highest
priority goes to project requests that provide the greatest benefit, at the lowest cost, in
the shortest period of time. Many factors, however, influence project evaluation.

2.8.1 Dynamic Priorities
It’s important to note that many projects are dynamic in nature. For example, projects
that have adopted an agile methodology are prone to rapid changes throughout the sys-
tem development lifecycle. These changes can cause request priorities to change as well.

For example, acquisition costs might increase over time, making the project more
expensive than anticipated. This can affect the economic feasibility of a number of
requests. In addition, managers and users sometimes lose confidence in a project. For
all those reasons, feasibility analysis and priority setting are ongoing task that must
be performed throughout the systems development process.

2.8.2 Factors That Affect Priority
When assessing a project’s priority, a systems analyst should consider the following:

• Will the proposed system reduce costs? Where? When? How? By how much?

• Will the system increase revenue for the company? Where? When? How? By
how much?

• Will the systems project result in more information or produce better results?
How? Are the results measurable?

• Will the system serve customers better?

• Will the system serve the organization better?

• Can the project be implemented in a reasonable time period? How long will
the results last?

• Are the necessary financial, human, and technical resources available?

Few projects will score high in all areas. Some proposals might not reduce costs
but will provide important new features. Other systems might reduce operating costs

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

60

Chapter 2 Analyzing the Business Case

2.9 The Preliminary Investigation

substantially but require the purchase or lease of additional hardware. Some systems
might be very desirable but require several years of development before producing
significant benefits.

Whenever possible, the analyst should use tangible costs and benefits that can be
measured in dollars. However, the proposal might involve intangible benefits, such as
enhancing the organization’s image, raising employee morale, or improving customer
service. These examples are harder to measure but should also be considered.

2.8.3 Discretionary and Nondiscretionary Projects
Projects where management has a choice in implementing them are called
 discretionary projects. Projects where no choice exists are called nondiscretionary
projects. Creating a new report for a user is an example of a discretionary project;
adding a report required by a new federal law is an example of a nondiscretionary
project.

If a particular project is not discretionary, the systems analyst should ask if it is
really necessary for the systems review committee to evaluate it. Some people believe
that waiting for committee approval delays critical nondiscretionary projects unneces-
sarily. Others believe that submitting all requests to the systems review keeps the com-
mittee aware of all projects that compete for IT resources. As a result, the committee
can review priorities and create realistic schedules.

Many nondiscretionary projects are predictable. Examples include annual updates
to payroll, tax percentages, or quarterly changes in reporting requirements for an
insurance processing system. By planning ahead for predictable projects, the IT
department manages its resources better and keeps the systems review committee fully
informed without needing prior approval in every case.

CASE IN POINT 2.3: AttAwAy Airlines, PArt two

Back at Attaway Airlines, the morning meeting ended with no agreement between the VP
of finance and the marketing manager. In fact, a new issue arose. The VP now says that the
new accounting system is entitled to the highest priority because the federal government
soon will require the reporting of certain types of company-paid health insurance premi-
ums. Because the current system will not handle this report, the VP insists that the entire
accounting system is a nondiscretionary project. As you might expect, the marketing
 manager is upset. Can part of a project be nondiscretionary? What issues need to be
 discussed? The committee meets again tomorrow, and the members will look to you, as the
IT director, for guidance.

2.9 the Preliminary inveStigation

A systems analyst conducts a preliminary investigation to study the systems request
and recommend specific action. After obtaining an authorization to proceed, the
analyst interacts with managers, users, and other stakeholders, as shown in the
model in Figure 2-13. The analyst gathers facts about the problem or opportu-
nity, project scope and constraints, project benefits, and estimated development
time and costs. The end product of the preliminary investigation is a report to
management.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

61

Phase 1 Systems Planning

2.9 The Preliminary Investigation

2.9.1 Planning the Preliminary Investigation
Before starting a preliminary investigation, it is important to let
people know about the investigation and explain the role of the
system analyst. Meetings with key managers, users, and other
stakeholders such as the IT staff should be scheduled, to describe
the project, explain roles and responsibilities, answer questions,
and invite comments. Interactive communication with users
starts at this point and continues throughout the development
process.

A systems project often produces significant changes in
company operations. Employees may be curious, concerned, or
even opposed to those changes. It is not surprising to encoun-
ter some user resistance during a preliminary investigation.
Employee attitudes and reactions are important and must be
considered.

When interacting with users, use the word problem care-
fully, because it has a negative meaning. When users are asked
about problems, some will stress current system limitations
rather than desirable new features or enhancements. Instead
of focusing on difficulties, question users about additional capability they would
like to have. This approach highlights ways to improve the user’s job, provides a
better understanding of operations, and builds better, more positive relationships
with users.

2.9.2 Performing the Preliminary Investigation
During a preliminary investigation, a systems analyst typically follows a series of
steps, as shown in Figure 2-14. The exact procedure depends on the nature of the
request, the size of the project, and the degree of urgency.

Step 1: Understand the Problem or Opportunity
If the systems request involves a new information system
or a substantial change in an existing system, systems
analysts might need to develop a business profile that
describes current business processes and functions, as
explained in Chapter 1. Even where the request involves
relatively minor changes or enhancements, how those
modifications will affect business operations and other
information systems must be understood. Often a change
in one system has an unexpected ripple effect on another
system. When a systems request is analyzed, which
departments, users, and business processes are involved
must be determined.

In many cases, the systems request does not reveal
the underlying problem, but only a symptom. For
example, a request to investigate centralized process-
ing delays might reveal improper scheduling practices
rather than hardware problems. Similarly, a request
for analysis of customer complaints might disclose a
lack of sales representative training, rather than prob-
lems with the product.

FIGURE 2-13 Model of a preliminary
investigation. Note the importance of fact-finding
in each of the four areas.

Problem or
Opportunity

Project Scope
and Constraints

Costs

Benefits

Fact-
Finding

Report to Management

Understand the problem or opportunity1

Define the project scope and constraints2

Perform fact-finding
 • Analyze organization charts
 • Review documentation
 • Observe operations
 • Conduct a user survey

3

Study usability, cost, benefit, and schedule data4

Evaluate feasibility
 • Operational
 • Technical
 • Economic
 • Schedule

5

FIGURE 2-14 Five main steps in a typical preliminary
investigation.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

62

Chapter 2 Analyzing the Business Case

2.9 The Preliminary Investigation

A popular technique for investigating causes and effects is called a fishbone
diagram, as shown in Figure 2-15. A fishbone diagram is an analysis tool that
represents the possible causes of a problem as a graphical outline. When using a
fishbone diagram, an analyst first states the problem and draws a main bone with
sub-bones that represent possible causes of the problem. In the example shown in
Figure 2-15, the problem is Low Morale, and the analyst has identified four areas
to investigate: Environment, People, Management, and Machines. In each area,
the analyst identifies possible causes and draws them as horizontal sub-bones.
For example, Temp too hot or cold is a possible cause in the Environment bone.
For each cause, the analyst must dig deeper and ask the question: What could be
causing this symptom to occur? For example, why is it too hot? If the answer is a
Faulty thermostat, the analyst indicates this as a sub-bone to the Temp too hot or
cold cause. In this manner, the analyst adds additional sub-bones to the diagram,
until he or she uncovers root causes of a problem, rather than just the symptoms.

FIGURE 2-15 A fishbone diagram displays the causes of a problem. Typically, you must dig deeper to identify
actual causes rather than just symptoms

Step 2: Define the Project Scope and Constraints
Determining the project scope means defining the specific boundaries, or extent, of
the project. For example, a statement that, payroll is not being produced accurately
is very general, compared with the statement, overtime pay is not being calculated
 correctly for production workers on the second shift at the Yorktown plant. Similarly,
the statement, the project scope is to modify the accounts receivable system, is not
as specific as the statement, the project scope is to allow customers to inquire online
about account balances and recent transactions.

Some analysts find it helpful to define project scope by creating a list with sections
called Must Do, Should Do, Could Do, and Won’t Do. This list can be reviewed
later, during the systems analysis phase, when the systems requirements document is
developed.

Projects with very general scope definitions are at risk of expanding gradually,
without specific authorization, in a process called project creep. To avoid this
 problem, project scope should be defined as clearly as possible. A graphical model

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

63

Phase 1 Systems Planning

2.9 The Preliminary Investigation

that shows the systems, people, and business processes that will be affected is some-
times useful. The scope of the project also establishes the boundaries of the prelim-
inary investigation itself. A systems analyst should limit the focus to the problem at
hand and avoid unnecessary expenditure of time and money.

Along with defining the scope of the project, any constraints on the system must
be identified. A constraint is a requirement or condition that the system must satisfy
or an outcome that the system must achieve. A constraint can involve hardware,
software, time, policy, law, or cost. System constraints also define project scope. For
example, if the system must operate with existing hardware, that is a constraint that
affects potential solutions. Other examples of constraints are:

• The order entry system must accept input from 15 remote sites.

• The human resources information system must produce statistics on hiring
practices.

• The new website must be operational by March 1.

When examining constraints, their characteristics should be identified, as follows.

PRESENT VERSUS FUTURE: Is the constraint something that must be met as soon as
the system is developed or modified, or is the constraint necessary at some future time?

INTERNAL VERSUS EXTERNAL: Is the constraint due to a requirement within the
organization, or does some external force, such as government regulation, impose it?

MANDATORY VERSUS DESIRABLE: Is the constraint mandatory? Is it absolutely
essential to meet the constraint, or is it merely desirable?

Figure 2-16 shows five examples of constraints. Notice that each constraint has
three characteristics, which are indicated by its position in the figure and by the sym-
bol that represents the constraint, as follows:

FIGURE 2-16 Examples of various types of constraints.

External

Future

Internal

Present

Example B: Sometime next
year, our largest customer will
require a security code for all
online transactions.

Example A: New IRS
data must be used in
the payroll system as
soon as possible.

Example C: Management
prefers that the project be
completed now, rather
than next quarter.

Example D: Starting next
week, the marketing system
must track all repeat visits
to the website.

Example E: To reduce raw material
costs, we should build supply chain
management capability into the next
version of our purchasing system.

= Mandatory constraint

= Desirable constraint

Sample Constraints Shown by Timing, Type, and Urgency

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

64

Chapter 2 Analyzing the Business Case

2.9 The Preliminary Investigation

• The constraint in Example A is present, external, and mandatory.

• The constraint in Example B is future, external, and mandatory.

• The constraint in Example C is present, internal, and desirable.

• The constraint in Example D is present, internal, and mandatory.

• The constraint in Example E is future, internal, and desirable.

Regardless of the type, all constraints should be identified as early as possible
to avoid future problems and surprises. A clear definition of project scope and con-
straints avoids misunderstandings that arise when managers assume that the system
will have a certain feature or support for a project, but later find that the feature is
not included.

Step 3: Perform Fact-Finding
The objective of fact-finding is to gather data about project usability, costs, bene-
fits, and schedules. Fact-finding involves various techniques, which are described
below. Depending on what information is needed to investigate the systems
request, fact-finding might consume several hours, days, or weeks. For example, a
change in a report format or data entry screen might require a single telephone call
or email message to a user, whereas a new inventory system would involve a series
of interviews. During fact-finding, the analyst might analyze organization charts,
conduct interviews, review current documentation, observe operations, and carry
out a user survey.

ANALYZE ORGANIZATION CHARTS: An analyst will not always know the organi-
zational structure of departments involved in the study. Organization charts should be
obtained to understand the functions and identify people to interview.

If organization charts are not available, or are out-of-date, the necessary infor-
mation should be obtained from department personnel and construct the charts, as
shown in Figure 2-17.

Even when charts are available, their accuracy should be verified. Keep in mind
that an organization chart shows formal reporting relationships but not the informal
alignment of a group, which also is important.

CONDUCT INTERVIEWS: The
primary method of obtaining
 information during the preliminary
investigation is the interview. The
interviewing process involves a
series of steps:

1. Determine the people to
interview.

2. Establish objectives for the
interview.

3. Develop interview questions.

4. Prepare for the interview.

5. Conduct the interview.

6. Document the interview.

7. Evaluate the interview.

FIGURE 2-17 Specialized tools such as Microsoft Visio can be used to draw
organizational charts, but general purpose presentation tools such as Microsoft
PowerPoint shown here can also be used.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

65

Phase 1 Systems Planning

2.9 The Preliminary Investigation

These seven steps are discussed in detail in Chapter 4, which describes fact-finding
techniques that occur during the systems analysis phase of the SDLC.

Remember that the purpose of the interview, and of the preliminary investiga-
tion itself, is to uncover facts, not to convince others that the project is justified. The
 analyst’s primary role in an interview is to ask effective questions and listen carefully.
If several people will be asked about the same topic, a standard set of questions for all
the interviews should be prepared. Also be sure to include open-ended questions, such
as “What else do you think I should know about the system?” or “Is there any other
relevant information that we have not discussed?”

When conducting interviews during the preliminary investigation, interview man-
agers and supervisors who have a broad knowledge of the system and can provide an
overview of the business processes involved. Depending on the situation, talking to
operational personnel to learn how the system functions on a day-to-day basis may
also be helpful.

REVIEW DOCUMENTATION: Although interviews are an extremely important
method of obtaining information, investigating the current system documentation is
also useful. The documentation might not be up to date, so check with users to con-
firm that the information is accurate and complete.

OBSERVE OPERATIONS: Another fact-finding method is to observe the current
system in operation. Observe how workers carry out typical tasks. Trace or follow
the actual paths taken by input source documents or output reports. In addition to
observing operations, consider sampling the inputs or outputs of the system. Using
sampling techniques described in Chapter 4, valuable information about the nature
and frequency of the problem can be obtained.

CONDUCT A USER SURVEY: Interviews can be time consuming. Sometimes infor-
mation from a larger group can be obtained by conducting a user survey. In this
case, design a form that users complete and return for tabulation. A survey is not as
flexible as a series of interviews, but it is
less expensive, generally takes less time,
and can involve a broad cross-section of
people.

ANALYZE THE DATA: Systems analysts
use many techniques to locate the source
of a problem. For example, the Pareto
chart is a widely used tool for visualizing
issues that need attention. Named for a
nineteenth century economist, a Pareto
chart is drawn as a vertical bar graph, as
shown in Figure 2-18. The bars, which
represent various causes of a problem, are
arranged in descending order, so the team
can focus on the most important causes.
In the example shown, a systems analyst
might use a Pareto chart to learn more
about the causes of inventory system
problems, so that necessary improvements
can be made.

FIGURE 2-18 A Pareto chart displays the causes of a problem, in priority
order, so an analyst can tackle the most important cases first. In this example,
the part number issue would be the obvious starting point.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

66

Chapter 2 Analyzing the Business Case

2.9 The Preliminary Investigation

The XY chart, sometimes called a scatter diagram, is another problem- solving tool.
Often, an analyst looks for a correlation between two variables. For example, sup-
pose complaints are received about network response time, and the cause needs to be
determined. The analyst would try to identify variables, such as the number of users,
to see whether there is a correlation, or pattern. Figure 2-19 shows two XY charts
with data samples. The first chart sample would suggest that there is no correlation

FIGURE 2-19 An XY chart shows correlation between variables, which is very important in
problem solving. Conversely, a lack of correlation suggests that the variables are independent,
and that you should look elsewhere for the cause.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

67

Phase 1 Systems Planning

2.9 The Preliminary Investigation

between the delays and the number of users, so the analyst would look elsewhere for
the source of the problem. However, if the data resembles the second XY sample, it
indicates a strong relationship between the number of users and the longer response
times. That information would be extremely valuable in the problem-solving process.

Step 4: Analyze Project Usability, Cost, Benefit, and Schedule Data
During fact-finding, data is gathered about the project’s predicted costs, anticipated
benefits, and schedule issues that could affect implementation. Before feasibility can
be evaluated, this data must be analyzed carefully. If interviews were conducted or
surveys used, the data should be tabulated to make it easier to understand. If current
operations were observed, the results should be reviewed and key facts that will be
useful in the feasibility analysis highlighted. If cost and benefit data were gathered,
financial analysis and impact statements can be prepared using spreadsheets and
other decision-support tools.

Also, time and cost estimates should be developed for the requirements modeling
tasks for the next SDLC phase, systems analysis. Specifically, the following should be
considered:

• What information must be obtained, and how will it be gathered and analyzed?

• Who will conduct the interviews? How many people will be interviewed, and
how much time will be needed to meet with the people and summarize their
responses?

• Will a survey be conducted? Who will be involved? How much time will it take
people to complete it? How much time will it take to tabulate the results?

• How much will it cost to analyze the information and prepare a report with
findings and recommendations?

Step 5: Evaluate Feasibility
At this point, the problem or opportunity has been analyzed, the project scope and
constraints have been defined, and fact-finding has been performed to evaluate
project usability, costs, benefits, and time constraints. The next step is to assess the
project’s feasibility, beginning with reviewing the answers to the questions listed in
Section 2.7. The following guidelines should also be considered:

OPERATIONAL FEASIBILITY: Fact-finding should have included a review of user
needs, requirements, and expectations. When this data is analyzed, look for areas that
might present problems for system users and how they might be resolved. Because
operational feasibility means that a system will be used effectively, this is a vital area
of concern.

ECONOMIC FEASIBILITY: Using the fact-finding data, financial analysis tools can
be applied to assess feasibility. The cost-benefit data will be an important factor for
management to consider. Also, a cost estimate for the project development team will
be built into the project management plan.

TECHNICAL FEASIBILITY: The fact-finding data should identify the hardware, soft-
ware, and network resources needed to develop, install, and operate the system. With this
data, a checklist can be developed that will highlight technical costs and concerns, if any.

SCHEDULE FEASIBILITY: The fact-finding data should include stakeholder expec-
tations regarding acceptable timing and completion dates. As mentioned previously,

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

68

Chapter 2 Analyzing the Business Case

2.9 The Preliminary Investigation

often a trade-off exists between a project’s schedule and its costs. For example,
compressing a project schedule might be possible, but only if the budget is increased
accordingly to add extra personnel. The schedule data will be incorporated into the
project plan in the form of task durations and milestones.

At this stage of the preliminary investigation, there are several alternatives. It
might be that no action is necessary or that some other strategy, such as additional
training, is needed. To solve a minor problem, a simple solution might be chosen
without performing further analysis. In other situations, it will be recommended that
the project proceed to the next phase, which is systems analysis.

2.9.3 Summarizing the Preliminary Investigation
The final task in the preliminary investigation is to summarize the results and rec-
ommendations, which can be conveying to management in a report and/or in a pre-
sentation. The written report and the oral presentation are examples of the need for
systems analysts to develop strong communications skills. The report includes an
evaluation of the systems request, an estimate of costs and benefits, and a case for
action, which is a summary of the project request and a specific recommendation.

The specific format of a preliminary investigation report varies. A typical report
might consist of the following sections:

• Introduction—the first section is an overview of the report. The introduction
contains a brief description of the system, the name of the person or group
who performed the investigation, and the name of the person or group who
initiated the investigation.

• Systems Request Summary—the summary describes the basis of the systems
request.

• Findings—the findings section contains the results of the preliminary inves-
tigation, including a description of the project’s scope, constraints, and
feasibility.

• Recommendations—a summary of the project request and a specific recom-
mendation. Management will make the final decision, but the IT department’s
input is an important factor.

• Project Roles—this section lists the people who will participate in the project
and describes each person’s role.

• Time and Cost Estimates—this section describes the cost of acquiring and
installing the system, and the total cost of ownership during the system’s useful
life. Intangible costs also should be noted.

• Expected Benefits—this section includes anticipated tangible and intangible
benefits and a timetable that shows when they are to occur.

• Appendix—an appendix is included in the report if supporting information
must be attached. For example, the interviews conducted might be listed, the
documentation reviewed, and other sources for the information obtained.
Detailed interview reports do not need to be included, but those documents
that support the report’s findings should be retained for future reference.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

2.10 Summary 69

Phase 1 Systems Planning

2.10 Summary

Systems planning is the first phase of the systems development life cycle. Effective
information systems help an organization support its business processes, carry out its
mission, and serve its stakeholders. During strategic planning, a company examines
its purpose, vision, and values and develops a mission statement, which leads to goals,
objectives, day-to-day operations, and business results that affect company stake-
holders. SWOT analysis examines strengths, weaknesses, opportunities, and threats.
SWOT analysis can be used at the enterprise level and for individual projects.

During the systems planning phase, an analyst reviews the business case, which is
the basis, or reason, for a proposed system. A business case should describe the proj-
ect clearly, provide the justification to proceed, and estimate the project’s financial
impact.

Systems projects are initiated to improve performance, provide more information,
reduce costs, strengthen controls, or provide better service. Various internal and exter-
nal factors affect systems projects, such as user requests, top management directives,
existing systems, the IT department, software and hardware vendors, technology, cus-
tomers, competitors, the economy, and government.

During the preliminary investigation, the analyst evaluates the systems request and
determines whether the project is feasible from an operational, technical, economic,
and schedule standpoint. Analysts evaluate systems requests on the basis of their
expected costs and benefits, both tangible and intangible.

The steps in the preliminary investigation are to understand the problem or oppor-
tunity; define the project scope and constraints; perform fact-finding; analyze project
usability, cost, benefit, and schedule data; evaluate feasibility; and present results and
recommendations to management. During the preliminary investigation, analysts
often use investigative tools such as fishbone diagrams, Pareto charts, and XY charts.
The last task in a preliminary investigation is to prepare a report to management. The
report must include an estimate of time, staffing requirements, costs, benefits, and
expected results for the next phase of the SDLC.

A QUESTION OF ETHICS

As a new systems analyst at Premier Financial Services, you are getting quite an education.
You report to the IT manager, who also chairs the systems review committee. Several
months ago, the committee rejected a request from the finance director for an expensive
new accounts payable system because the benefits did not appear to outweigh the costs.

Yesterday, the IT manager’s boss asked the IT manager to reconsider the finance direc-
tor’s request, and to persuade the other members to approve it. The IT manager wanted
to discuss the merits of the request, but the discussion was cut off rather abruptly. It turns
out the IT manager’s boss and the finance director are longtime friends.

The IT manager is now very uncomfortable meeting with her boss. She believes the
directive to reconsider the finance director’s request would undermine the integrity of the
systems review process. She feels it would be unethical to grant preferred treatment just
because a friendship is involved. She is thinking of submitting a request to step down as
review committee chair, even though that might harm her career at the company.

Is this an ethical question, or just a matter of office politics? What would you do if you
were the IT manager?

iStock.com/faberfoto_it

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

70

Chapter 2 Analyzing the Business Case

Key Terms

biometric devices A mechanism used to uniquely identify a person by a retina scan or by mapping a
facial pattern.

blockchain A distributed ledger system. The technology underlying Bitcoin.

business case Refers to the reasons, or justification, for a proposal.

case for action A part of the preliminary investigation report to management that summarizes project
requests and makes specific recommendations.

computer resources committee A group of key managers and users responsible for evaluating systems
requests. The term “systems review committee” is also used.

constraint A requirement or a condition that the system must satisfy or an outcome that the system must
achieve.

critical success factors Vital objectives that must be achieved for the enterprise to fulfill its mission.

customer relationship management (CRM) Many companies implement systems to integrate all
 customer-related events and transactions including marketing, sales, and customer service activities.

discretionary projects Where management has a choice in implementing a project, they are called discre-
tionary. For example, creating a new report for a user is an example of a discretionary project.

economic feasibility Achieved if the projected benefits of the proposed system outweigh the estimated
costs involved in acquiring, installing, and operating it.

electronic data interchange (EDI) The exchange of business documents between computers using a stan-
dard electronic format.

electronic product code (EPC) Technology that uses RFID tags to identify and monitor the movement of
each individual product, from the factory floor to the retail checkout counter.

electronic proof of delivery (EPOD) A supplier uses RFID tags on each crate, case, or shipping unit to
create a digital shipping list to verify receipt of goods.

encryption A process where data is coded (converted into unreadable characters) so that only those with
the required authorization can access the data.

fishbone diagram An analysis tool that represents the possible causes of a problem as a graphical out-
line. Also called an Ishikawa diagram.

intangible benefits Positive outcomes that are difficult to measure in dollars. However, intangible bene-
fits can be very important in the calculation of economic feasibility. An example of an intangible ben-
efit might be a new website that improves a company’s image.

intangible costs Items that are difficult to measure in dollar terms, such as employee dissatisfaction.

Internet-of-Things (IOT) Devices connected to one another over a computer network.

just-in-time (JIT) The exchange or delivery of information when and where it is needed. For example,
just-in-time inventory systems rely on computer-to-computer data exchange to minimize unnecessary
inventory.

mission statement A document or statement that describes the company for its stakeholders and briefly
states the company’s overall purpose, products, services, and values.

nondiscretionary projects Where management has no choice in implementing a project, they are called
nondiscretionary. For example, adding a report required by a new federal law.

operational feasibility A system that that will be used effectively after it has been developed.

Pareto chart A vertical bar graph named for a nineteenth century economist. The bars, which represent
various causes of a problem, are arranged in descending order, so the team can focus on the most
important causes.

preliminary investigation An initial analysis to clearly identify the nature and scope of the business
opportunity or problem. Also called a feasibility study.

Key Terms

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 71

Phase 1 Systems Planning

project creep The process by which projects with very general scope definitions expand gradually, with-
out specific authorization.

project scope A specific determination of a project’s boundaries or extent.

scatter diagram A tool used by system analysts to graphically show the correlation between two vari-
ables. Also called an XY chart.

schedule feasibility A project can be implemented in an acceptable time frame.

strategic planning The process of identifying long-term organizational goals, strategies, and resource.

SWOT analysis An examination of a company’s strengths (S), weaknesses (W), opportunities (O), and
threats (T).

systems request A formal appeal to the IT department that describes problems or desired changes in an
information system or business process. It might propose enhancements for an existing system, the
correction of problems, or the development of an entirely new system.

systems review committee A group of key managers and users responsible for evaluating systems
requests. The term computer resources committee is sometimes also used.

tangible benefits Positive outcomes that can be measured in dollars. They can result from a decrease in
expenses, an increase in revenues, or both.

tangible costs Expenses that have a specific dollar value. Examples include employee salaries and hard-
ware purchases.

technical feasibility When an organization has the resources to develop or purchase, install, and operate
the system.

total cost of ownership (TCO) A number used in assessing costs, which includes ongoing support and
maintenance costs, as well as acquisition costs.

XY chart A tool used by system analysts to graphically show the correlation between two variables. Also
called a scatter diagram.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

72

Chapter 2 Analyzing the Business Case

Exercises

Exercises

Questions
1. Why should a systems analyst be interested in strategic planning?
2. List the four factors involved in a SWOT analysis.
3. Describe how CASE tools can support strategic planning.
4. List five questions the business case should answer.
5. What are the six main reasons for systems requests?
6. Explain the two main factors affecting systems requests.
7. Describe the role of the systems review committee in processing systems requests.
8. Define operational, economic, technical, and schedule feasibility.
9. List seven questions the systems analyst should consider when assessing project priorities.

10. What are the five steps of a preliminary investigation?

Discussion Topics
1. One of your coworkers says, “Mission statements are nice, but they really don’t change things down

here where the work gets done.” How would you reply?
2. Discuss how a company’s financial status can affect systems projects.
3. The vice president of accounting says to you, the IT director, “This request procedure takes too long.

My people know what they are doing, and their systems requests are necessary and important.” She
suggests that the IT department bypass the initial steps and immediately get to work on her requests.
What would you say to her?

4. When setting priorities for system requests, the highest priority goes to projects that provide the great-
est benefit, at the lowest cost, in the shortest period of time. How would you reconcile projects that
can produce good results in the short term versus projects that can produce excellent results in the
long term?

5. The final task in the preliminary investigation is to summarize the results and recommendations in a
report and/or in a presentation. Which form of communication, written or oral, do you think is the
most effective for conveying your findings to management?

Projects
1. Use the Internet to find three examples of corporate mission statements.
2. Prepare a SWOT analysis of your school or your employer.
3. A mind map is a diagram used to visually organize information. Identify a tool that supports the cre-

ation of mind maps and explain how they can be a valuable part of strategic planning.
4. Visit the website for an IT magazine and find an article that discusses business cases. Summarize the

article and what you learned from it.
5. Think of a problem you have experienced at school or at work and draw a sample fishbone diagram

with at least two levels.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 3 Managing Systems Projects

C O N T E N T S
3.1 Overview of Project Management
3.2 Creating a Work Breakdown Structure
 Case in Point 3.1: Sunrise Software
3.3 Task Patterns
 Case in Point 3.2: Parallel Services
3.4 The Critical Path
3.5 Project Monitoring and Control
3.6 Reporting
3.7 Project Management Software
3.8 Risk Management
3.9 Managing for Success
 Case in Point 3.3: Just-in-Time Software
 A Question of Ethics
3.10 Summary
 Key Terms
 Exercises

CHAPTER3 Managing
Systems Projects

Chapter 3 is the final chapter in the systems planning
phase of the SDLC. This chapter describes project
management and explains how to plan, schedule,
monitor, and report on IT projects.

The chapter includes three “Case in Point” discussion
questions to help contextualize the concepts described
in the text. The “Question of Ethics” considers the
implications of raising awareness of a project going astray
even when the project manager is reluctant to do so.

L E A R N I N G O B J E C T I V E S
When you finish this chapter, you should be able
to:

1. Illustrate project priorities in the form of a proj-
ect triangle

2. Explain project planning, scheduling, monitor-
ing, and reporting

3. Create a work breakdown structure

4. Identify task patterns

5. Calculate a project’s critical path

6. Describe project monitoring and control tech-
niques to keep a project on schedule

7. Explain how project status is reported

8. Describe project management software and how
it can be of assistance

9. Create a risk management plan

10. Describe why projects sometimes fail

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

75

Phase 1 Systems Planning

3.1 Overview of Project Management

3.1 Overview Of PrOject ManageMent

Many professionals manage business and personal projects every day but do not
always give it much thought. The management process for developing an information
system or working on a construction project is much the same. The only difference is
the nature of the project. To manage a large-scale IT project, specific tools and tech-
niques are needed. A project manager is also needed, someone who is responsible for
overseeing all relevant tasks. Project management for IT professionals includes plan-
ning, scheduling, monitoring and controlling, and reporting on information system
development.

A project manager will break the project down into individual tasks, determine the
order in which the tasks need to be performed, and figure out how long each task will
take. With this information, Gantt charts or PERT/CPM charts can be used to sched-
ule and manage the work. Microsoft Project is a popular project management tool
that can help create and then monitor the project plan, report progress, and use risk
management to make the whole process easier for everyone.

3.1.1 What Shapes a Project?
A successful project must be completed on time, be within budget, and deliver
a quality product that satisfies users and meets requirements. Project man-
agement techniques can be used throughout the SDLC. Systems developers
can initiate a formal project as early as the preliminary investigation stage, or
later on, as analysis, design, and implementation activities occur.

Systems development projects tend to be dynamic and challenging. There
is always a balance between constraints, which was discussed in Chapter 2,
and interactive elements such as project cost, scope, and time.

3.1.2 What Is a Project Triangle?
Figure 3-1 shows a very simple example of a project triangle. For each
project, it must be decided what is most important, because the work
cannot be good and fast and cheap.

When it comes to project management, things are not quite
so simple. Decisions do not need to be all-or-nothing but rec-
ognize that any change in one leg of the triangle will affect the
other two legs. Figure 3-2 represents a common view of a
project triangle, where the three legs are cost, scope, and time.
The challenge is to find the optimal balance among these fac-
tors. Most successful project managers rely on personal experi-
ence, communication ability, and resourcefulness. For example,
if an extremely time-critical project starts to slip, the project
manager might have to trim some features, seek approval for
a budget increase, add new personnel, or a combination of all
three actions.

On its website, Microsoft offers an interesting suggestion for
project managers who have a project at risk: Find the “stuck
side” of the triangle. Microsoft states that in most projects, at
least one side of the triangle is fixed and unlikely to change.
It might be a budget cast in stone, a scope that is inflexible,
or a schedule driven by factors beyond the firm’s control.

FA
S
T C

H
E
A
P

GOOD

PICK ANY TWO

FIGURE 3-1 You can’t get
everything you want; you have to
make choices.

C
os

t S
cope

Time

C
os

t S
cope

FIGURE 3-2 A typical project triangle includes
cost, scope, and time.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

76

Chapter 3 Managing Systems Projects

3.2 Creating a Work Breakdown Structure

Whichever side is fixed is probably critical to the project’s success. The leg where the
problem resides must also be identified: cost, scope, or time.

3.1.3 What Does a Project Manager Do?
Whether a project involves a new office building or an information system, good
leadership is essential. In a systems project, the project manager, or project leader,
usually is a senior systems analyst or an IT department manager if the project is large.
An analyst or a programmer/analyst might manage smaller projects. In addition
to the project manager, most large projects have a project coordinator. A project
coordinator handles administrative responsibilities for the team and negotiates with
users who might have conflicting requirements or want changes that would require
additional time or expense.

Project managers typically perform four activities or functions: planning, schedul-
ing, monitoring, and reporting:

• Project planning includes identifying all project tasks and estimating the com-
pletion time and cost of each.

• Project scheduling involves the creation of a specific timetable, usually in the
form of charts that show tasks, task dependencies, and critical tasks that might
delay the project. Scheduling also involves selecting and staffing the project
team and assigning specific tasks to team members. Project scheduling uses
Gantt charts and PERT/CPM charts, which are explained in the following
sections.

• Project monitoring requires guiding, supervising, and coordinating the project
team’s workload. The project manager must monitor the progress, evaluate the
results, and take corrective action when necessary to control the project and
stay on target.

• Project reporting includes regular progress reports to management, users, and
the project team itself. Effective reporting requires strong communication skills
and a sense of what others want and need to know about the project.

The following sections describe the project planning and scheduling steps: how to
create a work breakdown structure, identify task patterns, and calculate the project’s
critical path.

3.2 creating a wOrk BreakdOwn Structure

A work breakdown structure (WBS) involves breaking a project down into a series
of smaller tasks. Before creating WBSs, the two primary chart types should be under-
stood: Gantt charts and PERT/CPM charts.

3.2.1 Gantt Charts
Henry L. Gantt, a mechanical engineer and management consultant, developed Gantt
charts almost 100 years ago. His goal was to design a chart that could show planned
and actual progress on a project. A Gantt chart is a horizontal bar chart that rep-
resents a set of tasks. For example, the Gantt chart in Figure 3-3 displays five tasks
in a vertical array, with time shown on the horizontal axis. The position of the bar
shows the planned starting and ending time of each task, and the length of the bar
indicates its duration. On the horizontal axis, time can be shown as elapsed time

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

77

Phase 1 Systems Planning

3.2 Creating a Work Breakdown Structure

from a fixed starting point or as actual calendar dates. A Gantt chart also can sim-
plify a complex project by combining several activities into a task group that contains
subsidiary tasks. This allows a complex project to be viewed as a set of integrated
modules.

FIGURE 3-3 In this Gantt chart, note the yellow bars that show the percentage of task completion.

A Gantt chart can show task status by adding a contrasting color to the horizontal
bars. For example, a vertical red arrow marks the current date in Figure 3-3. With a
fixed reference point, it is easy to see that Task 1 is way behind schedule; Task 2 is
only about 80% done and is running behind schedule; Task 3 should have started,
but no work has been done; Task 4 actually is running ahead of schedule; and Task 5
will begin in several weeks.

Gantt charts can present an overview of the project’s status, but they do not pro-
vide enough detailed information, which is necessary when managing a complex proj-
ect. Some project managers may find that PERT/CPM charts, which are discussed in
the following section, are better tools for managing large projects.

3.2.2 PERT/CPM Charts
The Program Evaluation Review Technique (PERT) was developed by the U.S.
Navy to manage very complex projects, such as the construction of nuclear
submarines. At approximately the same time, the Critical Path Method (CPM)
was developed by private industry to meet similar project management needs. The
distinction between the two methods has disappeared over time, and today the
technique is called either PERT, CPM, or PERT/CPM. This text will use the term
PERT chart.

PERT is a bottom-up technique because it analyzes a large, complex project as a
series of individual tasks, just as a pyramid is built from the bottom up using indi-
vidual blocks. To create a PERT chart, first identify all the project tasks and estimate
how much time each task will take to perform. Next, determine the logical order in
which the tasks must be performed. For example, some tasks cannot start until other
tasks have been completed. In other situations, several tasks can be performed at the
same time.

Once the tasks are known, their durations, and the order in which they must be
performed, calculate the time that it will take to complete the project. The specific
tasks that will be critical to the project’s on-time completion can also be identified.
An example of a PERT chart, which Microsoft calls a network diagram, is shown in
the lower screen in Figure 3-4.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

78

Chapter 3 Managing Systems Projects

3.2 Creating a Work Breakdown Structure

Although a Gantt chart offers a
valuable snapshot view of the proj-
ect, PERT charts are more useful for
scheduling, monitoring, and controlling
the actual work. With a PERT chart,
a project manager can convert task
start and finish times to actual dates
by laying out the entire project on a
calendar. Then, on any given day, the
manager can compare what should be
happening with what is taking place
and react accordingly. Also, a PERT
chart displays complex task patterns
and relationships. This information is
valuable to a manager who is trying to
address high priority issues. PERT and
Gantt charts are not mutually exclusive
techniques, and project managers often
use both methods.

Figure 3-4 shows both chart types.
The top screen is a Gantt chart with six
tasks. The PERT chart below it shows
the same project, using a separate box
for each task instead of a horizon-

tal bar. Although they both show the task patterns and flow, the PERT chart boxes
can provide more information, such as task duration, start date, finish date, and the
names of resources assigned to the task. The PERT chart in Figure 3-4 would be too
small to view the actual details, which are shown in the expanded text box at the bot-
tom of the figure. How to create PERT charts is explained in a later section.

3.2.3 Identifying Tasks in a Work Breakdown Structure
A WBS must clearly identify each task and include an estimated duration. A task,
or an activity, is any work that has a beginning and an end and requires the use of
company resources such as people, time, or money. Examples of tasks include con-
ducting interviews, designing a report, selecting software, waiting for the delivery
of equipment, or training users. Tasks are basic units of work that the project
manager plans, schedules, and monitors—so they should be relatively small and
manageable.

In addition to tasks, every project has events, or milestones. An event, or a mile-
stone, is a recognizable reference point that can be used to monitor progress. For
example, an event might be the start of user training, the conversion of system data,
or the completion of interviews. A milestone such as “complete 50% of program test-
ing” would not be useful information unless it could be determined exactly when that
event will occur.

Figure 3-5 shows tasks and events that might be involved in the creation, dis-
tribution, and tabulation of a questionnaire. Note that the beginning and end of
each task are marked by a recognizable event. It would be virtually impossible
to manage a project as one large task. Instead, the project is broken down into
smaller tasks, creating a WBS. The first step in creating a WBS is to list all the
tasks.

FIGURE 3-4 The top screen shows a Gantt chart with six tasks. The PERT
chart in the bottom screen displays an easy-to-follow task pattern for the same
project. When the user mouses over the summary box for Task 5, the details
become visible.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

79

Phase 1 Systems Planning

3.2 Creating a Work Breakdown Structure

FIGURE 3-5 Using a questionnaire requires a series of tasks and events to track the progress. The illustration
shows the relationship between the tasks and the events, or milestones, which mark the beginning and end of
each task.

Third version

Second version

First, reserve the meeting room. Then order
the marketing materials and brief the
managers. After the briefings, send out
customer emails and upload program to the
app store. When the emails are sent and the
program is available on the app store ready,
load the new software. When the marketing
materials have arrived and the software is ready,
do a dress rehearsal.

First version

First, reserve the meeting room. Then order
the marketing materials and brief the
managers. After the briefings, send out
customer emails and upload program to the
app store. When the emails are sent and the
program is available on the app store ready,
load the new software. When the marketing
materials have arrived and the software is ready,
do a dress rehearsal.

• First, reserve the meeting room.
• Then order the marketing materials and brief
 the managers.
• After the briefings, send out customer emails
 and upload program to the app store.
• When the emails are sent and the program is
 available on the app store ready, load the
 new software.
• When the marketing materials have arrived
 and the software is ready, do a dress rehearsal.

FIGURE 3-6 The three versions show how to
transform a task statement into a list of specific
tasks for a work breakdown structure.

 (B + 4P + W)
 6

LISTING THE TASKS: While this step sounds simple, it can be challenging because
the tasks might be embedded in a document, such as the one shown in the first
version of Figure 3-6. One trick is to start by highlighting the
individual tasks, as shown in the second version. Adding bullets
makes the tasks stand out more clearly, as shown in the third
version. The next step is to number the tasks and create a table,
similar to the one shown in Figure 3-7, with columns for task
number, description, duration, and predecessor tasks, which
must be completed before another task can start.

ESTIMATING TASK DURATION: Task duration can be hours,
days, or weeks—depending on the project. Because the following
example uses days, the units of measurement are called person-days.
A person-day represents the work that one person can complete in
one day. This approach, however, can present some problems. For
example, if it will take one person 20 days to perform a particular
task, it might not be true that two people could complete the same
task in 10 days or that 10 people could perform the task in two
days. Some tasks can be divided evenly so it is possible to use dif-
ferent combinations of time and people—up to a point—but not
all. In most systems analysis tasks, time and people are not inter-
changeable. If one analyst needs two hours to interview a user, two
analysts also will need two hours to do the same interview.

Project managers often use a weighted formula for estimating
the duration of each task. The project manager first makes three
time estimates for each task: an optimistic, or best-case estimate
(B), a probable-case estimate (P), and a pessimistic, or worst-case
estimate (W). The manager then assigns a weight, which is an
importance value, to each estimate. The weight can vary, but a
common approach is to use a ratio of B = 1, P = 4, and W = 1.
The expected task duration is calculated as follows:

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

80

Chapter 3 Managing Systems Projects

3.2 Creating a Work Breakdown Structure

Task
No.

Description Duration
(Days)

Predecessor
Tasks

1 Reserve the meeting room

2 Order the marketing materials

3 Brief the managers

4 Send out customer emails

5 Upload program to the app store

6 Load the new software

7 Do a dress rehearsal

FIGURE 3-7 In this table, columns have been added for task number, description,
duration, and predecessor tasks, which must be completed before another task can start.

For example, a project manager might estimate that a file-conversion task could be
completed in as few as 20 days or could take as many as 34 days, but most likely will
require 24 days. Using the formula, the expected task duration is 25 days, calculated
as follows:

 (20 + (4*24) +34) = 25
 6

CASE IN POINT 3.1: SunriSe Software

A lively discussion is under way at Sunrise Software, where you are a project manager.
The main question is whether the person-days concept has limitations. In other words,
if a task will require 100 person-days, does it matter whether two people in 50 days,
five people in 20 days, ten people in 10 days, or some other combination that adds up
to 100 performs the work?

Two programmers on the project seem to think it doesn’t matter. On the other hand,
one of the project’s systems analysts says it is ridiculous to think that any combination
would work. To support his point, this extreme example was offered: Could 100 people
accomplish a task estimated at 100 person-days in one day?

Is the systems analyst correct? If so, what are the limits in the “people versus days”
equation? Taking the concept a step further, is there an optimum number of people to be
assigned to a task? If so, how would that number be determined? You need to offer some
guidance at the next project team meeting. What will you say?

3.2.4 Factors Affecting Duration
When developing duration estimates, project managers consider four factors:

1. Project size

2. Human resources

3. Experience with similar projects

4. Constraints

PROJECT SIZE: As described in Chapter 1, information systems have various character-
istics that affect their complexity and cost. In addition to considering those factors, a proj-
ect manager must estimate the time required to complete each project phase.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

81

Phase 1 Systems Planning

3.2 Creating a Work Breakdown Structure

Task
No.

Description Duration
(Days)

Predecessor
Tasks

1 Reserve the meeting room 1

2 Order the marketing materials 9

3 Brief the managers 2

4 Send out customer emails 3

5 Upload program to the app store 3

6 Load the new software 2

7 Do a dress rehearsal 1

FIGURE 3-8 Task durations have been added, and the WBS is complete except for
predecessor task information. The predecessor tasks will determine task patterns and
sequence of performance.

To develop accurate estimates, a project manager must identify all project tasks, from
initial fact-finding to system implementation. Regardless of the systems development
methodology used, the project manager must determine how much time will be needed
to perform each task. In developing an estimate, the project manager must allow time
for meetings, project reviews, training, and any other factors (e.g., scheduled vacations or
unscheduled medical leave) that could affect the productivity of the development team.

HUMAN RESOURCES: Companies must invest heavily in cutting-edge technology to
remain competitive in a connected world. In many areas, skilled IT professionals are
in great demand, and firms must work hard to attract and retain the talent they need.
A project manager must assemble and guide a development team that has the skill and
experience to handle the project. If necessary, additional systems analysts or programmers
must be hired or trained, and this must be accomplished within a specific time frame.
After a project gets under way, the project manager must deal with turnover, job vacan-
cies, and escalating salaries in the technology sector—all of which can affect whether the
project can be completed on time and within budget. The project manager also has to
accommodate official holidays, family emergencies, and other events that may affect the
schedule.

EXPERIENCE WITH SIMILAR PROJECTS: A project manager can develop time and
cost estimates based on the resources used for similar, previously developed informa-
tion systems. The experience method works best for small- or medium-sized projects
where the two systems are similar in size, basic content, and operating environment.
In large systems with more variables, the estimates are less reliable.

CONSTRAINTS: Chapter 2 explained that constraints are defined during the prelim-
inary investigation. A constraint is a condition, restriction, or requirement that the sys-
tem must satisfy. For example, a constraint might involve maximums for one or more
resources, such as time, dollars, or people. A project manager must define system require-
ments that can be achieved realistically within the required constraints. In the absence of
constraints, the project manager simply calculates the resources needed. However, if con-
straints are present, the project manager must adjust other resources or change the scope
of the project. This approach is similar to the what-if analysis described in Chapter 12.

3.2.5 Displaying the Work Breakdown Structure
After the task durations are entered, the WBS will look like Figure 3-8. Task
groups can be used to manage a complex project with many tasks, just as with a

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

82

Chapter 3 Managing Systems Projects

3.3 Task Patterns

FIGURE 3-9 This Microsoft Project screen displays the same WBS, including task number, task name, duration,
and predecessor tasks.

Task Name

Task ID

Task Duration

Start Day/Date

Finish Day/Date

TASK BOX FORMAT

FIGURE 3-10 Each section of the task
box contains important information
about the task, including the Task Name,
Task ID, Task Duration, Start Day/Date,
and Finish Day/Date.

Gantt chart, to simplify the list. Note that the WBS shown in Figure 3-8 is still
incomplete: It does not show fields such as Start Date, End Date, Task Name,
Duration, and Predecessors—fields that can be key for project managers. With
Microsoft Project, the WBS (including some of these missing fields) might resem-
ble Figure 3-9.

3.3 taSk PatternS

Tasks in a WBS must be arranged in a logical sequence called a task pattern. In
any project, large or small, tasks depend on each other and must be performed in a
sequence, not unlike the commands in a software program. Task patterns can involve
dependent tasks, multiple successor tasks, and multiple predecessor tasks. In larger
projects, these patterns can be very complex, and an analyst must study the logical
flow carefully. This section explains how to understand and create graphical models
of these patterns.

3.3.1 Using Task Boxes to Create a Model
In a PERT/CPM chart, project tasks are shown as rectangular boxes, arranged in the
sequence in which they must be performed. Each rectangular box, called a task box, has
five sections, as shown in Figure 3-10. Each section of the task box contains important
information about the task, including the Task Name, Task ID, Task Duration, Start Day/
Date, and Finish Day/Date.

TASK NAME: The task name should be brief and descriptive, but it
does not have to be unique in the project. For example, a task named
Conduct Interviews might occur in several phases of the project.

TASK ID: The task ID can be a number or code that provides unique
identification.

TASK DURATION: The duration is the amount of time it will take to
complete a task, which is not necessarily the same as the elapsed time.
For example, a task that takes eight hours of effort to complete would
be done in one day by a person dedicated 100%, but if the person
assigned this task is only working 50% on this project, the task would
take two days elapsed time to complete. All tasks must use the same
time units, which can be hours, days, weeks, or months, depending on
the project. An actual project starts on a specific date but can also be
measured from a point in time, such as Day 1.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

83

Phase 1 Systems Planning

3.3 Task Patterns

START DAY/DATE: The start day/date is the time that a task is scheduled to begin. For
example, suppose that a simple project has two tasks: Task 1 and Task 2. Also suppose
that Task 2 cannot begin until Task 1 is finished. An analogy might be that a program
cannot run until the computer is turned on. If Task 1 begins on Day 1 and has duration of
three days, it will finish on Day 3. Because Task 2 cannot begin until Task 1 is completed,
the start time for Task 2 is Day 4, which is the day after Task 1 is finished.

FINISH DAY/DATE: The finish day/date is the time that a task is scheduled for com-
pletion. To calculate the finish day or date, add the duration to the start day or date.
When doing this, be very careful not to add too many days. For example, if a task
starts on Day 10 and has duration of five days, then the finish date would be on Day
14—not Day 15.

3.3.2 Task Pattern Types
A project is based on a pattern of tasks. In a large project, the
overall pattern would be quite complex, but it can be broken
down into three basic types of patterns: dependent tasks,
multiple successor tasks, and multiple predecessor tasks.

DEPENDENT TASKS: When tasks must be completed one
after another, like the relay race shown in Figure 3-11, they are
called dependent tasks because one depends on the other. For
example, Figure 3-12 shows that Task 2 depends on Task 1,
because Task 2 cannot start until Task 1 is completed. In this
example, the finish time of Task 1, Day 5, con-
trols the start date of Task 2, which is Day 6.

MULTIPLE SUCCESSOR TASKS: When several
tasks can start at the same time, each is called a
concurrent task. Often, two or more concurrent
tasks depend on a single prior task, which is called
a predecessor task. In this situation, each concur-
rent task is called a successor task. In the example
shown in Figure 3-13, successor Tasks 2 and 3 both
can begin as soon as Task 1 is finished. Note that
the finish time for Task 1 determines the start time
for both Tasks 2 and 3. In other words, the earliest
that Task 1 can finish is Day 30, so Day 31 is the
earliest that Tasks 2 and 3 can start.

MULTIPLE PREDECESSOR TASKS: Suppose
that a task requires two or more prior tasks to
be completed before it can start. Figure 3-14
shows that example because Task 3 cannot begin
until Tasks 1 and 2 are both completed. Since
the two tasks might not finish at the same time,
the longest (latest) predecessor task becomes the
controlling factor. Note that the start for Task 3
is Day 16, not Day 6. Why is this so? Because
Task 3 depends on two predecessor tasks, Tasks 1
and 2, Task 3 cannot begin until the later of those

FIGURE 3-11 In a relay race, each runner is
dependent on the preceding runner and cannot start
until the earlier finishes.
William Perugini/Shutterstock.com

Create Document

ID: 2

Dur: 9

Start: Day 6

Finish: Day 14

Prepare Outline

ID: 1

Dur: 5

Start: Day 1

Finish: Day 5

EXAMPLE OF A DEPENDENT TASK

FIGURE 3-12 This example of a dependent task shows that the finish
time of Task 1, Day 5, controls the start date of Task 2, which is Day 6.

FIGURE 3-13 This example of multiple successor tasks shows that the
finish time for Task 1 determines the start time for both Tasks 2 and 3.

Design Survey

ID: 3

Dur: 10Finish: Day 40

Start: Day 31

Identify Needs

ID: 3

Dur: 5

Start: Day 31

Finish: Day 35

Develop Plan

ID: 1

Dur: 30

Start: Day 1

Finish: Day 30

Arrange Interviews

ID: 2

Dur: 30

Start: Day 31

Finish: Day 60

EXAMPLE OF MULTIPLE SUCCESSOR TASKS

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

84

Chapter 3 Managing Systems Projects

3.3 Task Patterns

Obtain Authorization

ID: 1

Dur: 15

Start: Day 1

Finish: Day 15

Create Job Description

ID: 2

Dur: 5Finish: Day 5

Start: Day 1

Conduct Interviews

ID: 3

Dur: 30

Start: Day 16

Finish: Day 45

EXAMPLE OF MULTIPLE PREDECESSOR TASKS

FIGURE 3-14 This example of multiple predecessor tasks shows
that the start time for a successor task must be the latest (largest)
finish time for any of its preceding tasks. In the example shown, Task 1
ends on Day 15, while Task 2 ends on Day 5, so Task 1 controls the
start time for Task 3.

21

FIGURE 3-15 Dependent tasks.

2

3

4

6

5

1

FIGURE 3-16 Dependent tasks and multiple successor tasks.

1 2

3 7

8

4

6

5

FIGURE 3-17 Dependent tasks, multiple successor tasks, and multiple
predecessor tasks.

tasks is complete. Therefore, the start time for a
successor task must be the latest (largest) finish
time for any of its preceding tasks. In the example
shown, Task 1 ends on Day 15, while Task 2 ends
on Day 5, so Task 1 controls the start time for
Task 3.
Task pattern types are identified by looking care-
fully at the wording of the task statement. Words
like then, when, or and are action words that
signal a sequence of events. Here are three simple
examples:

• Do Task 1, then do Task 2 describes dependent
tasks that must be completed one after the
other.

• When Task 2 is finished, start two tasks: Task
3 and Task 4 describe multiple successor tasks
that can both start as soon as Task 2 is finished.

• When Tasks 5 and 6 are done, start Task 7 indicates that Task 7 is a multiple
predecessor task because it can’t start until two or more previous tasks all are
completed.

3.3.3 Working with Complex Task Patterns
When several task patterns combine, the facts must be studied very carefully to under-
stand the logic and sequence. A project schedule will not be accurate if the underlying
task pattern is incorrect. For example, consider the following three fact statements
and the task patterns they represent. Examples of the task patterns are shown in
Figures 3-15, 3-16, and 3-17.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

85

Phase 1 Systems Planning

3.4 The Critical Path

CASE IN POINT 3.2: Parallel ServiceS

The project management team at Parallel Services is having a debate about how to define tasks
in the WBS. The project manager wants to break tasks down into the smallest possible units. For
example, she objected to a broad task statement called “Develop a training schedule.” Instead,
she suggested three subtasks: (1) “Determine availability of training room,” (2) “Determine avail-
ability of attendees,” and (3) “Select specific dates and training times.”

Another project team member disagrees. He feels that the broader task statement
is better because it allows more flexibility and will produce the same result. He says
that if you break tasks into pieces that are too small, you risk overmanaging the work
and spending more time on monitoring than actually performing the tasks. As a mem-
ber of the team, which approach do you agree with more? What are the pros and cons
of each?

DEPENDENT TASKS: Perform Task 1. When Task 1 is complete, perform Task 2.

DEPENDENT TASKS AND MULTIPLE SUCCESSOR TASKS: Perform Task 1. When
Task 1 is complete, perform Task 2. When Task 2 is finished, start two tasks: Task 3
and Task 4. When Task 3 is complete, start two more tasks: Task 5 and Task 6.

DEPENDENT TASKS, MULTIPLE SUCCESSOR TASKS, AND MULTIPLE
PREDECESSOR TASKS: Perform Task 1. When Task 1 is complete, perform Task 2.
When Task 2 is finished, start two Tasks: Task 3 and Task 4. When Task 3 is com-
plete, start two more tasks: Task 5 and Task 6. When Tasks 5 and 6 are done, start
Task 7. Then, when Tasks 4 and 7 are finished, perform Task 8.

3.4 the critical Path

Task patterns determine the order in which the tasks are performed. Once the task
sequence has been defined, a project manager can schedule the tasks and calculate the
critical path. A critical path is a series of tasks that, if delayed, would affect the com-
pletion date of the overall project. If any task on the critical path falls behind sched-
ule, the entire project will be delayed.

For example, suppose that Joan and Jim are invited to someone’s home for din-
ner. Joan arrives on time, but Jim arrives 30 minutes late. Jim’s arrival is part of the
critical path because the host does not want to start without him, so the meal will be
served 30 minutes later than originally planned.

Project managers always must be aware of the critical path, so they can respond
quickly to keep the project on track. Microsoft Project and other project management
software can highlight the series of tasks that form the critical path.

3.4.1 Calculating the Critical Path
Figure 3-18 shows a training project with five tasks. Note that the analyst has
arranged the tasks and entered task names, IDs, and durations. The task patterns
should be reviewed first. In this example, Task 1 is followed by Task 2, which is a
dependent task. Task 2 has two successor tasks: Task 3 and Task 4. Tasks 3 and 4 are
predecessor tasks for Task 5.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

86

Chapter 3 Managing Systems Projects

3.4 The Critical Path

The next step is to determine start and finish dates, which will determine the crit-
ical path for the project. The following explanation outlines a step-by-step process.
The result is shown in Figure 3-19.

• Task 1 starts on Day 1 and has duration of 10 days, so the finish date is Day 10.

• Task 2, which is dependent on Task 1, can start on Day 11—the day after Task
1 ends. With duration of 30 days, Task 2 will end on Day 40.

• Tasks 3 and 4 are multiple successor tasks that can start after Task 2 is done.
Task 2 ends on Day 40, so Tasks 3 and 4 both can start on Day 41. Task 3 has
duration of five days and will end on Day 45. Task 4 has duration of 25 days
and will not end until Day 65.

• Task 5 depends on Tasks 3 and 4, which are multiple predecessors. Because
Task 5 depends on both tasks, it cannot start until the later of the two tasks is
complete. In this example, Task 3 ends earlier, but Task 4 will not be completed
until Day 65, so Task 5 cannot start until Day 66.

Recall that the critical path is a series of tasks that, if delayed, would affect the final
completion date of the overall project. In this example, Tasks 1 and 2 are the first tasks
on the critical path. Now look at Task 5, which cannot start until both Tasks 3 and 4
are done. In this case, Task 4 is the controlling factor because Task 4 finishes on Day 65,
which is 20 days later than Task 3, which is completed on Day 45. Therefore, the start
date for Task 5 is determined by the finish date for Task 4.

Plan Training

ID: 3

Dur: 5

Arrange Logistics

ID: 4

Dur: 25

Hire Analyst

ID: 2

Dur: 30

Announce Training

ID: 5

Dur: 30

Obtain Authorization

ID: 1

Dur: 10

FIGURE 3-18 Example of a PERT/CPM chart with five tasks. Task 2 is a dependent task that has multiple successor tasks. Task 5 has
multiple predecessor tasks. In this figure, the analyst has arranged the tasks and entered task names, IDs, and durations.

Plan Training

ID: 3

Dur: 5

Arrange Logistics

ID: 4

Dur: 25Finish: Day 65

Start: Day 41

Hire Analyst

ID: 2

Dur: 30

Start: Day 11

Finish: Day 40

Announce Training

ID: 5

Dur: 30

Start: Day 66

Finish: Day 95

Obtain Authorization

ID: 1

Dur: 10

Start: Day 1

Finish: Day 10

CRITICAL PATH:1-2-4-5

Start: Day 41

Finish: Day 45

FIGURE 3-19 Now the analyst has entered the start and finish times, using the rules explained in this section. Note that the overall
project has duration of 95 days.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

87

Phase 1 Systems Planning

3.6 Reporting

In contrast, Task 3 has slack time and could be delayed up to 20 days without
affecting Task 5. Slack time is the amount of time that the task could be late without
pushing back the completion date of the entire project. Tasks 1, 2, 4, and 5 represent
the critical path, which is highlighted with red arrows in Figure 3-19.

3.5 PrOject MOnitOring and cOntrOl

Regardless of whether the project was planned and scheduled with project management
software or in some other manner, the project manager must keep track of the tasks and
progress of team members, compare actual progress with the project plan, verify the com-
pletion of project milestones, and set standards and ensure that they are followed.

3.5.1 Monitoring and Control Techniques
To help ensure that quality standards are met, many project managers institute
structured walk-throughs. A structured walk-through is a review of a project team
member’s work by other members of the team. Generally, systems analysts review the
work of other systems analysts, and programmers review the work of other program-
mers, as a form of peer review. Structured walk-throughs take place throughout the
SDLC and are called design reviews, code reviews, or testing reviews, depending on
the phase in which they occur.

3.5.2 Maintaining a Schedule
Maintaining a project schedule can be challenging, and most projects run into at least
some problems or delays. By monitoring and controlling the work, the project man-
ager tries to anticipate problems, avoid them or minimize their impact, identify poten-
tial solutions, and select the best way to solve the problem.

The better the original plan, the easier it will be to control the project. If clear,
verifiable milestones exist, it will be simple to determine if and when those targets
are achieved. If enough milestones and frequent checkpoints exist, problems will be
detected rapidly. A project that is planned and scheduled with PERT/CPM or in a
WBS with Gantt chart can be tracked and controlled using these same techniques. As
work continues, the project manager revises the plan to record actual times for com-
pleted tasks and revises times for tasks that are not yet finished.

3.5.3 Tasks and the Critical Path
Project managers spend most of their time tracking the tasks along the critical path
because delays in those tasks have the greatest potential to delay or jeopardize the project.
Other tasks cannot be ignored, however. For example, suppose that a task not on the criti-
cal path takes too long and depletes the allotted slack time. At that point, the task actually
becomes part of the critical path, and any further delay will push back the overall project.

3.6 rePOrting

Members of the project team regularly report their progress to the project manager,
who in turn reports to management and users. The project manager collects, verifies,
organizes, and evaluates the information he or she receives from the team. Then the
manager decides which information needs to be passed along, prepares a summary

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

88

Chapter 3 Managing Systems Projects

3.6 Reporting

that can be understood easily, adds comments and explanations if needed, and sub-
mits it to management and users.

3.6.1 Project Status Meetings
Project managers, like the one shown in Figure 3-20, schedule regular meetings to
update the team and discuss project status, issues, problems, and opportunities.
Although meetings can be time consuming, most project managers believe they are
worth the effort. The sessions give team members an opportunity to share infor-
mation, discuss common problems, and explain new techniques. The meetings also
give the project manager an opportunity to seek input and conduct brainstorming
sessions.

FIGURE 3-20 Project managers schedule regular meetings to update the project team and discuss
project status, issues, problems, and opportunities.
Hero Images/Getty Images

3.6.2 Project Status Reports
A project manager must report regularly to his or her immediate supervisor, upper
management, and users. Although a progress report might be given verbally to an
immediate supervisor, reports to management and users usually are written. Gantt
charts often are included in progress reports to show project status graphically.

3.6.3 Dealing with Problems
Deciding how to handle potential problems can be difficult. At what point should
management be informed about the possibility of cost overruns, schedule delays, or
technical problems? At one extreme is the overly cautious project manager who alerts
management to every potential snag and slight delay. The danger here is that the man-
ager loses credibility over a period of time, and management might ignore potentially
serious situations. At the other extreme is the project manager who tries to handle all
situations single-handedly and does not alert management until a problem is serious.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

89

Phase 1 Systems Planning

3.7 Project Management Software

By the time management learns of the problem, little time might remain in which to
react or devise a solution.

A project manager’s best course of action lies somewhere between the two extremes
but is probably closer to the first. If the consequences are unclear, the analyst should err
on the side of caution and warn management about the possibility of a problem.

When the situation is reported, explain what is being done to handle and monitor
the problem. If the situation is beyond the analyst’s control, suggest possible actions that
management can take to resolve the situation. Most managers recognize that problems do
occur on most projects; it is better to alert management sooner rather than later.

3.7 PrOject ManageMent SOftware

Project managers use software applications to help plan, schedule, monitor, and
report on a project. Most programs offer features such as PERT/CPM, Gantt charts,
resource scheduling, project calendars, and cost tracking. As shown in Figure 3-21,
Microsoft Project is a full-featured program that holds the dominant share of the
market. It is available as a software product for Windows and as an add-on online
service as part of Microsoft’s Office 365.

FIGURE 3-21 Microsoft Project.
Source: Microsoft Corporation

In addition to Microsoft Project, there are a number of other project management
tools available. For example, GanttProject is a free open-source Java-based project
management tool that is available on multiple platforms (Windows, Mac OS X, and
Linux). It can produce Gantt and PERT/CPM charts, calculate the critical path auto-
matically, and read/write Microsoft Project files.

Gantter is a free cloud-based project management tool. It runs in a browser win-
dow, so there’s no software to install to use it. Apptivo and smartsheet are other
examples of web-based project management tools offering similar capabilities but on
a paid subscription model.

Monday is a project management tool that is tailored toward Mac users. As
shown in Figure 3-22, it is a highly visual cloud-based tool that supports agile devel-
opment. Trello, shown in Figure 3-23, is another project management tool that is tai-
lored toward agile development.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

90

Chapter 3 Managing Systems Projects

3.7 Project Management Software

FIGURE 3-22 Monday is a project management tool that is tailored toward Mac users.
Source: monday.com

FIGURE 3-23 Trello is a project management tool that is tailored toward agile development.
Source: Atlassian

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

91

Phase 1 Systems Planning

3.7 Project Management Software

The websites for all of these tools have more information about their capabilities,
including demos, trial versions (where applicable), and training material.

Irrespective of which project management tool used, a step-by-step process is
followed to develop a WBS, work with task patterns, and analyze the critical path.
The main difference is that the software does most of the work automatically, which
enables much more effective management.

The following sections explain how Microsoft Project could be used to handle
the sample task summary for a preliminary investigation shown in Figure 3-24. This
example illustrates that project management is dynamic and challenging. One signifi-
cant advantage of integrated project management software is that it allows the project
manager to adjust schedules, estimates, and resource assignments rapidly in response
to real-world events.

Please study the following task summary:

• First, we need to spend one day studying potential problems or opportunities.

• Then, we will define the project scope and constraints. That will take two days.

• Next, we will analyze the organization charts. That will take one day.

• After we analyze the charts, four fact-finding tasks can start at once:

❍ Observe operations (two days)

❍ Conduct a user survey (three days)

❍ Conduct interviews (two days)

❍ Review documentation (one day)

• When all four fact-finding tasks are finished, we will spend one day evaluating feasibilty.

• Then we will spend one day presenting the results and recommendations to management.

FIGURE 3-24 A sample task summary for a preliminary investigation.

WORK BREAKDOWN STRUCTURE: Creating a WBS using Microsoft Project is
much the same as creating it manually. The tasks, durations, and task patterns must
still be identified. This information might have to be developed, or a task summary
like the one in Figure 3-24 might be used. The goal is to document all tasks, depen-
dencies, dates, and total project duration. The first step is to create a Gantt chart
showing the necessary information. As the information for each task is entered into
Microsoft Project, the duration and the predecessor tasks, if any, should also be
noted.

GANTT CHART: As tasks are entered, the program automatically performs the
calculations, detects the task patterns, and creates a Gantt chart. The chart consists
of horizontal bars, connected with arrows that indicate task dependencies. If a typ-
ical workweek is selected, tasks will not be scheduled on Saturdays and Sundays.
However, for a mission-critical project, a 24/7 calendar might be created. Whatever
is specified, the program will handle the tasks accordingly. Microsoft Project offers
numerous choices of display settings, formats, and calculation methods.

NETWORK DIAGRAM: After the Gantt chart is completed, the data can be viewed
in the form of a Microsoft Project network diagram, which is similar to a PERT
chart. When the Network Diagram option is selected, the project tasks, dependencies,
and start and finish dates for each task are shown. A network diagram displays the
same information as the Gantt chart, including task dependencies, but use task boxes

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

92

Chapter 3 Managing Systems Projects

3.7 Project Management Software

to include much more detail. Using Microsoft Project, each task can be assigned to
one or more people, budgets can be assigned targets, progress reports produced, and
schedules and deadlines readjusted as necessary.

CALENDAR VIEW: Calendar view is a good way to manage day-to-day activity. This
view shows the tasks, similar to a PERT chart, as an overlay on the actual calendar.
Because the critical path is highlighted in red, it is easy for a project manager to deter-
mine priorities at any point in time.

Suppose the project manager wants to view the preliminary investigation in
Figure 3-24 as a Gantt chart, a PERT chart, and a day-to-day calendar. All three views are
shown in Figure 3-25. Each view shows the tasks, the timing, the dependencies, and the
critical path. Note that of the four tasks scheduled for September 25, only the user survey
is on the critical path, therefore that should be the project manager’s primary concern.

Gantt Chart View

PERT Chart View

Calendar View

FIGURE 3-25 Note how each view displays the project and highlights the critical path. If you were the
project manager on September 25, your primary concern should be conducting the user survey.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

93

Phase 1 Systems Planning

3.8 Risk Management

3.8 riSk ManageMent

Every IT project involves risks that systems analysts and project managers must
address. A risk is an event that could affect the project negatively. Risk management
is the process of identifying, analyzing, anticipating, and monitoring risks to minimize
their impact on the project.

Although project management experts differ with regard to the number of steps or
phases, a basic list of risk management tasks would include the following:

• Develop a risk management plan. A risk management plan includes a review
of the project’s scope, stakeholders, budget, schedule, and any other internal
or external factors that might affect the project. The plan should define project
roles and responsibilities, risk management methods and procedures, categories
of risks, and contingency plans.

• Identify the risks. Risk identification lists each risk and assesses the likelihood
that it could affect the project. The details would depend on the specific proj-
ect, but most lists would include a means of identification, and a brief descrip-
tion of the risk, what might cause it to occur, who would be responsible for
responding, and the potential impact of the risk.

• Analyze the risks. This typically is a two-step process: Qualitative risk analysis
and quantitative risk analysis. Qualitative risk analysis evaluates each risk by
estimating the probability that it will occur and the degree of impact. Project
managers can use a formula to weigh risk and impact values, or they can dis-
play the results in a two-axis grid. For example, a Microsoft Excel XY chart
can be used to display the matrix, as shown in Figure 3-26. In the chart, note
the various combinations of risk and impact ratings for the five sample values.
This tool can help a project manager focus on the most critical areas, where
risk probability and potential impact are high.

Medium impact
Medium probability

High impact
High probability

Low impact
High probability

Low impact
Low probability

High impact
Low probability

FIGURE 3-26 You can use a Microsoft Excel XY chart type to display a risk matrix
that shows risk probability and potential impact.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

94

Chapter 3 Managing Systems Projects

3.9 Managing for Success

The purpose of quantitative risk analysis is to understand the actual impact in
terms of dollars, time, project scope, or quality. Quantitative risk analysis can involve
a modeling process called what-if analysis, which allows a project manager to vary
one or more element(s) in a model to measure the effect on other elements. This topic
is discussed in more detail in Chapter 12.

• Create a risk response plan. A risk response plan is a proactive effort to
anticipate a risk and describe an action plan to deal with it. An effective risk
response plan can reduce the overall impact by triggering timely and appropri-
ate action.

• Monitor risks. This activity is ongoing throughout the risk management pro-
cess. It is important to conduct a continuous tracking process that can identify
new risks, note changes in existing risks, and update any other areas of the risk
management plan.

Fortunately, there is a wide variety of risk management software available to help
a project manager with these tasks. Most packages allow a project manager to assign
specific dates as constraints, align task dependencies, note external factors that might
affect a task, track progress, and display tasks that are behind schedule. Armed with
this information, the IT team can quantify the project’s risks, just as they use financial
analysis tools to quantify costs and benefits.

3.9 Managing fOr SucceSS

Project management is a challenging task. Project managers must be alert, technically
competent, and highly resourceful. They also must be good communicators with
strong human resource skills. Project managers can be proud when they handle a suc-
cessful project that helps the company achieve its business objectives.

Unfortunately, projects can and do get derailed for a wide variety of reasons.
When problems occur, the project manager’s ability to handle the situation becomes
the critical factor. When a project manager first recognizes that a project is in trouble,
what options are available? Alternatives can include trimming the project require-
ments, adding to the project resources, delaying the project deadline, and improving
management controls and procedures. Sometimes, when a project experiences delays
or cost overruns, the system still can be delivered on time and within budget if sev-
eral less critical requirements are trimmed. The system can be delivered to satisfy the
most necessary requirements, and additional features can be added later as a part of a
maintenance or enhancement project.

If a project is in trouble because of a lack of resources or organizational support,
management might be willing to give the project more commitment and higher pri-
ority. For example, management might agree to add more people to a project that is
behind schedule. Adding staff, however, will reduce the project’s completion time only
if the additional people can be integrated effectively into the development team. If
team members lack experience with certain aspects of the required technology, tem-
porary help might be obtained from IT consultants or part-time staff. Adding staff
can mean training and orienting the new people, however. In some situations, adding
more people to a project actually might increase the time necessary to complete the
project because of a principle called Brooks’ law. Frederick Brooks, Jr., then an IBM
engineer, observed that adding manpower to a late software project only makes it
later. Brooks reached this conclusion when he saw that new workers on a project first
had to be educated and instructed by existing employees whose own productivity was
reduced accordingly.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

95

Phase 1 Systems Planning

3.9 Managing for Success

To be successful, an information system must satisfy business requirements,
stay within budget, be completed on time, and—most important of all—be man-
aged effectively. As stated earlier and detailed next, when a project develops
problems, the reasons typically involve business, budget, or schedule issues, as
explained in the following sections. In addition to planning and managing the
project, a project manager must be able to recognize these problems and deal with
them effectively.

CASE IN POINT 3.3: JuSt-in-time Software

You are a systems analyst at Just-in-Time Software, a company that specializes in short delivery
cycles for its products. The current project is running behind schedule, and the project manager
wants to bring a few extra programmers onboard to help with the work.

You are familiar with Brook’s Law. How can you best explain to the project manager
that adding more people to the project at this late stage may make things worse? You
don’t want to be seen as a negative team player, but you’re convinced that if you don’t
speak up, the project’s schedule will slip even more.

3.9.1 Business Issues
The major objective of every system is to provide a solution to a business problem or
opportunity. If the system does not do this, then it is a failure—regardless of positive
reaction from users, acceptable budget performance, or timely delivery. When the
information system does not meet business requirements, causes can include unidenti-
fied or unclear requirements, inadequately defined scope, imprecise targets, shortcuts
or sloppy work during systems analysis, poor design choices, insufficient testing or
inadequate testing procedures, and lack of change control procedures. Systems also
fail because of changes in the organization’s culture, funding, or objectives. A sys-
tem that falls short of business needs also produces problems for users and reduces
employee morale and productivity.

As explained in Chapter 2, projects without clear scope definitions are risky
because they tend to expand gradually, without specific authorization, in a process
called project creep. However, even when a project is clearly described, it must be
managed constantly.

3.9.2 Budget Issues
Cost overruns typically result from one or more of the following:

• Unrealistic estimates that are too optimistic or based on incomplete
information

• Failure to develop an accurate forecast that considers all costs over the life of
the project

• Poor monitoring of progress and slow response to early warning signs of
problems

• Schedule delays due to factors that were not foreseen

• Human resource issues, including turnover, inadequate training, and
motivation

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

96

Chapter 3 Managing Systems Projects

3.10 Summary

3.9.3 Schedule Issues
Problems with timetables and project milestones can indicate a failure to recognize
task dependencies, confusion between effort and progress, poor monitoring and
control methods, personality conflicts among team members, or turnover of
project personnel. The failure of an IT project also can be caused by poor project
management techniques.

If the project manager fails to plan, staff, organize, supervise, communicate, moti-
vate, evaluate, direct, and control properly, then the project is certain to fail. Even
when factors outside his or her control contribute to the failure, the project manager
is responsible for recognizing the early warning signs and handling them effectively.

A QUESTION OF ETHICS

“Better blow the whistle,” says your friend and project teammate at work. “The project
is out of control, and you know it!” “Maybe so,” you respond, “But that’s not my call—I’m
not the project manager.” What you don’t say is that the project manager feels like her
career is on the line, and she is reluctant to bring bad news to management at this time.
She honestly believes that the project can catch up and says that a bad report on a major
project could result in bad publicity for the firm and frighten potential customers.

To be fair, the next management progress report is scheduled in three weeks. It is
possible that the team could catch up, but you doubt it. You wonder if there is an ethical
question here: Even though the report isn’t due yet, should a significant problem be
reported to management as soon as possible? You are concerned about the issue, and you
decide to discuss it with Stephanie. What will you say to her?

iStock.com/faberfoto_it

3.10 SuMMary

Project management is the process of planning, scheduling, monitoring, and report-
ing on the development of an information system. Planning includes identifying all
project tasks and estimating the completion time and cost of each. Project scheduling
involves the creation of a specific timetable, usually in the form of charts that show
tasks, task dependencies, and critical tasks that might delay the project. Project mon-
itoring requires guiding, supervising, and coordinating the project team’s workload.
The project manager must monitor the progress, evaluate the results, and take correc-
tive action when necessary to control the project and stay on target. Project reporting
includes regular progress reports to management, users, and the project team itself.
Effective reporting requires strong communication skills and a sense of what others
want and need to know about the project. A successful project must be completed on
time, be within budget, and deliver a quality product that satisfies users and meets
requirements.

A project triangle shows three legs: project cost, scope, and time. A project man-
ager must find the best balance among these elements because a change in any leg of
the triangle will affect the other two legs. Project management techniques can be used
throughout the SDLC.

Planning, scheduling, monitoring, and reporting—all take place within a larger
project development framework, which includes three key steps: creating a WBS,
identifying task patterns, and calculating the critical path. A WBS must clearly

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

3.10 Summary 97

Phase 1 Systems Planning

identify each task and include an estimated duration. A task, or activity, is any work
that has a beginning and an end and requires the use of company resources such as
people, time, or money. Time and cost estimates for tasks usually are made in person-
days. A person-day represents the work that one person can accomplish in one day.
Estimating the time for project activities is more difficult with larger systems. Project
managers must consider the project size and scope, IT resources, prior experience
with similar projects or systems, and applicable constraints. In addition to tasks, every
project has events, or milestones. An event, or a milestone, is a recognizable reference
point that can be used to monitor progress.

Task patterns establish the sequence of work in a project. Task patterns involve
dependent tasks, multiple successor tasks, and multiple predecessor tasks. In larger
projects, these patterns can be very complex.

A critical path is a series of tasks that, if delayed, would affect the completion date
of the overall project. If any task on the critical path falls behind schedule, the entire
project will be delayed. Tasks on the critical path cannot have slack time. To identify
the critical path, calculate the start and finish date for each task, which will determine
the critical path for the project.

In project scheduling, the project manager develops a specific time for each task,
based on available resources and whether or not the task is dependent on other pre-
decessor tasks. The manager can use graphical tools such as Gantt charts and PERT
charts to assist in the scheduling process.

A Gantt chart is a horizontal bar chart that represents the project schedule with
time on the horizontal axis and tasks arranged vertically. It shows individual tasks
and task groups, which include several tasks. In a Gantt chart, the length of the bar
indicates the duration of the tasks. A Gantt chart can display progress but does not
show task dependency details or resource assignment unless the chart was created
with a project management program that supports dependency linking and the entry
of other information.

A PERT/CPM chart shows the project as a network diagram with tasks connected
by arrows. Using a prescribed calculation method, the project manager uses a PERT
chart to determine the overall duration of the project and provide specific informa-
tion for each task, including the task IDs, their durations, start and finish times, and
the order in which they must be performed. With this information, the manager can
determine the critical path, which is the sequence of tasks that has no slack time and
must be performed on schedule in order to meet the overall project deadline.

Most project managers use software applications such as Microsoft Project to
plan, schedule, and monitor projects. Project managers are responsible for risk man-
agement, which is the process of identifying, analyzing, anticipating, and monitoring
risks to minimize their impact on the project.

In the end, project management involves the same skills as any other management.
The project manager must be perceptive, analytical, well organized, and a good com-
municator. If the project manager senses that the project is off-track, he or she must
take immediate steps to diagnose and solve the problem. If the project manager fails
to plan, staff, organize, supervise, communicate, motivate, evaluate, direct, and con-
trol properly, then the project is certain to fail. Even when factors outside his or her
control contribute to the failure, the project manager is responsible for recognizing
the early warning signs and handling them effectively.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

98

Chapter 3 Managing Systems Projects

Key Terms

Key Terms

activity Any work that has a beginning and an end and requires the use of company resources including
people, time, and/or money. Examples include conducting a series of interviews, designing a report,
selecting software, waiting for the delivery of equipment, and training users. See also task.

best-case estimate The most optimistic outcome.

bottom-up technique A method for analyzing a large, complex project as a series of individual tasks,
called project tasks.

Brooks’ law Frederick Brooks, an IBM engineer, observed that adding more manpower to a late soft-
ware project only makes it later.

code review See structured walk-through.

concurrent task A task that can be completed at the same time as (in parallel with) another task.

critical path A series of events and activities with no slack time. If any activity along the critical path
falls behind schedule, the entire project schedule is similarly delayed. As the name implies, a critical
path includes all activities that are vital to the project schedule.

Critical Path Method (CPM) Shows a project as a network diagram. The activities are shown as vectors,
and the events are displayed graphically as nodes. Although CPM developed separately from the Program
Evaluation Review Technique (PERT), the two methods are essentially identical. See also PERT/CPM.

dependent task A task is said to be dependent when it has to be completed in a serial sequence.

design review See structured walk-through.

duration The amount of time it will take to complete a task.

event A reference point that marks a major occurrence. Used to monitor progress and manage a project.
See also milestone.

finish day/date The day or date when a task is scheduled to be finished.

Gantt chart A horizontal bar chart that illustrates a schedule. Developed many years ago by Henry L.
Gantt as a production control technique. Still are in common use today.

milestone A reference point that marks a major occurrence. Used to monitor progress and manage a
project. See also event.

network diagram A PERT chart also is referred to as a network diagram.

open source Software that is supported by a large group of users and developers. The source code is
made freely available.

person-day The amount of work that one person can complete in one day.

PERT/CPM The Program Evaluation Review Technique (PERT) was developed by the U.S. Navy to
manage very complex projects, such as the construction of nuclear submarines. At approximately the
same time, the Critical Path Method (CPM) was developed by private industry to meet similar project
management needs. The important distinctions between the two methods have disappeared over time,
and today the technique is called either PERT, CPM, or PERT/CPM.

predecessor task A single prior task upon which two or more concurrent tasks depend.

probable-case estimate The most likely outcome is called a probable-case estimate.

Program Evaluation Review Technique (PERT) See PERT/CPM.

project coordinator The person who handles administrative responsibilities for the development team
and negotiates with users who might have conflicting requirements or want changes that would
require additional time or expense.

project leader The person charged with leading a project from a technical perspective.

project management The process of planning, scheduling, monitoring, controlling, and reporting upon
the development of an information system.

project manager The person charged with managing a project from an administrative perspective.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 99

Phase 1 Systems Planning

project monitoring Guiding, supervising, and coordinating the project team’s workload.

project planning Identifying project tasks and estimating completion time and costs.

project reporting Providing regular progress reports to management, users, and the project team itself.

project scheduling The creation of a specific timetable to facilitate completion of a project. Also involves
selecting and staffing the project team and assigning specific tasks to team members.

project triangle The three major components of a project: cost, scope, and time. A project manager tries
to find the optimal balance among these factors.

qualitative risk analysis Evaluating risk by estimating the probability that it will occur and the degree of
impact.

quantitative risk analysis Evaluating risk in terms of the actual impact in terms of dollars, time, project
scope, or quality.

risk An event that could affect the project negatively.

risk identification Listing each risk and assessing the likelihood that it could affect a project.

risk management The process of identifying, evaluating, tracking, and controlling risks to minimize their
impact.

risk management plan Includes a review of the project’s scope, stakeholders, budget, schedule, and any
other internal or external factors that might affect the project. The plan should define project roles and
responsibilities, risk management methods and procedures, categories of risks, and contingency plans.

risk response plan A proactive effort to anticipate a risk and describe an action plan to deal with it. An
effective risk response plan can reduce the overall impact by triggering a timely and appropriate action.

slack time The amount of time by which an event can be late without delaying the project. The differ-
ence between latest completion time (LCT) and earliest completion time (ECT).

start day/date The day or date when a task is scheduled to begin.

structured walk-through A review of a project team member’s work by other members of the team.
Generally, systems analysts review the work of other systems analysts, and programmers review the
work of other programmers, as a form of peer review. Should take place throughout the SDLC and
are called requirement reviews, design reviews, code reviews, or testing reviews, depending on the
phase in which they occur.

successor task Each of the concurrent tasks of a predecessor task.

task Any work that has a beginning and an end and requires the use of company resources including
people, time, and/or money. Examples include conducting a series of interviews, designing a report,
selecting software, waiting for the delivery of equipment, and training users. See also activity.

task box A component of a PERT/CPM chart that contains important scheduling and duration informa-
tion about a task. Each task in a project is represented by its own task box in the PERT/CPM chart.

task group A task that represents several activities.

task ID A number or code that uniquely identifies a task.

task name A brief descriptive name for a task, which does not have to be unique in the project. For
example, a task named Conduct Interviews might appear in several phases of the project.

task pattern A logical sequence of tasks in a WBS. Can involve sequential tasks, multiple successor tasks,
and multiple predecessor tasks.

testing review See structured walk-through.

weight An important multiplier that managers factor into estimates so they can be analyzed.

work breakdown structure (WBS) A project broken down into a series of smaller tasks. See also Gantt
chart; PERT/CPM chart.

worst-case estimate The most pessimistic outcome.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

100

Chapter 3 Managing Systems Projects

Exercises

Exercises

Questions
1. Draw a project triangle that shows the relationship among project cost, scope, and time.
2. Write the script for a one-minute explanation of basic project management concepts.
3. Explain the differences between a Gantt chart and a PERT/CPM chart.
4. What are the three main task patterns types? Provide an example of each.
5. Why is the critical path important?
6. What is a structured walk-through?
7. What are the two main ways project status is reported to management?
8. What is a significant advantage of project management software?
9. List the basic tasks in a risk management plan.

10. Explain Brooks’ law.

Discussion Topics
1. When using a project triangle to illustrate conflicting priorities, Microsoft suggests that if the problem

is in the fixed leg, work on the other two legs. For example, if the project must not exceed the budget
and it is starting to run over, adjust the schedule, or the scope, or both. However, if the problem is not
related to the fixed leg, the adjustment might have to be in the remaining leg. So, when faced with an
inflexible budget (fixed leg) and the schedule is slipping (problem leg), the project’s scope (remaining
leg) might have to be adjusted. Why is explaining this situation to management sometimes a very diffi-
cult task for the systems analyst?

2. If you are managing a large project, would you prefer Gantt charts or PERT/CPM charts to represent
project status? Explain why.

3. Consider a scenario where a task is dependent on another task being started but not necessarily com-
pleted. For example, a project may depend on a task being started and one-fourth completed before
the group could start their portion of the project. Do you think this situation occurs frequently in sys-
tems projects? Why or why not?

4. Some project management applications can be quite expensive. As a manager, how would you justify
the purchase of this software?

5. Risk analysis is typically a two-step process: qualitative risk analysis and quantitative risk analysis.
As a systems analyst, for which sorts of project management decisions would you use the results from
qualitative risk analysis? From the quantitative risk analysis?

Projects
1. Think of all the tasks that you perform when you purchase a car. Include any research, decisions,

or financial issues that relate to the purchase. Create a WBS that shows all the tasks, their estimated
duration, and any predecessor tasks.

2. Figure 3-27 shows a WBS with 11 tasks. Note that each task has an ID, a description, duration, and
a reference to predecessor tasks, if any, which must be completed before the task can begin. Also note
that dependent tasks can have one predecessor task or several. Construct a PERT/CPM chart from
these tasks. Recall that this is done as a two-step process: (1) display the tasks and task patterns, and
(2) enter start and finish time.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

101

Phase 1 Systems Planning

Exercises

FIGURE 3-27 Example of a work breakdown structure listing 11 tasks,
together with their descriptions, durations, and predecessor tasks.

Task
No.

Description Duration
(Days)

Predecessor
Tasks

1 Develop Plan 1 -

2 Assign Tasks 4 1

3 Obtain Hardware 17 1

4 Programming 70 2

5 Install Hardware 10 3

6 Program Test 30 4

7 Write User Manual 25 5

8 Convert Files 20 5

9 System Test 25 6

10 User Training 20 7, 8

11 User Test 25 9,10

3. Many of today’s projects involve team members scattered across different time zones and in different
physical locations. Moreover, the projects may have adopted an agile methodology, which reduces
cycle time dramatically. Write a brief report that summarizes some of the key differences a manager
would face managing this type of project, as opposed to a traditional project.

4. Go to the websites for project management tools (besides Microsoft Project), such as Apptivo (www
.apptivo.com), GanttProject (www.ganttproject.biz), Gantter (www.gantter.com), smartsheet (www
.smartsheet.com/product-tour/gantt-charts), Monday (www.monday.com), and Trello (www.trello.com).
Explore each program’s features and describe what you like and don’t like.

5. Perform an Internet research to learn more about project risk management and write a summary
of the results. Be sure to search for the classic book titled Waltzing with Bears: Managing Risk on
 Software Projects, by Tom Demarco and Timothy Lister.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

103

PHASE2
DELIVERABLE
System requirements
document

SYSTEMS ANALYSIS

Systems analysis is the second of five phases in the systems development life cycle. In the
previous phase, systems planning, a preliminary investigation was conducted to determine the
project’s feasibility. The output of that phase, the preliminary investigation report, is used as input
to the systems analysis phase, where a system requirements document is created that captures
the needs of the all stakeholders.

A successful project manager must determine the requirements before starting the design
process, not the other way around. It may be tempting to “just do something” to give the
appearance of productivity, but a systems project that does not satisfy business requirements
serves no useful purpose.

Chapter 4 focuses on the requirements engineering process. This includes system requirements,
team-based techniques, gathering requirements through interviews and other methods,
gathering requirements in agile projects, representing requirements, validating and verifying
requirements, and requirements tools.

Chapter 5 focuses on data and process modeling techniques that analysts use to show how
the system transforms data into useful information. This includes logical versus physical models,
data flow diagrams and symbols, drawing data flow diagrams, drawing context diagrams, drawing
diagram 0 DFDs, drawing lower-level DFDs, data dictionaries, and process descriptions.

Chapter 6 focuses on object modeling techniques that analysts use to create a logical
model. This includes object-oriented analysis, objects, attributes, methods, messages, classes,
relationships among objects and classes, the Unified Modeling Language (UML), and tools.

Chapter 7 focuses on development strategies for the new system and plans for the transition
to the systems design phase. This includes traditional versus web-based systems development,
evolving trends, in-house software development options, outsourcing, offshoring, Software
as a Service (SaaS), selecting a development strategy, the software acquisition process, and
completion of systems analysis tasks.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 4 Requirements Engineering

CHAPTER4 Requirements
Engineering

Chapter 4 is the first of the four chapters in the
systems analysis phase. This chapter describes the
requirements engineering process: gathering facts
about a systems project, creating models that will be
used to design and develop the system, and verifying
and validating that the models are correct before
proceeding to the next phase of the SDLC.

The chapter includes three “Case in Point”
discussion questions to help contextualize the concepts
described in the text. The “Question of Ethics” raises
the issue of considering a request by a supervisor to
identify departments that reported the lowest ratings in
a survey that was supposed to be kept anonymous.

L E A R N I N G O B J E C T I V E S
When you finish this chapter, you should be able to:

1. Explain system requirements and the challenges
associated with the requirements engineering process

2. Compare and contrast functional and
non-functional requirements

3. Apply team-based requirements engineering
techniques, including joint application development
(JAD), rapid application development (RAD), and
agile methods

4. Develop a fact-finding plan for gathering
requirements

5. Conduct an interview to gather system
requirements

6. Use other requirements gathering techniques,
including document review, observation,
questionnaires and surveys, brainstorming,
sampling, and research

7. Explain how requirements are gathered in agile
projects

8. Utilize different requirements representation
techniques, including natural language,
diagrams, and models

9. Explain how to validate and verify requirements

10. Explain how tools can help with requirements
engineering activities

C O N T E N T S
4.1 System Requirements
4.2 Team-Based Techniques
 Case in Point 4.1: North Hills College
4.3 Gathering Requirements
4.4 Gathering Requirements Through Interviews
4.5 Gathering Requirements Using Other

Techniques
 Case in Point 4.2: CyberStuff
4.6 Gathering Requirements in Agile Projects
4.7 Representing Requirements
 Case in Point 4.3: Digital Pen Transcription
4.8 Validating and Verifying Requirements
4.9 Tools
 A Question of Ethics
4.10 Summary
 Key Terms
 Exercises

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

4.1 System Requirements 105

Phase 2 Systems Analysis

4.1 SyStem RequiRementS

During the first part of the systems analysis phase of the SDLC, systems analysts must
identify and describe all system requirements. A system requirement is a characteristic or
feature that must be included in an information system to satisfy business requirements
and be acceptable to users. System requirements serve as benchmarks to measure the
overall acceptability of the finished system.

Because system requirements are the focus of the start of the systems analysis phase,
it’s important to get them correct, right at the start of the process. Any problems with
the requirements will have a ripple effect that could negatively affect subsequent phases
of the SDLC. In fact, poor requirements engineering is a leading cause of failed projects.

Requirements engineering is composed of three main activities:

1. Gathering requirements: understanding the problem

2. Representing requirements: describing the problem

3. Validating and verifying requirements: agreeing upon the problem

Each of these activities is described in more detail in this chapter. The output of
requirements engineering are requirements documents that capture the essence of
what the system should do. These documents are the input to the next step in the
SDLC, data and process modeling, which is described in Chapter 5.

4.1.1 Types of Requirements
Requirements can be classified according to various characteristics. For example,
requirements may be primarily for the system user, in which case they are referred to
as requirements definitions. Requirements may also be primarily for the engineering
team, in which case they are referred to as requirements specifications.

System requirements can also be classified as functional and non-functional. A
functional requirement is a statement of the services a system provides. Examples of
functional requirements include the following:

• The website shall report online volume statistics every four hours and hourly
during peak periods.

• The inventory system shall produce a daily report showing the part number,
description, quantity on hand, quantity allocated, quantity available, and unit
cost of all sorted by part number.

• The contact management system shall generate a daily reminder list for all sales
representatives.

• Each input form must include date, time, product code, customer number, and
quantity.

• The system must provide logon security at the operating system level and at the
application level.

A non-functional requirement is a statement of operational system constraints.
Non-functional requirements are also known as quality attributes. Examples of func-
tional requirements include the following:

• Data entry screens must be uniform, except for background color, which can be
changed by the user.

• The system must support 25 users online simultaneously.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

106

Chapter 4 Requirements Engineering

4.1 System Requirements

• Response time must not exceed four seconds.

• The system must be operational 7 days a week, 365 days a year.

• The system should work on Windows and Mac platforms.

Non-functional requirements may be more critical than functional requirements;
if the former are not satisfied, the system is useless. Conflicts between different
non-functional requirements are common in complex systems. For example, a user
may request that a system be 100% secure but very usable—two requirements that
are hard to reconcile.

4.1.2 Requirements Challenges
Requirements present numerous challenges to the systems analyst. Three of the most
important are imprecision, agreement, and creep.

IMPRECISION: Requirements are often imprecise because they are usually repre-
sented using natural language, such as the examples shown in Section 4.1.1. Natural
language is expressive, but it is prone to misinterpretation. It is not uncommon for
various stakeholders to completely disagree as to the meaning of a simple require-
ment. It is for this reason that other techniques are used to represent requirements, as
described in Section 4.7.

A requirement may be a high-level abstract statement of a service or of a system
constraint, but it can also be a detailed mathematical specification. This is because
requirements often serve two functions: as a basis for a bid for a contract, and as the
basis for the contract itself.

If the requirements are the basis for the contract bid, it must be open to interpreta-
tion. But if the requirements are the basis for the contract itself, it must be defined in
detail. These two constraints are difficult to satisfy.

AGREEMENT: One of the main problems with requirements is getting everyone to
agree on the exact meaning of the requirements statements. In other words, we want
to develop requirements in such a way that, upon completion of the system, both the
systems analyst and the client can agree on whether or not a specific requirement has
been met.

In theory, requirements should be both complete and consistent. A requirement is
complete if it includes descriptions of all facilities needed by the system. In practice,
it’s impossible to completely describe the requirements for a complex system.

A requirement is consistent if there are no conflicts or contradictions in the
description of the system facilities. In practice, ensuring that there are no conflicts in
the system requirements when there may be thousands is quite challenging.

CREEP: There are many social and organizational factors that influence system
requirements. For example, business changes inevitably lead to changing require-
ments—usually more of them as the project progresses. This is particularly true for
long-lived projects where the personnel involved change over time. This phenomenon
is known as “feature creep.”

Rapidly changing requirements can cause numerous problems for systems analysts
and other team members. This is particularly true for projects that follow a tradi-
tional waterfall model of the SDLC. It is partly for this reason that agile methods are
popular: They explicitly address changing requirements as part of the project’s man-
agement structure.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

107

Phase 2 Systems Analysis

4.1 System Requirements

4.1.3 Additional Considerations
In addition to the three challenges outlined earlier, systems analysts must consider
three important supplementary factors: (1) scalability, which determines how a sys-
tem will handle future growth and demands; (2) security, which is all-important for
today’s networked systems; and (3) the total cost of ownership, which includes all
future operational and support costs.

SCALABILITY: Scalability refers to a system’s ability to handle increased business
volume and transactions in the future. Because it will have a longer useful life, a scal-
able system offers a better return on the initial investment.

To evaluate scalability, information is needed about projected future volume for all
outputs, inputs, and processes. For example, for a web-based order processing system,
one needs to know the maximum projected number of concurrent users, the periods
of peak online activity, the number and types of data items required for each transac-
tion, and the method of accessing and updating customer files.

Even to print customer statements, the analyst needs to know the number of active
accounts and have a forecast for one, two, or five years because that information affects
future hardware decisions. In addition, with realistic volume projections, reliable cost
estimates for related expenses, such as postage and online charges, can be provided.

Similarly, to ensure that a web-based hotel reservation system is sufficiently scal-
able, the analyst would need to project activity levels for several years of operation. For
example, one might forecast the frequency of online queries about room availability
and estimate the time required for each query and the average response time. With that
information, server transaction volume and network requirements could be estimated.

Transaction volume has a significant impact on operating costs. When volume exceeds
a system’s limitations, maintenance costs increase sharply. Volume can change dramatically
if a company expands or enters a new line of business. For example, a new Internet-based
marketing effort might require an additional server and a 24-hour technical support.

Data storage also is an important scalability issue. The analyst must determine
how much data storage is required currently and predict future needs based on sys-
tem activity and growth. Those requirements affect hardware, software, and network
bandwidth needed to maintain system performance. Data retention requirements
must also be considered to determine whether data can be deleted or archived on a
specific timetable.

SECURITY: In the past, security was considered an add-on to a system’s design.
This is particularly true for legacy systems that have been deployed for some time.
Nowadays, security is so important for networked systems that it has changed from a
non-functional requirement to a functional requirement. In other words, security is an
essential consideration for all systems development.

Incorporating security as a first-class requirement is particularly important in light
of the seemingly endless news reports of massive data breaches. These hacks release
personal information from online systems at a scale previously unseen. If the systems
had been made with security in mind from the beginning, they would be much harder
to infiltrate.

The challenge with security as a system requirement is that it is often in conflict
with other user requirements. For example, a requirement that the system should be
accessible online using a web interface immediately makes securing the system much
more challenging. The systems analyst must attempt to reconcile and prioritize the
conflicting requirements during the requirements engineering process.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

108

Chapter 4 Requirements Engineering

4.2 Team-Based Techniques

TOTAL COST OF OWNERSHIP: In addition to direct costs, systems developers must
identify and document indirect expenses that contribute to the total cost of ownership
(TCO). TCO is especially important if the development team is assessing several alter-
natives. After considering the indirect costs, which are not always apparent, a system
that seems inexpensive initially might actually turn out to be the costliest choice. One
problem is that cost estimates tend to understate indirect costs such as user support

and downtime productivity
losses. Even if accurate fig-
ures are unavailable, systems
analysts should try to identify
indirect costs and include them
in TCO estimates.

Because cost control is
so important, vendors often
claim that their products or
services will reduce TCO sig-
nificantly. For example, one
of the most common reasons
to migrate a legacy system to
the cloud is reduced TCO. As
shown in Figure 4-1, cloud
computing offers the oppor-
tunity for lower operational
costs due to the outsourcing
of expenses such as capital
investment in exchange for a
pay-as-you-go pricing model.

4.2 team-BaSed techniqueS

The IT department’s goal is to deliver the best possible information system, at
the lowest possible cost, in the shortest possible time. To achieve the best results,
systems developers view users as partners in the development process. Greater user
involvement usually results in better communication, faster development times, and
more satisfied users.

The traditional model for systems development was an IT department that used
structured analysis and consulted users only when their input or approval was
needed. Although the IT staff still has a central role, and structured analysis remains
a popular method of systems development, most IT managers invite system users to
participate actively in various development tasks.

As described in Chapter 1, team-based approaches have been around for some time.
A popular example is joint application development (JAD), which is a user-oriented
technique for fact-finding and requirements engineering. Because it is not linked to a
specific development methodology, systems developers use JAD whenever group input
and interaction are desired.

Another popular user-oriented method is rapid application development (RAD).
RAD resembles a condensed version of the entire SDLC, with users involved every
step of the way. While JAD typically focuses only on fact-finding and requirements
determination, RAD provides a fast-track approach to a full spectrum of systems
development tasks, including planning, design, construction, and implementation.

TCO for Cloud Computing

29% Higher

Same

Lower

57%

14%

FIGURE 4-1 Total cost of ownership when migrating to the cloud can be significantly less
than current computing platforms.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

109

Phase 2 Systems Analysis

4.2 Team-Based Techniques

Finally, as described in Chapter 1, agile methods represent a recent trend that
stresses intense interaction between systems developers and users. JAD, RAD, and
agile methods are discussed in the following sections.

4.2.1 Joint Application Development
Joint application development (JAD) is a popular fact-finding technique that brings
users into the development process as active participants.

USER INVOLVEMENT: Users have a vital stake in an information system, and
they should participate fully in the development process. Many years ago, the IT
department usually had sole responsibility for systems development and users had
a relatively passive role. During the development process, the IT staff would collect
information from users, define system requirements, and construct the new system. At
various stages of the process, the IT staff might ask users to review the design, offer
comments, and submit changes.

Today, users typically have a much more active role in systems development. IT
professionals now recognize that successful systems must be user oriented, and users
need to be involved, formally or informally, at every stage of systems development.

One popular strategy for user involvement is a JAD team approach, which
involves a task force of users, managers, and IT professionals who work together to
gather information, discuss business needs, and define the new system requirements.

JAD PARTICIPANTS AND ROLES: A JAD team usually meets over a period of days
or weeks in a special conference room or at an off-site location. Either way, JAD
participants should be insulated from the distraction of day-to-day operations. The
objective is to analyze the existing system, obtain user input and expectations, and
document user requirements for the new system.

The JAD group usually has a project leader, who needs strong interpersonal
and organizational skills, and one or more members who document and record the
results and decisions. Figure 4-2 describes typical JAD participants and their roles.
IT staff members often serve as JAD project leaders, but that is not always the case.

JAD PARTICIPANT ROLE

JAD project leader Develops an agenda, acts as a facilitator, and leads the JAD session

Top management Provides enterprise-level authorization and support for the project

Managers Provide department-level support for the project and understanding of
how the project must support business functions and requirements

Users Provide operational-level input on current operations, desired changes,
input and output requirements, user interface issues, and how the proj-
ect will support day-to-day tasks

Systems analysts and
other IT staff members

Provide technical assistance and resources for JAD team members on
issues such as security, backup, hardware, software, and network
capability

Recorder Documents results of JAD sessions and works with systems analysts to
build system models and develop CASE tool documentation

FIGURE 4-2 Typical JAD participants and roles.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

110

Chapter 4 Requirements Engineering

4.2 Team-Based Techniques

Systems analysts on the JAD team participate in discussions, ask questions, take
notes, and provide support to the team. If CASE tools are available, analysts can
develop models and enter documentation from the JAD session directly into the
CASE tool.

A typical JAD session agenda is shown in Figure 4-3. The JAD process involves
intensive effort by all team members. Because of the wide range of input and constant
interaction among the participants, many companies believe that a JAD group pro-
duces the best possible definition of the new system.

Project leader • Introduce all JAD team members
• Discuss ground rules, goals, and objectives for the JAD sessions
• Explain methods of documentation and use of CASE tools, if any

Top management (sometimes
called the project owner or
sponsor)

• Explain the reason for the project and express top management
authorization and support

Project leader • Provide overview of the current system and proposed project
scope and constraints

• Present outline of specific topics and issues to be investigated

Open discussion session,
moderated by project leader

• Review the main business processes, tasks, user roles, input, and
output

• Identify specific areas of agreement or disagreement
• Break team into smaller groups to study specific issues and assign

group leaders

JAD team members working
in smaller group sessions,
supported by IT staff

• Discuss and document all system requirements
• Develop models and prototypes

Group leaders • Report on results and assigned tasks and topics
• Present issues that should be addressed by the overall

JAD team

Open discussion session,
moderated by project leader

• Review reports from small group sessions
• Reach consensus on main issues
• Document all topics

Project leader • Present overall recap of JAD session
• Prepare report that will be sent to JAD team members

FIGURE 4-3 Typical agenda for a JAD session.

JAD ADVANTAGES AND DISADVANTAGES: Compared with traditional
methods, JAD is more expensive and can be cumbersome if the group is too large
relative to the size of the project. Many companies find, however, that JAD allows
key users to participate effectively in the requirements engineering process. When
users participate in the systems development process, they are more likely to feel a
sense of ownership in the results and support for the new system. When properly
used, JAD can result in a more accurate statement of system requirements, a better
understanding of common goals, and a stronger commitment to the success of the
new system.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

111

Phase 2 Systems Analysis

4.2 Team-Based Techniques

4.2.2 Rapid Application Development
Rapid application development (RAD) is a team-based technique that speeds up
information systems development and produces a functioning information system.
Like JAD, RAD uses a group approach but goes much further. While the end product
of JAD is a requirements model, the end product of RAD is the new information sys-
tem. RAD is a complete methodology, with a four-phase life cycle that parallels the
traditional SDLC phases. Companies use RAD to reduce cost and development time
and increase the probability of success.

RAD relies heavily on prototyping and user involvement. The RAD process allows
users to examine a working model as early as possible, determine if it meets their
needs, and suggest necessary changes. Based on user input, the prototype is modified,
and the interactive process continues until the system is completely developed and
users are satisfied. The project team uses CASE tools to build the prototypes and cre-
ate a continuous stream of documentation.

RAD PHASES AND ACTIVITIES: The RAD model consists of four phases: require-
ments planning, user design, construction, and cutover, as shown in Figure 4-4. Note
the continuous interaction between the user design and construction phases.

Requirements planning. The requirements planning phase combines elements of the
systems planning and systems analysis phases of the SDLC. Users, managers, and IT
staff members discuss and agree on business needs, project scope, constraints, and
system requirements. The requirements planning phase ends when the team agrees on
the key issues and obtains management authorization to continue.

User design. During the user design phase, users interact with systems analysts
and develop models and prototypes that represent all system processes, outputs, and
inputs. The RAD group or subgroups typically use a combination of JAD techniques
and CASE tools to translate user needs into working models. User design is a con-
tinuous, interactive process that allows users to understand, modify, and eventually
approve a working model of the system that meets their needs.

Construction. The construction phase focuses on program and application develop-
ment tasks similar to the SDLC. In RAD, however, users continue to participate and
still can suggest changes or improvements as actual screens or reports are developed.

Cutover. The cutover phase resembles the final tasks in the SDLC implementation
phase, including data conversion, testing, changeover to the new system, and user
training. Compared with traditional methods, the entire process is compressed. As a
result, the new system is built, delivered, and placed in operation much sooner.

CASE IN POINT 4.1: North hills College

North Hills College has decided to implement a new registration system that will allow
students to register online as well as in person. As IT manager, you decide to set up a JAD
session to help define the requirements for the new system. The North Hills organization
is fairly typical, with administrative staff that includes a registrar, a student support and
services team, a business office, an IT group, and a number of academic departments. Using
this information, you start work on a plan to carry out the JAD session. Who would you
invite to the session, and why? What would be your agenda for the session, and what would
take place at each stage of the session?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

112

Chapter 4 Requirements Engineering

4.2 Team-Based Techniques

RAD OBJECTIVES: The main objective of all RAD approaches is to cut development
time and expense by involving users in every phase of systems development. Because
it is a continuous process, RAD allows the development team to make necessary mod-
ifications quickly, as the design evolves. In times of tight corporate budgets, it is espe-
cially important to limit the cost of changes that typically occur in a long, drawn-out
development schedule.

In addition to user involvement, a successful RAD team must have IT resources,
skills, and management support. Because it is a dynamic, user-driven process, RAD
is especially valuable when a company needs an information system to support a
new business function. By obtaining user input from the beginning, RAD also helps a
development team design a system that requires a highly interactive or complex user
interface.

RAD ADVANTAGES AND DISADVANTAGES: RAD has advantages and
disadvantages compared with traditional structured analysis methods. The primary
advantage is that systems can be developed more quickly with significant cost
savings. A disadvantage is that RAD stresses the mechanics of the systems itself and
does not emphasize the company’s strategic business needs. The risk is that a system
might work well in the short term, but the corporate and long-term objectives for the
system might not be met. Another potential disadvantage is that the accelerated time
cycle might allow less time to develop quality, consistency, and design standards.
RAD can be an attractive alternative, however, if an organization understands the
possible risks.

Cutover

Requirements Planning
Tasks
• Users, managers, and IT
 staff agree upon business
 needs, project scope, and
 systems requirements
• Obtain approval to
 continue

User Design Tasks
• Interact with users
• Build models and
 prototypes
• Conduct intensive
 JAD-type sessions

Construction Tasks
• Program and
 application
 development
• Coding
• Unit, integration,
 and system testing

Cutover Tasks
• Data conversion
• Full-scale testing
• System changeover
• User training

Requirements
Planning

Continuous interaction
between the user design
and construction phases

User
Design

Construction

FIGURE 4-4 The four phases of the RAD model are requirements planning, user design, construction, and
cutover. Note the continuous interaction between the user design and construction phases.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

113

Phase 2 Systems Analysis

4.2 Team-Based Techniques

4.2.3 Agile Methods
Chapter 1 explained that agile methods attempt to develop a system incrementally by
building a series of prototypes and constantly adjusting them to user requirements. As
the agile process continues, developers revise, extend, and merge earlier versions into
the final product. An agile approach emphasizes continuous feedback, and each incre-
mental step is affected by what was learned in the prior steps.

As agile methods become more popular, a large community of agile-related soft-
ware and services has evolved. Many agile developers prefer not to use CASE tools at
all, and as shown in Figure 4-5 rely instead on whiteboard displays and arrangements
of movable sticky notes. This approach, they believe, reinforces the agile strategy:
simple, rapid, flexible, and user oriented.

FIGURE 4-5 Reinforcing the agile strategy: simple, rapid, flexible, and user oriented.
Sam Edwards/OJO Images/Getty Images

Scrum is another agile approach. The name comes from the rugby term scrum, where
team members lunge at each other to achieve their objectives, as shown in Figure 4-6.
The systems development version of Scrum involves the same intense interaction, though
it is more mental than physical. In a Scrum session, agile team members play specific
roles, including colorful designations such as pigs or chickens. These roles are based on
the old joke about the pig and chicken who discuss a restaurant where ham and eggs
would be served. However, the pig declines, because that role would require a total
commitment, while for the chicken, it would only be a contribution.

In the agile world, the pigs include the product owner, the facilitator, and the
development team, while the chickens include users, other stakeholders, and manag-
ers. Scrum sessions have specific guidelines that emphasize time blocks, interaction,
and team-based activities that result in deliverable software. An agile team uses a
series of scrums to pause the action and allow the players to reset the game plan,
which remains in effect until the next scrum.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

114

Chapter 4 Requirements Engineering

4.3 Gathering Requirements

AGILE METHOD ADVANTAGES AND DISADVANTAGES: Agile, or adaptive, meth-
ods are very flexible and efficient in dealing with change. They are popular because
they stress team interaction and reflect a set of community-based values. Also, fre-
quent deliverables constantly validate the project and reduce risk.

However, some potential problems exist. For example, team members need a high
level of technical and interpersonal skills. Also, a lack of structure and documentation
can introduce risk factors, such as blurring of roles and responsibilities, and loss of
corporate knowledge. Finally, the overall project may be subject to significant change
in scope as user requirements continue to evolve during the project.

4.3 GatheRinG RequiRementS

Gathering requirements is the first step in the requirements engineering process. This
step is also known as requirements elicitation or fact-finding (collecting information).
Whether working solo or as a member of a team, during requirements gathering, the
systems analyst will use various techniques, including interviews, document review,
observation, surveys and questionnaires, sampling, and research.

Although software can help gather and analyze requirements, no program actually
gathers them automatically. First, the information needed must be identified. Typi-
cally, this activity begins by asking a series of questions, such as the following:

• What business functions are supported by the current system?

• What strategic objectives and business requirements must be supported by the
new system?

FIGURE 4-6 In a rugby scrum, team members prepare to lunge at each other to achieve their objectives.
getnikov/Shutterstock.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

115

Phase 2 Systems Analysis

4.3 Gathering Requirements

• What are the benefits and TCO of the proposed system?

• What transactions will the system process?

• What information do users and managers need from the system?

• Must the new system interface with legacy systems?

• What procedures could be eliminated by business process reengineering?

• What security issues exist?

• What risks are acceptable?

• What budget and timetable constraints will affect systems development?

To obtain answers to these questions, the analyst develops a fact-finding plan,
which involves answers to five familiar questions: who, what, where, when, and how.
For each of those questions, one also must ask another very important question: why.
Some examples of these questions are as follows:

1. Who? Who performs each of the procedures within the system? Why? Are the
correct people performing the activity? Could other people perform the tasks
more effectively?

2. What? What is being done? What procedures are being followed? Why is the
process necessary? Often, procedures are followed for many years and no one
knows why. Question why a procedure is being followed at all.

3. Where? Where are operations being performed? Why? Where could they be
performed? Could they be performed more efficiently elsewhere?

4. When? When is a procedure performed? Why is it being performed at this
time? Is this the best time?

5. How? How is a procedure performed? Why is it performed in that manner?
Could it be performed better, more efficiently, or less expensively in some other
manner?

There is a difference between asking what is being done and what could or
should be done. The systems analyst first must understand the current situation.
Only then can the question of what should be done be answered. Figure 4-7
lists the basic questions and when they should be asked. Note that the first two
columns relate to the current system but the third column focuses on the proposed
system.

CURRENT SYSTEM PROPOSED SYSTEM

Who does it? Why does this person do it? Who should do it?

What is done? Why is it done? What should be done?

Where is it done? Why is it done there? Where should it be done?

When is it done? Why is it done then? When should it be done?

How is it done? Why is it done this way? How should it be done?

FIGURE 4-7 Sample questions during requirements elicitation as the focus shifts from the current system to
the proposed system.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

116

Chapter 4 Requirements Engineering

4.4 Gathering Requirements Through Interviews

4.4 GatheRinG RequiRementS thRouGh inteRviewS

Interviewing is an important requirement gathering technique during the systems
analysis phase. An interview is a planned meeting during which the analyst obtains
information from another person. The skills needed to plan, conduct, document, and
evaluate interviews successfully must be understood.

4.4.1 The Interview Process
After identifying the information needed, as described earlier in the chapter, the inter-
viewing process commences, which consists of seven steps for each interview:

1. Determine the people to interview.

2. Establish objectives for the interview.

3. Develop interview questions.

4. Prepare for the interview.

5. Conduct the interview.

6. Document the interview.

7. Evaluate the interview.

STEP 1: DETERMINE THE PEOPLE TO INTERVIEW: To get an accurate picture, the
analyst must select the right people to interview and ask them the right questions.
The preliminary investigation involved mainly middle managers or department heads.
Now, during the systems analysis phase, people from all levels of the organization
should be interviewed. In some situations, it might be prudent to interview stakehold-
ers that are not members of the organization, because their opinion is valuable.

Although interview candidates can be selected from the formal organization charts
reviewed earlier, one must also consider any informal structures that exist in the orga-
nization. Informal structures usually are based on interpersonal relationships and can
develop from previous work assignments, physical proximity, unofficial procedures,
or personal relationships such as the informal gathering shown in Figure 4-8. In an
informal structure, some people have more influence or knowledge than appears on

FIGURE 4-8 When setting up interviews, an analyst should look
outside a formal organization chart to identify people who might
provide valuable information.
GaudiLab/Shutterstock.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

117

Phase 2 Systems Analysis

4.4 Gathering Requirements Through Interviews

an organization chart. The analyst’s knowledge of the company’s formal and informal
structures helps determine the people to interview during the systems analysis phase.

Should several people be interviewed at the same time? Group interviews can
save time and provide an opportunity to observe interaction among the participants.
Group interviews also can present problems. One person might dominate the conver-
sation, even when questions are addressed specifically to others. Organization level
also can present a problem because the presence of senior managers in an interview
might prevent lower-level employees from expressing themselves candidly.

STEP 2: ESTABLISH OBJECTIVES FOR THE INTERVIEW: After deciding on the
people to interview, objectives for the session must be established. First, the general
areas to be discussed should be determined, and then the facts to be gathered should
be listed. Soliciting ideas, suggestions, and opinions during the interview is also a
good idea.

The objectives of an interview depend on the role of the person being interviewed.
Upper-level managers can provide the big picture to help understand the system as a
whole. Specific details about operations and business processes are best learned from
people who actually work with the system on a daily basis.

In the early stages of systems analysis, interviews usually are general. As the
fact-finding process continues, however, the interviews focus more on specific top-
ics. Interview objectives also vary at different stages of the investigation. Interviews
should be as brief as possible (though as long as needed), since time is so valuable to
employees, especially managers. By setting specific objectives, a framework is created
that helps the analyst decide what questions to ask and how to phrase them.

STEP 3: DEVELOP INTERVIEW QUESTIONS: Creating a standard list of interview
questions helps to keep the session on track and avoid unnecessary tangents. Also,
if several people who perform the same job are interviewed, a standard question list
permits a comparison of their answers. Although there may be a list of specific ques-
tions, the interviewer might decide to depart from it because an answer to one ques-
tion leads to another topic that warrants pursuing. That question or topic then should
be included in a revised set of questions used to conduct future interviews. If the
question proves to be extremely important, it may be needed to return to a previous
interviewee to query him or her on the topic.

The interview should consist of several different kinds of questions: open-ended,
closed-ended, or questions with a range of responses. When phrasing questions, avoid
leading questions that suggest or favor a particular reply. For example, rather than
asking, “What advantages do you see in the proposed system?” ask instead, “Do you
see any advantages in the proposed system?”

Open-ended questions. Open-ended questions encourage spontaneous and
unstructured responses. Such questions are useful to understand a larger process
or draw out the interviewee’s opinions, attitudes, or suggestions. Here are some
examples of open-ended questions:

• What are users saying about the new system?

• How is this task performed?

• Why do you perform the task that way?

• How are the checks reconciled?

• What added features would you like to have in the new billing system?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

118

Chapter 4 Requirements Engineering

4.4 Gathering Requirements Through Interviews

Also, an open-ended question can be used to probe further by asking: Is there any-
thing else you can tell me about this topic?

Closed-ended questions. Closed-ended questions limit or restrict the response.
Closed-ended questions are used when information that is more specific is needed
or when facts must be verified. Examples of closed-ended questions include the
following:

• How many personal computers do you have in this department?

• Do you review the reports before they are sent out?

• How many hours of training does a clerk receive?

• Is the calculation procedure described in the manual?

• How many customers ordered products from the website last month?

Range-of-response questions. Range-of-response questions are closed-ended ques-
tions that ask the person to evaluate something by providing limited answers to
specific responses or on a numeric scale. This method makes it easier to tabulate the
answers and interpret the results. Range-of-response questions might include the
following:

• On a scale of 1 to 10, with 1 the lowest and 10 the highest, how effective was
your training?

• How would you rate the severity of the problem: low, medium, or high?

• Is the system shutdown something that occurs never, sometimes, often, usually,
or always?

STEP 4: PREPARE FOR THE INTERVIEW: After setting the objectives and develop-
ing the questions, preparing for the interview is next. Careful preparation is essential
because an interview is an important meeting and not just a casual chat. When the
interview is scheduled, suggest a specific day and time and let the interviewee know
how long the meeting is expected to last. It is also a good idea to send an email or
place a reminder call the day before the interview.

Remember that the interview is an interruption of the other person’s routine,
so the interview should be limited to no more than one hour. If business pressures
force a postponement of the meeting, schedule another appointment as soon as it
is convenient. Remember to keep department managers informed of meetings with
their staff members. Sending a message to each department manager listing planned
appointments is a good way to keep them informed. Figure 4-9 is an example of such
a message.

A list of topics should be sent to an interviewee several days before the meeting,
especially when detailed information is needed, so the person can prepare for the
interview and minimize the need for a follow-up meeting. Figure 4-10 shows a sample
message that lists specific questions and confirms the date, time, location, purpose,
and anticipated duration of the interview.

If there are questions about documents, ask the interviewee to have samples avail-
able at the meeting. The advance memo should include a list of the documents to
discuss (if it is known what they are). Also, a general request for documents can be
made, as the analyst did in the email shown in Figure 4-10.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

119

Phase 2 Systems Analysis

4.4 Gathering Requirements Through Interviews

FIGURE 4-9 Sample message to a department head about interviews.

FIGURE 4-10 Sample message to confirm an interview.

Two schools of thought exist about the best location for an interview. Some
analysts believe that interviews should take place in the interviewee’s office, whereas
other analysts feel that a neutral location such as a conference room is better.

Supporters of interviews in the interviewee’s office believe that is the best location
because it makes the interviewee feel comfortable during the meeting. A second
argument in favor of the interviewee’s office is that the office is where he or she has

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

120

Chapter 4 Requirements Engineering

4.4 Gathering Requirements Through Interviews

the easiest access to supporting material that might be needed during the discussion.
If a complete list of topics is provided in advance, however, the interviewee can bring
the necessary items to a conference room or other location.

Supporters of neutral locations stress the importance of keeping interruptions to a
minimum so both people can concentrate fully. In addition, an interview that is free of
interruptions takes less time. If the meeting does take place in the interviewee’s office,
tactfully suggest that all calls be held until the conclusion of the interview.

STEP 5: CONDUCT THE INTERVIEW: After determining the people to interview,
setting the objectives, and preparing the questions, a specific plan for the meet-
ing should be developed. When conducting an interview, begin with introductions,
describe the project, and explain the interview objectives.

During the interview, ask questions in the order in which they were prepared and
give the interviewee sufficient time to provide thoughtful answers. Some answers will
lead to additional questions, which should be asked in a logical order. Establishing a
good rapport with the interviewee is important, especially if this is the first meeting. If
the other person feels comfortable and at ease, they will probably provide more com-
plete and candid answers. The analyst’s primary responsibility during an interview is
to listen carefully to the answers. Analysts sometimes hear only what they expect to
hear. Concentrate on what is said and notice any nonverbal communication that takes
place. This process is called engaged listening.

After asking a question, allow the person enough time to think about the question
and arrive at an answer. Studies have shown that the maximum pause during a con-
versation is usually three to five seconds. After that interval, one person will begin
talking. An analyst needs to be patient and practice his or her skills in many actual
interview situations to be successful.

When all the questions have been asked, summarize the main points covered in
the interview and explain the next course of action. For example, mention that a
follow-up memo will be sent or that the interviewee should send certain requested
information after the meeting. When the interview has concluded, thank the person
and encourage him or her to reach out with any questions or additional comments.
Also, when the interview ends, it is a good idea to ask the interviewee whether he or
she can suggest any additional topics that should be discussed.

After an interview, summarize the session and seek a confirmation from the other
person. By stating the interviewer’s understanding of the discussion, the interviewee can
respond and provide corrections, if necessary. One approach is to rephrase the inter-
viewee’s answers. For example, the analyst could say, “If I understand you correctly,
you are saying that” and then reiterate the information given by the interviewee.

STEP 6: DOCUMENT THE INTERVIEW: Although taking notes during an interview
has both advantages and disadvantages, it should be kept to a minimum. It is a good
idea to write down a few notes to remember key points after the interview but avoid
writing down everything that is said. Too much writing distracts the other person and
makes it harder to establish a good rapport.

After conducting the interview, record the information quickly. Set aside time right
after the meeting to record the facts and evaluate the information. For that reason,
try not to schedule back-to-back interviews. Studies have shown that 50% of a con-
versation is forgotten within 30 minutes. Therefore, use the notes to record the facts
immediately so they will not be forgotten. Summarize the facts by preparing a nar-
rative describing what took place or by recording the answers received next to each
question on the prepared list.

Small, portable recorders are effective tools for interviews, but some people are
uncomfortable when they are used. Before using a recorder, discuss its use with the

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

121

Phase 2 Systems Analysis

4.5 Gathering Requirements Using Other Techniques

interviewee. Assure the interviewee that the recording will be erased after its contents
are transcribed into note form and that the interview can be stopped at any time at
the interviewee’s request. If sensitive questions are asked, or the interviewee wants to
answer a question without being recorded, explain that the recorder can be turned off
for a period of time during the interview.

Instead of using a traditional recorder that calls attention to its presence, an inter-
viewer can use built-in audio (or even video) recording features on a notebook or
mobile device. Also, as pointed out in Section 4.9, an interviewer can use powerful
information management software, such as Microsoft OneNote, to record the meeting,
store the results, and create a searchable file for easy access. Irrespective of the mecha-
nism used to record the meeting, all participants should be aware that what they say is
being recorded.

Whether or not the meeting is recorded, listen carefully to the interviewee’s
responses so good follow-up questions can be asked. Otherwise, a second visit
might be needed to ask the questions missed the first time. Also, remember that each
recorded interview takes twice the amount of time, because the analyst must listen to
or view the recorded meeting again after conducting the interview itself.

After the meeting, a memo should be sent to the interviewee, expressing appreci-
ation for his or her time and cooperation. In the memo, note the date, time, location,
purpose of the interview, and the main points discussed, so the interviewee has a writ-
ten summary and can offer additions or corrections.

STEP 7: EVALUATE THE INTERVIEW: In addition to recording the facts obtained
in an interview, try to identify any possible biases. For example, an interviewee who
tries to protect his or her own area or function might give incomplete answers or
refrain from volunteering information. Or, an interviewee with strong opinions about
the current or future system might distort the facts. Some interviewees might answer
questions in an attempt to be helpful even though they do not have the necessary
experience to provide accurate information.

Some interviews are unsuccessful irrespective of the amount of preparation. One
of the main reasons could be that the interviewer and the interviewee did not get
along well. Such a situation can be caused by several factors. For example, a misun-
derstanding or personality conflict could affect the interview negatively, or the inter-
viewee might be afraid that the new system will eliminate or change his or her job.

In other cases, the interviewee might give only short or incomplete responses to the
open-ended questions. If so, switching to closed-ended questions, or questions with a
range of replies, may elicit more favorable responses. If that still does not help, find a
tactful way to conclude the meeting.

Continuing an unproductive interview is difficult. The interviewee could be more
cooperative later, or the analyst might find the information required elsewhere. If fail-
ure to obtain specific information will jeopardize the success of the project, the super-
visor should be informed, who can help decide what action to take. The supervisor
might contact the interviewee’s supervisor, ask another systems analyst to interview
the person, or find some other way to get the needed information.

4.5 GatheRinG RequiRementS uSinG otheR techniqueS

In addition to interviewing, systems analysts use other requirement gathering tech-
niques, including document review, observation, questionnaires and surveys, sam-
pling, and research. Such techniques are used before interviewing begins to obtain a
good overview and to help develop better interview questions.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

122

Chapter 4 Requirements Engineering

4.5 Gathering Requirements Using Other Techniques

4.5.1 Document Review
Document review can help the analyst understand how the current system is supposed
to work. Remember that system documentation sometimes is out of date. Forms
can change or be discontinued, and documented procedures often are modified or
eliminated. It is prudent to obtain copies of actual forms and operating documents
currently in use, and to review blank copies of forms, as well as samples of actual
completed forms. Document samples can be obtained during interviews with the peo-
ple who perform that procedure. If the system uses a software package, review the
documentation for that software.

4.5.2 Observation
The observation of current operating procedures is another fact-finding technique.
Seeing the system in action provides additional perspective and a better understand-
ing of system procedures. Personal observation also allows the analyst to verify state-
ments made in interviews and determine whether procedures really operate as they
are described. Through observation, it might be discovered that neither the system
documentation nor the interview statements are accurate.

Personal observation also can provide important advantages as the development
process continues. For example, recommendations often are better accepted when
they are based on personal observation of actual operations. Observation also can
provide the knowledge needed to test or install future changes and can help build
relationships with the users who will work with the new system.

Plan observations in advance by preparing a checklist of specific tasks to observe
and questions to ask. Consider the following issues when preparing the list:

• Ask sufficient questions to ensure a complete understanding of the present sys-
tem operation. A primary goal is to identify the methods of handling situations
that are not covered by standard operating procedures. For example, what
happens in a payroll system if an employee loses a time card? What is the pro-
cedure if an employee starts a shift 10 minutes late but then works 20 minutes
overtime? Often, the rules for exceptions such as these are not written or for-
malized; therefore, try to document any procedures for handling exceptions.

• Observe all the steps in a transaction and note the documents, inputs, outputs,
and processes involved.

• Examine each form, record, and report. Determine the purpose each item of
information serves.

• Consider each user who works with the system and the following questions:
What information does that person receive from other people? What informa-
tion does this person generate? How is the information communicated? How
often do interruptions occur? How much downtime occurs? How much sup-
port does the user require, and who provides it?

• Talk to the people who receive current reports to see whether the reports are
complete, timely, accurate, and in a useful form. Ask whether information can
be eliminated or improved and whether people would like to receive additional
information.

As people are observed at work, as shown in Figure 4-11, consider a factor called
the Hawthorne Effect. The name comes from a well-known study performed in the
Hawthorne plant of the Western Electric Company in the 1920s. The purpose of the
study was to determine how various changes in the work environment would affect

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

123

Phase 2 Systems Analysis

4.5 Gathering Requirements Using Other Techniques

employee productivity. The surprising result was that productivity improved during
observation whether the conditions were made better or worse. Researchers con-
cluded that productivity seemed to improve whenever the workers knew they were
being observed.

FIGURE 4-11 The Hawthorne study suggested that worker productivity improves during observation. Always
consider the Hawthorne Effect when observing the operation of an existing system.
Monkey Business Images/Shutterstock.com

Although some recent studies have raised questions about the original findings, be
aware that observation can and does have an effect on normal operations. With this
in mind, always give advance notice to the supervisor in that area. In some situations,
it might be helpful to explain the purpose of the visit to the people being observed.

4.5.3 Questionnaires and Surveys
In projects where it is desirable to obtain input from a large number of people, a
questionnaire can be a valuable tool. A questionnaire, also called a survey, is a docu-
ment containing a number of standard questions that can be sent to many individuals.

Questionnaires can be used to obtain information about a wide range of topics,
including workloads, reports received, volumes of transactions handled, job duties,
difficulties, and opinions of how the job could be performed better or more efficiently.
Figure 4-12 shows a sample questionnaire that includes several different question and
response formats.

A typical questionnaire starts with a heading, which includes a title, a brief
statement of purpose, the name and telephone number of the contact person, the
deadline date for completion, and how and where to return the form. The heading
usually is followed by general instructions that provide clear guidance on how

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

124

Chapter 4 Requirements Engineering

4.5 Gathering Requirements Using Other Techniques

to answer the questions. Headings also are used to
introduce each main section or portion of the survey
and include instructions when the type of question or
response changes. A long questionnaire might end with a
conclusion that thanks the participants and reminds them
how to return the form.

What about the issue of anonymity? Should people
be asked to sign the questionnaire, or is it better to allow
anonymous responses? The answer depends on two ques-
tions. First, does an analyst really need to know who the
respondents are in order to match or correlate informa-
tion? For example, it might be important to know what
percentage of users need a certain software feature, but
specific usernames might not be relevant. Second, does
the questionnaire include any sensitive or controversial
topics? Many people do not want to be identified when
answering a question such as “How well has your super-
visor explained the system to you?” In such cases, anony-
mous responses might provide better information.

When designing a questionnaire, the most import-
ant rule of all is to make sure that the questions collect
the right data in a form that can be used to further the
fact-finding effort. Here are some additional ideas to keep
in mind when designing the questionnaire:

• Keep the questionnaire brief and user-friendly.

• Provide clear instructions that will answer all antici-
pated questions.

• Arrange the questions in a logical order, going from
simple to more complex topics.

• Phrase questions to avoid misunderstandings; use simple terms and wording.

• Try not to lead the response or use questions that give clues to expected
answers.

• Limit the use of open-ended questions that are difficult to tabulate.

• Limit the use of questions that can raise concerns about job security or other
negative issues.

• Include a section at the end of the questionnaire for general comments.

• Test the questionnaire whenever possible on a small test group before finalizing
it and distributing to a large group.

A questionnaire can be a traditional paper form, or it can be created in a fill-in form,
and the data can be collected on the Internet or a company intranet. Before publish-
ing the form, protect it so users can fill it in but cannot change the layout or design.
Online survey websites, such as SurveyMonkey and Google Forms, can also be used
to create and manage questionnaires.

4.5.4 Interviews Versus Questionnaires
When seeking input from a large group, a questionnaire is a very useful tool. On the
other hand, if detailed information is required from only a few people, then each

FIGURE 4-12 Online version of a sample questionnaire.
Does it follow the suggested guidelines?
Source: Created by author using Adobe Online Forms

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

125

Phase 2 Systems Analysis

4.5 Gathering Requirements Using Other Techniques

person should probably be interviewed individually. Is it better to interview or use
a questionnaire? Each situation is different; consider the type of information, time
constraints, and expense factors.

The interview is more familiar and personal than a questionnaire. People who
are unwilling to put critical or controversial comments in writing might talk more
freely in person. Moreover, during a face-to-face interview, the interviewer can react
immediately to anything the interviewee says. If surprising or confusing statements
are made, the topic can be pursued with additional questions. In addition, during a
personal interview, the analyst can watch for clues to help determine if responses are
knowledgeable and unbiased. Participation in interviews also can affect user atti-
tudes because people who are asked for their opinions often view the project more
favorably.

Interviewing, however, is a costly and time-consuming process. In addition to the
meeting itself, both people must prepare, and the interviewer has to do follow-up
work. When a number of interviews are planned, the total cost can be quite substan-
tial. The personal interview usually is the most expensive fact-finding technique.

In contrast, a questionnaire gives many people the opportunity to provide input
and suggestions. Questionnaire recipients can answer the questions at their conve-
nience and do not have to set aside a block of time for an interview. If the question-
naire allows anonymous responses, people might offer more candid responses than
they would in an interview.

Preparing a good questionnaire, however, like a good interview, requires skill and
time. If a question is misinterpreted, its meaning cannot be clarified as easily as in a
face-to-face interview. Furthermore, unless questionnaires are designed well, recipients
might view them as intrusive, time-consuming, and impersonal. The analyst should
select the technique that will work best in a particular situation.

4.5.5 Brainstorming
Another popular method of obtaining input is called brainstorming, which refers to
a small group discussion of a specific problem, opportunity, or issue. This technique
encourages new ideas, allows team participation, and enables participants to build
on each other’s inputs and thoughts. Brainstorming can be structured or unstruc-
tured. In structured brainstorming, each participant speaks when it is his or her turn
or passes. In unstructured brainstorming, anyone can speak at any time. At some
point, the results are recorded and made part of the fact-finding documentation
process.

4.5.6 Sampling
When studying an information system, examples of actual documents should be col-
lected using a process called sampling. The samples might include records, reports,
operational logs, data entry documents, complaint summaries, work requests, and
various types of forms. Sampling techniques include systematic sampling, stratified
sampling, and random sampling.

Suppose there is a list of 200 customers who complained about errors in their
statements, and a representative sample of 20 customers will be reviewed. A
systematic sample would select every tenth customer for review. To ensure that the
sample is balanced geographically, however, a stratified sample could be used to select
five customers from each of the four postal codes. Another example of stratified
sampling is to select a certain percentage of transactions from each postal code, rather
than a fixed number. Finally, a random sample selects any 20 customers.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

126

Chapter 4 Requirements Engineering

4.5 Gathering Requirements Using Other Techniques

The main objective of a sample is to ensure that it represents the overall popu-
lation accurately. If inventory transactions are being analyzed, for example, select
a sample of transactions that is typical of actual inventory operations and does not
include unusual or unrelated examples. For instance, if a company performs special
processing on the last business day of the month, that day is not a good time to sam-
ple typical daily operations. To be useful, a sample must be large enough to provide a
fair representation of the overall data.

Sampling should also be considered when using interviews or questionnaires.
Rather than interviewing everyone or sending a questionnaire to the entire group, a
sample of participants can be used. Sound sampling techniques must be used to reflect
the overall population and obtain an accurate picture.

4.5.7 Research
Research is another important fact-finding technique. Research can include the Inter-
net, IT magazines, and books to obtain background information, technical material,
and news about industry trends and developments. In addition, attending professional
meetings, seminars, and discussions with other IT professionals can be very helpful in
problem solving.

The Internet is an extremely valuable resource. Using the Internet, the analyst can
access information from federal and state governments as well as from publishers,
universities, and libraries around the world. Online forums and newsgroups are good
resources for exchanging information with other professionals, seeking answers to
questions, and monitoring discussions that are of mutual interest.

All major hardware and software vendors maintain websites with informa-
tion about products and services offered by the company. There are also websites
maintained by publishers and independent firms that provide links to hundreds of
hardware and software vendors. Examples of popular websites for IT professionals
include Ars Technica, CNET, InfoWorld, TechCrunch, and the Wall Street Journal’s
Technology pages (shown in Figure 4-13).

FIGURE 4-13 The Wall Street Journal’s Technology website contains valuable information
for IT professionals.
Source: The Wall Street Journal

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

127

Phase 2 Systems Analysis

4.6 Gathering Requirements in Agile Projects

Research also can involve a visit to a physical location, called a site visit, where the
objective is to observe a system in use at another location. For example, if a firm’s
human resources information system is the subject of study, it might be beneficial to
see how another company’s system works. Site visits also are important when con-
sidering the purchase of a software package. If the software vendor suggests possible
sites to visit, be aware that such sites might constitute a biased sample. A single site
visit seldom provides true pictures, so try to visit more than one installation.

Before a site visit, prepare just as for an interview. Contact the appropriate man-
ager and explain the purpose of the visit. Decide what questions will be asked and
what processes will be observed. During the visit, observe how the system works and
note any problems or limitations. Also learn about the support provided by the ven-
dor, the quality of the system documentation, and so on.

CASE IN POINT 4.2: Cyberstuff

CyberStuff is a large company that sells computer hardware and software via telephone and
online. CyberStuff processes several thousand transactions per week on a three-shift operation
and employs 50 full-time and 125 part-time employees. Lately, the billing department has expe-
rienced an increase in the number of customer complaints about incorrect bills. You have been
tasked with finding out why this is happening.

During your preliminary investigation, you discovered that some CyberStuff represen-
tatives did not follow established order entry procedures. You feel that with more infor-
mation, you might find a pattern and identify a solution for the problem, but you are not
sure how to proceed.

Is a questionnaire the best approach, or would interviews be better? And whether you
use interviews, a questionnaire, or both techniques, should you select the participants at
random, include an equal number of people from each shift, or use some other approach?
How do you proceed?

4.6 GatheRinG RequiRementS in aGile PRojectS

If agile methods are used for requirements gathering, a variation on interviews
that focuses on features, user stories, scenarios, and storyboards is used. A feature
(sometimes called an epic) is a simple, high-level statement of a requirement. A
feature has a descriptive name, an estimate of its size in terms of derived requirements
or user stories, and a priority. Features are typically provided by the stakeholders
through initial interviews with the systems analyst.

User stories represent more fine-grained requirements. Taken together, a set of user
stories forms a feature. A user story also has a descriptive name, along with a sim-
ple sentence of the form “As a [user role], I want [action] so that [goal].” User roles,
actions, and goals are terms that represent a category of stakeholder, a particular
effect, and an outcome, respectively. User stories also include an optional condition
of satisfaction, which can be used as a guide to determine whether or not the require-
ment was satisfied by the product. A user story is meant to be succinct and is often
drawn on a 3” × 5” index card (or the software equivalent).

A scenario is a real-world example of how users will interact with the system. A
scenario describes a particular set of steps taken or events that will occur while the

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

128

Chapter 4 Requirements Engineering

4.7 Representing Requirements

system is used for a specific function. It is used to refine the system requirements to
better reflect actual usage of the system.

A storyboard is a simple graphic organizer that helps systems analysts visualize the
status of a project. A storyboard can be as rudimentary as a wall with sticky notes.
There are also many software tools that enhance storyboards while still maintaining
their essential feel.

Because agile methods are iterative in nature, requirements are gathered and suc-
cessively refined. They begin as features, which are then split into smaller user stories,
which in turn are refined into scenarios. Agile methods are particularly well suited to
projects where the requirements are expected to change frequently.

4.7 RePReSentinG RequiRementS

Once requirements have been gathered, they must be recorded. Keeping accurate
records of interviews, facts, ideas, and observations is essential to successful systems
development. As information is gathered, the importance of a single item can be
overlooked or complex system details can be forgotten. The ability to manage infor-
mation is the mark of a successful systems analyst and an important skill for all IT
professionals. The basic rule is to write it down. Analysts should document their work
according to the following principles:

• Record information as soon as it is obtained.

• Use the simplest recording method possible.

• Record findings in such a way that someone else can understand them.

• Organize documentation so related material is located easily.

There are several techniques used to do this, ranging from an unordered collection of
sentences to a structured database of formal models. Whatever representation is cho-
sen, properly managing the requirements over the lifetime of a project is a key to its
success.

4.7.1 Natural Language
The vast majority of requirements are represented using unstructured natural lan-
guage, that is, plain English. Examples of these requirements were shown in Section
4.1.1. This representation is easy to create but is prone to problems such as impreci-
sion and a lack of shared understanding.

Requirements represented as unstructured natural language can be stored in a sim-
ple file, in a database that may facilitate searching its contents, or in an Excel spread-
sheet. The latter choice is a popular one, because most systems analysts are familiar
with the tool, and they are likely to have access to it already.

An improvement upon unstructured natural language is structured natural lan-
guage. This representation tags part of the requirement, rather like an XML docu-
ment. This facilitates automated processing of the requirement statements, but it’s not
very user-friendly.

Requirements represented as structured natural language can be stored on a simple
index card. The Volere shell from the Atlantic Systems Guild, shown in Figure 4-14,
is a mature method of representing single requirements on a 3” × 5” card. There are
several tools that mimic these features, providing automation while maintaining the
simple representational format.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

129

Phase 2 Systems Analysis

4.7 Representing Requirements

There are also formal techniques, based on mathematics,
that can be used to represent complex requirements.
Languages such as VDM and Z are used for this purpose.
They have the advantage of mathematical consistency, but a
major disadvantage of this technique is that many systems
analysts are unfamiliar with the language’s constructs,
which can affect the requirements’ understandability.

Irrespective of the natural language technique
chosen, individual requirements must be collected
into a requirements document. This document is the
official statement of what is required of the system by
the users. The Volere template is a good template for a
comprehensive requirements document. It is populated by
atomic requirements from the Volere shells.

FIGURE 4-14 The Volere shell.
Source: Atlantic Systems Guild

CASE IN POINT 4.3: Digital PeN traNsCriPtioN

You are the lead systems analyst on a large project. A big part of your responsibilities is to han-
dle the system requirements. Extensive interviews have taken place, and you have written down
your notes using a digital pen system. This system recognizes letters and words while you write
on paper and stores them in digital format on your computer. In this way, the requirements are
written in unstructured natural language but stored digitally, which means they can be searched
and processed. Do you think it would be worthwhile to edit the transcription and insert tags to
delineate key terms in the requirements, so that a CASE tool could better analyze them? There’s
a lot of effort required to do the manual tagging, but the rewards could be better requirements.
How would you perform the tradeoff analysis?

4.7.2 Diagrams
Many people are more visual than textual. For them, diagrams are an excellent choice
to represent system requirements. Diagrams help users, managers, and IT profession-
als understand the design of a system. Diagramming involves graphical methods and
nontechnical language that represent the system at various stages of development.
During requirements engineering, the analyst can use various tools to describe busi-
ness processes, requirements, and user interaction with the system.

Systems analysts use diagramming and fact-finding interactively—first they build
fact-finding results into diagrams, then they study the diagrams to determine whether
additional fact-finding is needed. To help them understand system requirements,
analysts use functional decomposition diagrams, business process diagrams, and data
flow diagrams. Any of these diagrams can be created with CASE tools or stand-alone
drawing tools if desired.

FUNCTIONAL DECOMPOSITION DIAGRAMS: A functional decomposition
diagram (FDD) is a top-down representation of a function or process. Using an FDD,
an analyst can show business functions and break them down into lower-level func-
tions and processes. Creating an FDD is similar to drawing an organization chart:
Start at the top and work downward. Figure 4-15 shows an FDD of a library system
drawn with the Visible Analyst CASE tool. FDDs can be used at several stages of

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

130

Chapter 4 Requirements Engineering

4.7 Representing Requirements

systems development. During requirements engineering, analysts use FDDs to model
business functions and show how they are organized into lower-level processes. These
processes translate into program modules during application development.

FIGURE 4-16 Using the Visible Analyst CASE tool, an analyst can create a
business process diagram. The overall diagram is called a pool, and the two
separate customer areas are called swim lanes.
Source: Screenshot used with permission from Visible Systems Corporation.

FIGURE 4-15 This Visible Analyst FDD shows a library system with five top-level functions. The Library
Operations function includes two additional levels of processes and sub-processes.
Source: Screenshot used with permission from Visible Systems Corporation.

BUSINESS PROCESS DIAGRAMS: As
described in Chapter 1, a business process
model (BPM) represents one or more
business processes, such as handling an
airline reservation, filling a product order,
or updating a customer account. During
requirements engineering, analysts often
create diagrams that use a standard
syntax called business process modeling
notation (BPMN). BPMN includes
various shapes and symbols to represent
events, processes, and workflows.

When creating a business process dia-
gram using a CASE tool such as Visible
Analyst, the diagram automatically
becomes part of the overall model. In
the example shown in Figure 4-16, using
BPMN terminology, the overall diagram is

called a pool and the designated customer areas are called swim lanes. Integrating BPM
into the CASE development process leads to faster results, fewer errors, and reduced cost.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

131

Phase 2 Systems Analysis

4.7 Representing Requirements

DATA FLOW DIAGRAMS: Working from an FDD, analysts can create data flow
diagrams (DFDs) to show how the system stores, processes, and transforms data.
The DFD in Figure 4-17 describes adding and removing books, which is a function
shown in the Library Management diagram in Figure 4-15. Note that the two boxes
in the DFD represent processes, each with various inputs and outputs. Additional
levels of information and detail are depicted in other, related DFDs. Data and process
modeling is described in detail in Chapter 5.

FIGURE 4-17 This Visible Analyst DFD shows how books are added and
removed in a library system.
Source: Screenshot used with permission from Visible Systems Corporation

4.7.3 Models
Models provide a more formal representation of system requirements. They are often
depicted as graphical in nature, so they share some of the characteristics of the tech-
niques described in Section 4.7.2. But models have an additional feature: The under-
lying language has semantics, which means the diagram has a significance that can be
automatically analyzed by a CASE tool.

The Unified Modeling Language (UML) is perhaps the most widely used model-
ing technique for visualizing and documenting software systems design. UML uses
object-oriented design concepts, but it is independent of any specific programming
language and can be used to describe business processes and requirements generally.
SysML is a dialect of UML and has become the standard for Model-Based Systems
Engineering (MBSE) applications.

UML provides various graphical tools, such as use case diagrams and sequence
diagrams. During requirements engineering, a systems analyst can utilize the
UML to represent the information system from a user’s viewpoint. Use case dia-
grams, sequence diagrams, and other UML concepts are discussed in more detail in
Chapter 6, along with other object-oriented analysis concepts. A brief description of
each technique follows.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

132

Chapter 4 Requirements Engineering

4.7 Representing Requirements

USE CASE DIAGRAMS: During requirements engi-
neering, systems analysts and users work together to
document requirements and model system functions.
A use case diagram visually represents the interaction
between users and the information system. In a use case
diagram, the user becomes an actor, with a specific role
that describes how he or she interacts with the system.
Systems analysts can draw use case diagrams freehand
or use CASE tools that integrate the use cases into the
overall systems design.

Figure 4-18 shows a simple use case diagram for
a sales system where the actor is a customer and
the use case involves a credit card validation that is
performed by the system. Because use cases depict
the system through the eyes of a user, common
business language can be used to describe the

transactions. For example, Figure 4-19 shows a table that documents the credit
card validation use case, and Figure 4-20 shows a student records system, with
several use cases and actors.

SEQUENCE DIAGRAM: A sequence diagram shows the timing of interactions
between objects as they occur. A systems analyst might use a sequence diagram to
show all possible outcomes or focus on a single scenario. Figure 4-21 shows a sim-
ple sequence diagram of a successful credit card validation. The interaction proceeds
from top to bottom along a vertical timeline, while the horizontal arrows represent
messages from one object to another.

FIGURE 4-18 This Visible Analyst use case diagram
shows a sales system, where the actor is a customer and
the use case is a credit card validation.
Source: Screenshot used with permission from Visible Systems Corporation.

FIGURE 4-19 This table documents the credit card validation use case shown in Figure 4-18.

Name of Use Case: Credit card validation process

Actor: Customer

Description: Describes the credit card validation process

Successful Completion: 1. Customer clicks the input selector and
 enters credit card number and expiration date
 2. System verifies card
 3. System sends authorization message

Alternative: 1. Customer clicks the input selector and
 enters credit card number and expiration date
 2. System rejects card
 3. System sends rejection message

Precondition: Customer has selected at least one item and
 has proceeded to checkout area

Postcondition: Credit card information has been validated
 Customer can continue with order

Assumptions: None

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

133

Phase 2 Systems Analysis

4.8 Validating and Verifying Requirements

FIGURE 4-20 This Visible Analyst use case diagram shows a student records system.
Source: Screenshot used with permission from Visible Systems Corporation.

FIGURE 4-21 This Visible Analyst sequence diagram shows a
credit card validation process.
Source: Screenshot used with permission from Visible Systems Corporation.

4.8 validatinG and veRifyinG RequiRementS
Requirements validation and verification (V&V) is concerned with demonstrating
that the requirements define the system that the customer really wants. Since require-
ments error costs are high, V&V is very important; it is many times more expensive
to fix a system later in the SDLC than it is to fix it during requirements engineering.

Requirements V&V focuses on answering two important questions:

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

134

Chapter 4 Requirements Engineering

4.9 Tools

• Validation: Are the correct requirements stated?

• Verification: Are the requirements stated correctly?

To answer these questions, the following requirements attributes should be
checked:

• Validity: Does the system provide the functions that best support the custom-
er’s needs?

• Consistency: Are there conflicting requirements?

• Completeness: Are all functions required by the customer included?

• Realism: Can the requirements be implemented given available budget and
technology?

• Verifiability: Can the requirements be checked?

• Comprehensibility: Is the requirement properly understood?

• Traceability: Is the origin of the requirement clearly stated?

• Adaptability: Can the requirement be changed without a large impact on other
requirements?

To check these, the following techniques can be used:

• Requirements reviews: Systematic manual analysis of the requirements.

• Prototyping: Using an executable model of the system to check the
requirements.

• Test-case generation: Developing tests for requirements to check testability.

• Automated consistency analysis: Checking the consistency of a structured or
formal requirements descriptions.

Consider requirements reviews. Regular reviews can be held while the require-
ments are initially being formulated. Ideally, the systems analyst and the customer
(and perhaps other key stakeholders) should be involved in the reviews. The reviews
can be formal (with complete documentation) or informal. The key is that good com-
munications between analysts, customers, and others can resolve problems at an early
stage, which is better for everyone.

4.9 toolS

All requirements engineering activities can be helped through the judicious use of
tools. For example, many software programs are available to help record and doc-
ument information elicited during the requirements gathering process. This type of
productivity software includes automation, word processing, spreadsheet, database
management, presentation graphics, and collaboration software programs. Although
Microsoft Office is the best-known set of productivity software programs, other ven-
dors offer products in each of these categories.

A personal information manager (PIM), such as Microsoft Outlook, includes a
personal calendar, a to-do list with priorities and the capability to check off com-
pleted items, and powerful contact management features. Outlook can manage email
and appointments and supports collaboration and team projects.

Although a PIM such as Microsoft Outlook can handle day-to-day activities,
tasks, and schedules, it is not the best way to capture and organize large amounts of

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

135

Phase 2 Systems Analysis

4.9 Tools

information. Instead, analysts use information management software such as Microsoft
OneNote, which is a powerful, flexible tool that can handle many different types of
input, including text, handwritten notes, images, audio and video recording, web links,
and much more. OneNote is included in several versions of the Office suite.

Figure 4-22 shows another popular PIM called Evernote. It is available for free
on most computing platforms, including smartphones and on the web. There are also
premium versions available on a monthly subscription model. Evernote does a great
job of handling all sorts of multimedia content, adding free-form notes, and providing
templates for organizing projects. It also syncs files across all devices.

FIGURE 4-22 Evernote offers a free version of its popular information management software for most
computing platforms, including smartphones and on the web.
Source: Evernote

Using word processing software such as Microsoft Word, the analyst can create
reports, summaries, tables, and forms. In addition to standard document preparation,
the program can help organize a presentation with templates, bookmarks, annota-
tions, revision control, and an index. Fill-in forms can also be created to conduct sur-
veys and questionnaires, as described earlier in this chapter.

Spreadsheet software, such as Microsoft Excel, can help track and manage
numeric data or financial information. In fact, Excel is one of the most popular ways
of representing requirements in an informal manner. Graphs and charts can also be
generated that display the data and show possible patterns. The statistical functions
in a spreadsheet can be used to tabulate and analyze questionnaire data. A graphical
format often is used in quality control analysis because it highlights problems and
their possible causes, and it is effective when presenting results to management. A
common tool for showing the distribution of questionnaire or sampling results is a
vertical bar chart called a histogram. Most spreadsheet programs can create histo-
grams and other charts that can display the data collected. Figure 4-23 displays a typ-
ical histogram that might have resulted from the questionnaire shown in Figure 4-12.

Database management software allows the analyst to document and organize
fact-finding results such as events, observations, and data samples. A database pro-
gram such as Microsoft Access can be used to manage the details of a complex proj-
ect, create queries to retrieve specific information, and generate custom reports.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

136

Chapter 4 Requirements Engineering

4.9 Tools

Presentation graphics software, such as Microsoft PowerPoint, is a powerful tool
for organizing and developing formal presentations. Presentation graphics programs
enable the creation of organization charts that can be used in a preliminary investiga-
tion and later during requirements engineering. These high-quality charts also can be
included in written reports and management presentations.

Collaboration software is the latest weapon in the struggle to boost productivity.
People work in teams and use web-based software such as Google Docs and Microsoft
Office 365 to access data and share files. Google and others are betting that cloud com-
puting will create a virtual workplace, where people will be able to interact in real time,
with all the benefits of a traditional face-to-face workplace but none of the limitations.

When it comes to creating diagrams that
represent requirements, Microsoft Visio is a
popular graphic modeling tool that can pro-
duce a wide range of charts and diagrams.
Visio includes a library of templates, stencils,
and shapes. An analyst can use Visio to create
many types of visual models, including business
processes, flowcharts, network diagrams, orga-
nization charts, and many more. For example,
in Figure 4-24, the analyst used drag-and-drop
shapes to represent a business process.

For more formal models of requirements,
special-purpose tools such as IBM Rational
DOORS are used. These tools facilitate the use
of UML (and SysML) to model system require-
ments in a way that enables desirable character-
istics, such as traceability, where the origin of a
requirement is connected back to the require-
ment itself, which in turn is linked forward to
design artifacts, code fragments, and even test
cases in the SDLC. Figure 4-25 illustrates some
of the capabilities of DOORS Next Generation.

FIGURE 4-23 This histogram displays the results from Question 2 in the questionnaire shown
in Figure 4-12.

FIGURE 4-24 This Visio drawing uses drag-and-drop shapes
to represent a business process.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

137

Phase 2 Systems Analysis

4.10 Summary

FIGURE 4-25 IBM DOORS is a tool for capturing, analyzing, and tracing system requirements.
IBM Corporation

A QUESTION OF ETHICS

Your supervisor manages the corporate office where you work as a systems analyst. Sev-
eral weeks ago, after hearing rumors of employee dissatisfaction, he asked you to create a
survey for all IT employees. After the responses were returned and tabulated, he was dis-
appointed to learn that many employees assigned low ratings to morale and management
policies.

This morning he called you into his office and asked whether you could identify the
departments that submitted the lowest ratings. No names were used on the individual
survey forms. However, with a little analysis, you probably could identify the departments
because several questions were department related.

Now you are not sure how to respond. The expectation was that the survey would be
anonymous. Even though no individuals would be identified, would it be ethical to reveal
which departments sent in the low ratings? Would your supervisor’s motives for wanting
this information matter?

iStock.com/faberfoto_it

4.10 SummaRy

The systems analysis phase includes three activities: requirements engineering,
data and process modeling, and consideration of development strategies. The main
objective is to understand the proposed project, ensure that it will support business
requirements, and build a solid foundation for the systems design phase. Requirements

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

138

Chapter 4 Requirements Engineering

4.10 Summary

engineering itself is composed of three main parts: (1) gathering requirements,
(2) representing requirements, and (3) validating and verifying requirements.

During requirements engineering, the business-related requirements for the new
information system are identified. Scalability is considered to ensure that the system
can support future growth and expansion. Security is an essential requirement of all
modern connected systems. The TCO is also estimated to identify all costs, including
indirect costs.

Popular team-based approaches include JAD, RAD, and agile methods. JAD is
a popular, team-based approach to fact-finding and requirements engineering. JAD
involves an interactive group of users, managers, and IT professionals who participate
in requirements engineering and develop a greater commitment to the project and to
their common goals.

RAD is a team-based technique that speeds up information systems development
and produces a functioning information system. RAD is a complete methodology,
with a four-phase life cycle that parallels the traditional SDLC phases.

Agile methods attempt to develop a system incrementally by building a series
of prototypes and constantly adjusting them to user requirements. Tools are often
avoided and replaced with simpler aids, such as whiteboards and sticky notes to facil-
itate communication.

The requirements gathering process includes interviewing, document review, obser-
vation, questionnaires, sampling, and research. Successful interviewing requires good
planning and strong interpersonal and communication skills. The systems analyst
must decide on the people to interview; set interview objectives; and prepare for, con-
duct, and analyze interviews. The analyst also might find it helpful to use one or more
software tools during fact-finding.

Systems analysts use various tools and techniques to represent system require-
ments. Natural language, structured or unstructured, is still the default. Requirements
can be stored as simple text in a plain file or in an Excel spreadsheet. They can also be
stored online for automated search and analysis.

Diagrams are another way of representing requirements. They are suitable for ana-
lysts who are more visually oriented. They can also capture complementary aspects of
the system requirements. Sample diagram types include FDDs, business process dia-
grams, and DFDs.

Models provide a more formal representation of system requirements. The UML
is a widely used method of visualizing and documenting software design through the
eyes of the business user. UML tools include use case diagrams and sequence dia-
grams to represent actors, their roles, and the sequence of transactions that occurs.

Systems analysts should carefully record and document factual information as it
is collected, and various software tools can help an analyst visualize and describe an
information system.

Requirements V&V is concerned with demonstrating that the requirements define
the system that the customer really wants. Validation asks if the correct requirements
are stated, while verification asks if the requirements are stated correctly.

All requirements engineering activities can be helped through the judicious use
of tools. They provide automated support for requirements attributes such as trace-
ability. For very large systems with thousands of requirements to manage, CASE tool
assistance is necessary.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 139

Phase 2 Systems Analysis

Key Terms

actor An external entity with a specific role. In a use case model, actors are used to model interaction
with the system.

agile methods Systems development methods that attempt to develop a system incrementally by build-
ing a series of prototypes and constantly adjusting them to user requirements. Also called adaptive
methods.

brainstorming A fact-finding technique for gaining information through the use of a small group discus-
sion of a specific problem, opportunity, or issue.

business process model (BPM) A graphical representation of one or more business processes.

business process modeling notation (BPMN) A standard set of shapes and symbols used to represent
events, processes, and workflows in computer-based modeling tools.

closed-ended questions Queries that limit or restrict the range of responses. Used in the interview pro-
cess when specific information or fact verification is desired.

construction phase A phase that focuses on program and application development tasks similar to the
SDLC.

cutover phase A phase that resembles the final tasks in the SDLC implementation phase, including data
conversion, testing, changeover to the new system, and user training.

data flow diagram (DFD) Diagram that shows how the system stores, processes, and transforms data
into useful information.

document review A review of baseline documentation. A useful fact-finding technique that helps an ana-
lyst understand how the current system is supposed to work.

engaged listening The ability to really concentrate on what someone is saying and avoid the temptation
to hear what is expected. Also includes noticing nonverbal communication.

epic In an agile project, a simple, high-level statement of a requirement. See feature.

fact-finding The process of gathering requirements. See requirements elicitation.

feature In an agile project, a simple, high-level statement of a requirement. See epic.

fill-in form A template used to collect data on the Internet or a company intranet

functional decomposition diagram (FDD) A top-down representation of business functions and pro-
cesses. Also called a structure chart.

functional requirement A statement of the services a system provides.

Hawthorne Effect A phenomenon where employees who know they are being observed are more
productive.

histogram A common tool for showing the distribution of questionnaire or sampling results. It takes the
form of a vertical bar chart.

informal structure An organization based on interpersonal relationships, which can develop from previ-
ous work assignments, physical proximity, unofficial procedures, or personal relationships.

interview A planned meeting during which information is obtained from another person.

joint application development (JAD) A systems development technique that uses a task force of users,
managers, and IT professionals who work together to gather information, discuss business needs, and
define the new system requirements.

leading questions Queries that suggest or favor a particular reply.

non-functional requirements A statement of operational system constraints.

observation A fact-finding technique where an analyst sees a system in action. Observation allows the
verification of statements made in interviews.

open-ended questions Queries that allow for a range of answers. They encourage spontaneous and
unstructured responses and are useful in understanding a larger process.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

140

Chapter 4 Requirements Engineering

Key Terms

personal information manager (PIM) A tool that helps manage tasks and schedules. Many handheld
devices also include this function.

pool The overall diagram in BPMN.

productivity software Applications such as word processing, spreadsheet, database management, and
presentation graphics programs.

quality attributes See non-functional requirements.

questionnaire A document containing a number of standard questions that can be sent to many individ-
uals. Also called a survey.

random sample A selection taken in a random, unplanned manner. For example, a random sample might
be a sample that selects any 20 customers.

range-of-response questions Closed-ended questions that ask the person to evaluate something by pro-
viding limited answers to specific responses or on a numeric scale.

rapid application development (RAD) A team-based technique that speeds up information systems devel-
opment and produces a functioning information system. RAD is similar in concept to JAD but goes
further by including all phases of the SDLC.

requirements definitions A description of the system requirements from the user’s point of view.

requirements elicitation The process of gathering requirements. See fact-finding.

requirements engineering Used in the systems planning phase of the SDLC. It involves fact-finding to
describe the current system and identify the requirements for the new system.

requirements planning phase A phase that combines elements of the systems planning and systems anal-
ysis phases of the SDLC.

requirements specifications A description of the system requirements from the analyst or engineering
team’s point of view.

research An important fact-finding technique that includes the review of journals, periodicals, and
books to obtain background information, technical material, and news about industry trends and
developments.

sampling A process where an analyst collects examples of actual documents, which could include
records, reports, or various forms.

scalability A characteristic of a system, implying that the system can be expanded, modified, or down-
sized easily to meet the rapidly changing needs of a business enterprise.

scenarios In an agile project, a real-world example of how users will interact with the system.

Scrum A popular technique for agile project management. Derived from a rugby term. In Scrum, team
members play specific roles and interact in intense sessions.

sequence diagram A UML diagram that shows the timing of transactions between objects as they occur
during system execution.

site visit A trip to a physical location to observe a system in use at another location.

stratified sample A set metric is collected across functional areas. For example, a certain percentage of
transactions from every work shift, or five customers from each of four zip codes, could be a stratified
sample.

storyboard In an agile project, a simple graphic organizer that helps systems analysts visualize the status
of a project.

structured brainstorming A group discussion where each participant speaks when it is his or her turn or
passes.

survey A document containing a number of standard questions that can be sent to many individuals.
Also called a questionnaire.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 141

Phase 2 Systems Analysis

swim lanes In a business process diagram, the overall diagram is called a pool and the designated cus-
tomer areas are called swim lanes.

SysML A dialect of UML 2, used for representing requirements (and other things), primarily in MBSE
applications.

system requirement A characteristic or feature that must be included in an information system to satisfy
business requirements and be acceptable to users.

systematic sample A sample that occurs at a predetermined periodicity. For example, every tenth cus-
tomer record might be selected as a systematic sample for review.

total cost of ownership (TCO) A number used in assessing costs, which includes ongoing support and
maintenance costs as well as acquisition costs.

traceability The ability to follow a requirement backward to its origins and forward through the SDLC
to link design documents, code fragments, and test artifacts.

Unified Modeling Language (UML) A widely used method of visualizing and documenting software sys-
tems design. UML uses object-oriented design concepts, but it is independent of any specific program-
ming language and can be used to describe business processes and requirements generally.

unstructured brainstorming A group discussion where any participant can speak at any time.

use case diagram A visual representation that represents the interaction between users and the informa-
tion system in UML.

user design phase In this phase, users interact with systems analysts and develop models and prototypes
that represent all system processes, outputs, and inputs.

user stories In an agile project, a set of more refined requirements derived from features.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

142

Chapter 4 Requirements Engineering

Exercises

Exercises

Questions
1. What is a system requirement and what are the three challenges it presents to the

systems analyst?
2. Is the requirement “The system shall respond within 2 seconds” a functional or

non-functional requirement?
3. What is scrum?
4. What five questions typically are used in fact-finding?
5. Provide three examples each of closed-ended, open-ended, and range-of-response

questions.
6. Explain how the observation fact-finding technique works, including the

Hawthorne Effect.
7. What is the relationship between user stories and features in agile projects?
8. What is an FDD and why would you use one?
9. What is the difference between validation and verification of system

requirements?
10. Why is traceability important in tool support for requirements engineering?

Discussion Topics
1. JAD requires strong interpersonal and communication skills on the part of the

systems analyst. Are those skills different from the ones that an analyst needs
when conducting one-to-one interviews? Explain your answer.

2. Agile methods use rapid development cycles to iteratively produce running ver-
sions of the system. How would these shorter cycles affect the ability of the ana-
lyst to manage system requirements?

3. A group meeting sometimes is suggested as a useful compromise between inter-
views and questionnaires. In a group meeting, a systems analyst meets with a
number of users at one time. Discuss the advantages and disadvantages of group
meetings.

4. Research the Internet, magazines, or textbooks to find examples of visual aids,
including a bar chart, pie chart, line chart, table, diagram, and bulleted list. How
effective was each example? Find at least one example that you could improve.
Explain your choice.

5. Traceability is an important requirements attribute. It’s one of the things that
should be checked when performing V&V of the system requirements. Describe
how you would manually check traceability for an existing system and list a few
features of a CASE tool that you think would help you with the task.

Projects
1. Use the requirements gathering techniques of document review, observation,

brainstorming, sampling, and research to capture the requirements of a typical
elevator control system. Use natural language and the UML to represent the situ-
ation where people on different floors push the “Up” button at the same time.

2. Prepare a presentation summarizing JAD and RAD. Explain how they differ
from traditional fact-finding methods. What are the main advantages of team-
based methods?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

143

Phase 2 Systems Analysis

Exercises

3. Design a questionnaire to learn what students think of the registration process at
your school. Apply the guidelines you learned in this chapter.

4. Create an FDD similar to the one in Figure 4-15 but showing your school instead
of the library example.

5. A desirable characteristic of a requirement is that it be both consistent and com-
plete. Examine several requirements engineering CASE tools and document how
(if at all) they support automated consistency analysis for validating and verify-
ing requirements.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 5 Data and Process Modeling

L E A R N I N G O B J E C T I V E S
When you finish this chapter, you should be able
to:

1. Describe the relationship between logical and
physical models

2. Explain data flow diagrams

3. Draw the four basic data flow diagram symbols

4. Explain the six guidelines used when drawing
data flow diagrams

5. Draw context diagrams

6. Draw diagram 0 data flow diagrams

7. Draw lower-level data flow diagrams

8. Explain how to level and balance data flow
diagrams

9. Create a data dictionary

10. Apply process description tools in modular
design

C O N T E N T S
5.1 Logical Versus Physical Models
5.2 Data Flow Diagrams
5.3 Data Flow Diagram Symbols
5.4 Drawing Data Flow Diagrams
5.5 Drawing a Context Diagram
5.6 Drawing a Diagram 0 DFD
5.7 Drawing Lower-Level DFDs
 Case in Point 5.1: Big Ten University
5.8 Data Dictionary
5.9 Process Description Tools in Modular Design
 Case in Point 5.2: Rock Solid Outfitters (Part 1)
 Case in Point 5.3: Rock Solid Outfitters (Part 2)
 A Question of Ethics
5.10 Summary
 Key Terms
 Exercises

CHAPTER5 Data and Process
Modeling

Chapter 5 is the second of four chapters in the sys-
tems analysis phase of the SDLC. This chapter discusses
data and process modeling techniques that analysts use
to show how the system transforms data into useful
information. Data and process modeling involves three
main items: data flow diagrams, a data dictionary, and
process descriptions. The deliverable, or end product,
of data and process modeling is a logical model that will
support business operations and meet user needs.

The chapter includes three “Case in Point” dis-
cussion questions to help contextualize the concepts
described in the text. The “Question of Ethics” raises
the issue of how to respond to subtle but insistent
requests by an IT manager in a systems analyst’s new
organization for proprietary information related to
the business processes used by the analyst’s previous
employer, which is a competitor of the analyst’s current
company.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

5.2 Data Flow Diagrams 145

Phase 2 Systems Analysis

5.1 LogicaL Versus PhysicaL ModeLs

During the requirements engineering process described in Chapter 4, fact-finding
techniques were used to investigate the current system and identify user requirements.
Chapters 5 and 6 explain how that information is used to develop a logical model of
the proposed system and document the system requirements. A logical model shows
what the system must do, regardless of how it will be implemented physically. Later,
in the systems design phase, a physical model is built that describes how the system
will be constructed.

While structured analysis tools are used to develop a logical model for a new
information system, such tools also can be used to develop physical models of an
information system. A physical model shows how the system’s requirements are
implemented. During the systems design phase, a physical model of the new informa-
tion system is created that follows from the logical model and involves operational
tasks and techniques.

To understand the relationship between logical and physical models, think back
to the beginning of the systems analysis phase. To understand how the current tasks
were carried out in the existing system, the physical operations of the existing system
were studied before the logical model. Many systems analysts create a physical model
of the current system and then develop a logical model of the current system before
tackling a logical model of the new system. Performing that extra step allows them to
understand the current system better.

Many analysts follow a four-model approach, which means that they develop a
physical model of the current system, a logical model of the current system, a logical
model of the new system, and a physical model of the new system. The major benefit
of the four-model approach is that it provides a clear picture of current system
functions before any modifications or improvements are made. That is important
because mistakes made early in systems development will affect later SDLC phases
and can result in unhappy users and additional costs. Taking additional steps to
avoid these potentially costly mistakes can prove to be well worth the effort. Another
advantage is that the requirements of a new information system often are quite
similar to those of the current information system, especially where the proposal is
based on new computer technology rather than a large number of new requirements.
Adapting the current system logical model to the new system logical model in these
cases is a straightforward process.

The only disadvantage of the four-model approach is the added time and
cost needed to develop a logical and physical model of the current system. Most
projects have very tight schedules that might not allow time to create the current
system models. Additionally, users and managers want to see progress on the new
system—they are much less concerned about documenting the current system.
The systems analyst must stress the importance of careful documentation and
resist the pressure to hurry the development process at the risk of creating serious
problems later.

5.2 data FLow diagraMs

Systems analysts use many graphical techniques to describe an information system.
One popular method is to draw a set of data flow diagrams. A data flow diagram
(DFD) uses various symbols to show how the system transforms input data into use-
ful information. Other graphical tools include object models, which are explained in

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

146

Chapter 5 Data and Process Modeling

5.3 Data Flow Diagram Symbols

Chapter 6 (Object Modeling), and entity-relationship diagrams, which are described
in Chapter 9 (Data Design).

During the systems analysis phase of the SDLC, the systems analyst creates a
visual model of the information system using a set of DFDs. In his seminal book The
Visual Display of Quantitative Information, author and renowned academic Edward
Tufte provides guidance on creating effective diagrams to concisely convey com-
plex information. A DFD is an example of this type of visual explanation of system
behavior.

A DFD shows how data moves through an information system but does not show
program logic or processing steps. A set of DFDs provides a logical model that shows
what the system does, not how it does it. That distinction is important because focus-
ing on implementation issues at this point would restrict the search for the most effec-
tive system design.

5.3 data FLow diagraM syMboLs

DFDs use four basic symbols that represent processes, data flows, data stores, and
entities. Several different versions of DFD symbols exist, but they all serve the same
purpose. DFD examples in this text use the Gane and Sarson symbol set. Another
popular symbol set is the Yourdon symbol set. Figure 5-1 shows examples of both
versions. In this text, symbols are referenced using all capital letters for the symbol
name.

FIGURE 5-1 Data flow diagram symbols, symbol names, and examples of the Gane and
Sarson and Yourdon symbol sets.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

147

Phase 2 Systems Analysis

5.3 Data Flow Diagram Symbols

5.3.1 Process Symbols
A process receives input data and produces output that has a different content, form,
or both. For instance, the process for calculating pay uses two inputs (pay rate and
hours worked) to produce one output (total pay). Processes can be very simple or
quite complex. In a typical company, processes might include calculating sales trends,
filing online insurance claims, ordering inventory from a supplier’s system, or veri-
fying email addresses for web customers. Processes contain the business logic, also
called business rules, that transforms the data and produces the required results.

The symbol for a process is a rectangle with rounded corners. The name of the
process appears inside the rectangle. The process name identifies a specific function
and consists of a verb (and an adjective, if necessary) followed by a singular noun.
Examples of process names are APPLY RENT PAYMENT, CALCULATE COMMIS-
SION, ASSIGN FINAL GRADE, VERIFY ORDER, and FILL ORDER.

Processing details are not shown in a DFD. For example, there might be a process
named DEPOSIT PAYMENT. The process symbol does not reveal the business logic
for the DEPOSIT PAYMENT process. To document the logic, a process description is
created, which is explained later in this chapter.

In DFDs, a process symbol can be referred to as a black box, because the inputs, out-
puts, and general functions of the process are known, but the underlying details and logic
of the process are hidden. By showing processes as black boxes, an analyst can create
DFDs that show how the system functions but avoid unnecessary detail and clutter. When
the analyst wishes to show additional levels of detail, he or she can zoom in on a process
symbol and create a more in-depth DFD that shows the process’s internal workings—
which might reveal even more processes, data flows, and data stores. In this manner, the
information system can be modeled as a series of increasingly detailed pictures.

The network router shown in Figure 5-2 is an example of a black box. An
observer can see cables that carry data into and out of the router, but the router’s
internal operations are not revealed—only the results are apparent.

5.3.2 Data Flow Symbols
A data flow is a path for data to move from one part of the information system to
another. A data flow in a DFD represents one or more data items. For example, a data

FIGURE 5-2 A router acts like a black box for network data. Cables
carry data in and out, but internal operations are hidden inside the case.
macka/Shutterstock.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

148

Chapter 5 Data and Process Modeling

5.3 Data Flow Diagram Symbols

flow could consist of a single data item (such as a student ID number), or it could
include a set of data (such as a class roster with student ID numbers, names, and
registration dates for a specific class). Although the DFD does not show the detailed
contents of a data flow, that information is included in the data dictionary, which is
described later in this chapter.

The symbol for a data flow is a line with a single or double arrowhead. The data
flow name appears above, below, or alongside the line. A data flow name consists
of a singular noun and an adjective, if needed. Examples of data flow names are
DEPOSIT, INVOICE PAYMENT, STUDENT GRADE, ORDER, and COMMIS-
SION. Exceptions to the singular name rule are data flow names, such as GRADING
PARAMETERS, where a singular name could mislead the analyst into thinking a sin-
gle parameter or single item of data exists.

Figure 5-3 shows correct examples of data flow and process symbol
connections. Because a process changes the data’s content or form, at least one
data flow must enter and one data flow must exit each process symbol, as they
do in the CREATE INVOICE process. A process symbol can have more than one
outgoing data flow, as shown in the GRADE STUDENT WORK process, or more
than one incoming data flow, as shown in the CALCULATE GROSS PAY process.
A process also can connect to any other symbol, including another process
symbol, as shown by the connection between VERIFY ORDER and ASSEMBLE
ORDER in Figure 5-3. A data flow, therefore, must have a process symbol on at
least one end.

C
O

R
R

E
C

T

FIGURE 5-3 Examples of correct combinations of data flow and process symbols.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

149

Phase 2 Systems Analysis

5.3 Data Flow Diagram Symbols

Figure 5-4 shows three data flow and process combinations that must be avoided:

• Spontaneous generation. The APPLY INSURANCE PREMIUM process, for
instance, produces output but has no input data flow. Because it has no input,
the process is called a spontaneous generation process.

• Black hole. CALCULATE GROSS PAY is called a black hole process, which is a
process that has input but produces no output.

• Gray hole. A gray hole is a process that has at least one input and one output,
but the input obviously is insufficient to generate the output shown. For exam-
ple, a date of birth input is not sufficient to produce a final grade output in the
CALCULATE GRADE process.

Spontaneous generation, black holes, and gray holes are impossible logically in a
DFD because a process must act on input, shown by an incoming data flow, and pro-
duce output, represented by an outgoing data flow.

5.3.3 Data Store Symbols
A data store is used in a DFD to represent
data that the system stores because one or
more processes need to use the data at a
later time. For instance, instructors need to
store student scores on tests and assignments
during the semester, so they can assign final
grades at the end of the term. Similarly, a
company stores employee salary and deduc-
tion data during the year in order to print
W-2 forms with total earnings and deduc-
tions at the end of the year. A DFD does not
show the detailed contents of a data store—
the specific structure and data elements are
defined in the data dictionary, which is dis-
cussed later in this chapter.

The physical characteristics of a data store
are unimportant because the logical model
is the only concern at this point. Also, the
length of time that the data is stored is unim-
portant—it can be a matter of seconds while
a transaction is processed or a period of
months while data is accumulated for year-
end processing. What is important is that a
process needs access to the data at some later
time.

In a DFD, the Gane and Sarson symbol for a data store is a flat rectangle that is
open on the right side and closed on the left side. The name of the data store appears
between the lines and identifies the data it contains. A data store name is a plural
name consisting of a noun and adjectives, if needed. Examples of data store names
are STUDENTS, ACCOUNTS RECEIVABLE, PRODUCTS, DAILY PAYMENTS,
PURCHASE ORDERS, OUTSTANDING CHECKS, INSURANCE POLICIES, and
EMPLOYEES. Exceptions to the plural name rule are collective nouns that represent
multiple occurrences of objects. For example, GRADEBOOK represents a group of
students and their scores.

IN
C

O
R

R
E

C
T

FIGURE 5-4 Examples of incorrect combinations of data flow and
process symbols. APPLY INSURANCE PREMIUM has no input and is
called a spontaneous generation process. CALCULATE GROSS PAY has
no outputs and is called a black hole process. CALCULATE GRADE has
an input that is obviously unable to produce the output. This process is
called a gray hole.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

150

Chapter 5 Data and Process Modeling

5.3 Data Flow Diagram Symbols

A data store must be connected to a process with a data flow. Figure 5-5 illustrates
typical examples of data stores. Since data stores represent data storage for use by
another process in the future, in each case, the data store has at least one incoming
and one outgoing data flow and is connected to a process symbol with a data flow.

C
O

R
R

E
C

T

FIGURE 5-5 Examples of correct use of data store symbols in a data flow diagram.

Violations of the rule that a data store must have at least one incoming and one
outgoing data flow are shown in Figure 5-6. In the first example, two data stores are
connected incorrectly because no process is between them. Also, COURSES has no
incoming data flow and STUDENTS has no outgoing data flow. In the second and
third examples, the data stores lack either an outgoing or incoming data flow.

IN
C

O
R

R
E

C
T

FIGURE 5-6 Examples of incorrect use of data store symbols in a data flow diagram. Two data
stores cannot be connected by a data flow without an intervening process, and each data store
should have an outgoing and incoming data flow.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

151

Phase 2 Systems Analysis

5.3 Data Flow Diagram Symbols

There is an exception to the requirement that a data store must have at least one
incoming and one outgoing data flow. In some situations, a data store has no input
data flow because it contains fixed reference data that is not updated by the system.
For example, consider a data store called TAX TABLE, which contains withholding
tax data that a company downloads from the Internal Revenue Service. When the com-
pany runs its payroll, the CALCULATE WITHHOLDING process accesses data from
this data store. On a DFD, this would be represented as a one-way outgoing data flow
from the TAX TABLE data store into the CALCULATE WITHHOLDING process.

5.3.4 Entity Symbols
The symbol for an entity
is a rectangle, which may
be shaded to make it look
three-dimensional. The name
of the entity appears inside the
symbol.

A DFD shows only external
entities that provide data to the
system or receive output from
the system. A DFD shows the
boundaries of the system and
how the system interfaces with
the outside world. For example,
a customer entity submits an
order to an order processing
system. Other examples of
entities include a patient who
supplies data to a medical
records system, a homeowner
who receives a bill from a city
property tax system, or an
accounts payable system that
receives data from the company’s
purchasing system.

DFD entities also are called
terminators because they are
data origins or final destinations.
Systems analysts call an entity
that supplies data to the system
a source and an entity that
receives data from the system
a sink. An entity name is the
singular form of a department,
an outside organization, other
information system, or a person.
An external entity can be a
source or a sink or both, but
each entity must be connected
to a process by a data flow.
Figure 5-7 and Figure 5-8 show
correct and incorrect examples
of this rule, respectively.

C
O

R
R

E
C

T

FIGURE 5-7 Examples of correct uses of external entities in a data flow diagram.

IN
C

O
R

R
E

C
T

FIGURE 5-8 Examples of incorrect uses of external entities in a data flow diagram. An
external entity must be connected by a data flow to a process and not directly to a data store
or to another external entity.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

152

Chapter 5 Data and Process Modeling

5.4 Drawing Data Flow Diagrams

5.3.5 Using DFD Symbols
With an understanding of the proper use of DFD symbols, the next step is to con-
struct diagrams that use these symbols. Figure 5-9 shows a summary of the rules for
using DFD symbols.

Correct and Incorrect Examples of Data Flows

External Entity to External Entity

Process to Process

Process to External Entity

Process to Data Store

External Entity to Data Store

Data Store to Data Store

FIGURE 5-9 Examples of correct and incorrect uses of data flows.

5.4 drawing data FLow diagraMs

During requirements engineering, interviews, questionnaires, and other techniques
were used to gather facts about the system, and it was explained how the various
people, departments, data, and processes fit together to support business operations.
Now a graphical model of the information system is created based on the fact-finding
results.

To learn how to draw DFDs, examples of two information systems will be used.
The first example is a grading system that instructors use to assign final grades based
on the scores that students receive during the term. The second example is an order
system that a company uses to enter orders and apply payments against a customer’s
balance.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

153

Phase 2 Systems Analysis

5.4 Drawing Data Flow Diagrams

When drawing a context diagram and other DFDs, these guidelines should be
followed:

• Draw the context diagram so it fits on one page.

• Use the name of the information system as the process name in the context dia-
gram. For example, the process name in Figure 5-10 is GRADING SYSTEM.
Note that the process name is the same as the system name. This is because
the context diagram shows the entire information system as if it were a single
process. For processes in lower-level DFDs, use a verb followed by a descriptive
noun, such as ESTABLISH GRADEBOOK, ASSIGN FINAL GRADE, or PRO-
DUCE GRADE REPORT.

• Use unique names within each set of symbols. For instance, the diagram in
Figure 5-10 shows only one entity named STUDENT and only one data flow
named FINAL GRADE. Whenever the entity STUDENT appears on any other
DFD in the grading system, it indicates that it is the same entity. Whenever the
FINAL GRADE data flow appears, it indicates that it is the same data flow.
The naming convention also applies to data stores.

• Do not cross lines. One way to achieve that goal is to restrict the number of
symbols in any DFD. On lower-level diagrams with multiple processes, there
should not be more than nine process symbols. Including more than nine sym-
bols usually is a signal that the diagram is too complex and that the analysis
should be reconsidered. Another way to avoid crossing lines is to duplicate an
entity or a data store. When duplicating a symbol on a diagram, make sure
to document the duplication to avoid possible confusion. A special notation,
such as an asterisk, next to the symbol name and inside the duplicated symbols
 signifies that they are duplicated on the diagram.

unique reference
number for

each process

process 0
represents the

entire grading system

FIGURE 5-10 Context diagram DFD for a grading system.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

154

Chapter 5 Data and Process Modeling

5.5 Drawing a Context Diagram

• Provide a unique name and reference number for each process. Because it is the
highest-level DFD, the context diagram contains process 0, which represents
the entire information system, but does not show the internal workings. To
describe the next level of detail inside process 0, create a DFD named diagram 0,
which will reveal additional processes that must be named and numbered. As
lower-level DFDs are created, assign unique names and reference numbers to
all processes, until the logical model is completed.

• Obtain as much user input and feedback as possible. The main objective is to ensure
that the model is accurate, is easy to understand, and meets the needs of its users.

5.5 drawing a context diagraM

The first step in constructing a set of DFDs is to draw a context diagram. A context
diagram is a top-level view of an information system that shows the system’s boundaries
and scope. To draw a context diagram, start by placing a single process symbol in the
center of the page. The symbol represents the entire information system, and it is identi-
fied as process 0 (the numeral zero, and not the letter O). Then place the system entities
around the perimeter of the page and use data flows to connect the entities to the cen-
tral process. Data stores are not shown in the context diagram because they are con-
tained within the system and remain hidden until more detailed diagrams are created.

To determine which entities and data flows to place in the context diagram, begin
by reviewing the system requirements to identify all external data sources and desti-
nations. During that process, identify the entities, the name and content of the data
flows, and the direction of the data flows. If that is done carefully, and the job of
fact-finding was done well in the previous stage, drawing the context diagram should
be relatively easy. Now review the following context diagram examples.

EXAMPLE: CONTEXT DIAGRAM FOR A GRADING SYSTEM: The context diagram
for a grading system is shown in Figure 5-10. The GRADING SYSTEM process is at
the center of the diagram. The three entities (STUDENT RECORDS SYSTEM, STU-
DENT, and INSTRUCTOR) are placed around the central process. Interaction among
the central process and the entities involves six different data flows. The STUDENT
RECORDS SYSTEM entity supplies data through the CLASS ROSTER data flow
and receives data through the FINAL GRADE data flow. The STUDENT entity sup-
plies data through the SUBMITTED WORK data flow and receives data through the
GRADED WORK data flow. Finally, the INSTRUCTOR entity supplies data through
the GRADING PARAMETERS data flow and receives data through the GRADE
REPORT data flow.

EXAMPLE: CONTEXT DIAGRAM FOR AN ORDER SYSTEM: The context diagram
for an order system is shown in Figure 5-11. Note that the ORDER SYSTEM process
is at the center of the diagram and five entities surround the process. Three of the
entities, SALES REP, BANK, and ACCOUNTING, have single incoming data flows
for COMMISSION, BANK DEPOSIT, and CASH RECEIPTS ENTRY, respectively.
The WAREHOUSE entity has one incoming data flow—PICKING LIST—that is,
a report that shows the items ordered and their quantity, location, and sequence to
pick from the warehouse. The WAREHOUSE entity has one outgoing data flow:
 COMPLETED ORDER. Finally, the CUSTOMER entity has two outgoing data flows,
ORDER and PAYMENT, and two incoming data flows, ORDER REJECT NOTICE
and INVOICE.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

155

Phase 2 Systems Analysis

5.6 Drawing a Diagram 0 DFD

The context diagram for the order system appears more complex than the grading
system because it has two more entities and three more data flows. What makes one
system more complex than another is the number of components, the number of levels,
and the degree of interaction among its processes, entities, data stores, and data flows.

5.6 drawing a diagraM 0 dFd
In the previous step, it was explained how a context diagram provides the most
 general view of an information system and contains a single process symbol, which is
like a black box. To show the detail inside the black box, a DFD diagram 0 is created.
Diagram 0 (the numeral zero, and not the letter O) provides an overview of all the
components that interact to form the overall system. It zooms in on the system and
shows major internal processes, data flows, and data stores. Diagram 0 also repeats
the entities and data flows that appear in the context diagram. When the context dia-
gram is expanded into DFD diagram 0, all the connections that flow into and out of
process 0 must be retained.

EXAMPLE: DIAGRAM 0 DFD FOR A GRADING SYSTEM: Figure 5-12 shows a
 context diagram at the top and diagram 0 beneath it. Note that diagram 0 is an
expansion of process 0. Also note that the three same entities (STUDENT RECORDS
SYSTEM, STUDENT, and INSTRUCTOR) and the same six data flows (FINAL
GRADE, CLASS ROSTER, SUBMITTED WORK, GRADED WORK, GRADING
PARAMETERS, and GRADE REPORT) appear in both diagrams. In addition,
 diagram 0 expands process 0 to reveal four internal processes, one data store, and
five additional data flows.

FIGURE 5-11 Context diagram DFD for an order system.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

156

Chapter 5 Data and Process Modeling

5.6 Drawing a Diagram 0 DFD

Context Diagram for Grading System

Diagram 0 for Grading System

FIGURE 5-12 Context diagram and diagram 0 for the grading system.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

157

Phase 2 Systems Analysis

5.6 Drawing a Diagram 0 DFD

Note that each process in diagram 0 has a reference number: ESTABLISH
GRADEBOOK is 1, ASSIGN FINAL GRADE is 2, GRADE STUDENT WORK is
3, and PRODUCE GRADE REPORT is 4. These reference numbers are important
because they identify a series of DFDs. If more detail were needed for ESTABLISH
GRADEBOOK, for example, a diagram 1 would be drawn, because ESTABLISH
GRADEBOOK is process 1.

The process numbers do not suggest that the processes are accomplished in a
sequential order. Each process always is considered to be available, active, and await-
ing data to be processed. If processes must be performed in a specific sequence, the
information should be documented in the process descriptions (discussed later in this
chapter), not in the DFD.

The FINAL GRADE data flow output from the ASSIGN FINAL GRADE process
is a diverging data flow that becomes an input to the STUDENT RECORDS SYS-
TEM entity and to the GRADEBOOK data store. A diverging data flow is a data flow
in which the same data travels to two or more different locations. In that situation, a
diverging data flow is the best way to show the flow rather than showing two identi-
cal data flows, which could be misleading.

If the same data flows in both directions, a double-headed arrow can be used to
connect the symbols. To identify specific data flows into and out of a symbol, how-
ever, separate data flow symbols with single arrowheads should be used. For example,
in Figure 5-12, the separate data flows (SUBMITTED WORK and GRADED WORK)
go into and out of the GRADE STUDENT WORK process.

Because diagram 0 is an exploded version of process 0, it shows considerably more
detail than the context diagram. Diagram 0 can also be referred to as a partitioned
or decomposed view of process 0. When a DFD is exploded, the higher-level diagram
is called the parent diagram and the lower-level diagram is referred to as the child
diagram. The grading system is simple enough that no additional DFDs are needed
to model the system. At that point, the four processes, the one data store, and the 10
data flows can be documented in the data dictionary.

When a set of DFDs is created for a system, the processing logic is broken down into
smaller units, called functional primitives, which programmers will use to develop code.
A functional primitive is a process that consists of a single function that is not exploded
further. For example, each of the four processes shown in the lower portion of Figure
5-12 is a functional primitive. The logic for a functional primitive is documented by
writing a process description in the data dictionary. Later, when the logical design is
implemented as a physical system, programmers will transform each functional primi-
tive into program code and modules that carry out the required steps. Deciding whether
to explode a process further or determine that it is a functional primitive is a matter of
experience, judgment, and interaction with programmers who must translate the logical
design into code.

EXAMPLE: DIAGRAM 0 DFD FOR AN ORDER SYSTEM: Figure 5-13 is the diagram
0 for an order system. Process 0 on the order system’s context diagram is exploded to
reveal three processes (FILL ORDER, CREATE INVOICE, and APPLY PAYMENT),
one data store (ACCOUNTS RECEIVABLE), two additional data flows (INVOICE
DETAIL and PAYMENT DETAIL), and one diverging data flow (INVOICE).

The following walk-through explains the DFD shown in Figure 5-13:

1. A CUSTOMER submits an ORDER. Depending on the processing logic, the
FILL ORDER process either sends an ORDER REJECT NOTICE back to the
customer or sends a PICKING LIST to the WAREHOUSE.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

158

Chapter 5 Data and Process Modeling

5.7 Drawing Lower-Level DFDs

2. A COMPLETED ORDER from the WAREHOUSE is input to the CREATE
INVOICE process, which outputs an INVOICE to both the CUSTOMER
 process and the ACCOUNTS RECEIVABLE data store.

3. A CUSTOMER makes a PAYMENT that is processed by APPLY PAYMENT.
APPLY PAYMENT requires INVOICE DETAIL input from the ACCOUNTS
RECEIVABLE data store along with the PAYMENT. APPLY PAYMENT also
outputs PAYMENT DETAIL back to the ACCOUNTS RECEIVABLE data
store and outputs COMMISSION to the SALES DEPT, BANK DEPOSIT to the
BANK, and CASH RECEIPTS ENTRY to ACCOUNTING.

FIGURE 5-13 Diagram 0 DFD for the order system.

The walk-through of diagram 0 illustrates the basic requirements of the order
 system. Examine the detailed description of each separate process to learn more.

5.7 drawing Lower-LeVeL dFds

This set of lower-level DFDs is based on the order system. To create lower-level diagrams,
leveling and balancing techniques must be used. Leveling is the process of drawing a
series of increasingly detailed diagrams, until all functional primitives are identified.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

159

Phase 2 Systems Analysis

5.7 Drawing Lower-Level DFDs

Balancing maintains consistency among a set of DFDs by ensuring that input and output
data flows align properly. Leveling and balancing are described in more detail in the fol-
lowing sections.

EXAMPLE: LEVELING EXAMPLES: Leveling uses a series of increasingly detailed
DFDs to describe an information system. For example, a system might consist of
dozens, or even hundreds, of separate processes. Using leveling, an analyst starts
with an overall view, which is a context diagram with a single process symbol.
Next, the analyst creates diagram 0, which shows more detail. The analyst con-
tinues to create lower-level DFDs until all processes are identified as functional
primitives, which represent single processing functions. More complex systems
have more processes, and analysts must work through many levels to iden-
tify the functional primitives. Leveling also is called exploding, partitioning, or
decomposing.

Figures 5-13 and 5-14 provide an example of leveling. Figure 5-13 shows diagram
0 for an order system, with the FILL ORDER process labeled as process 1. Now
consider Figure 5-14, which provides an exploded view of the FILL ORDER process.
Note that FILL ORDER (process 1) actually consists of three processes: VERIFY
ORDER (process 1.1), PREPARE REJECT NOTICE (process 1.2), and ASSEMBLE
ORDER (process 1.3).

CREDIT
HISTORY

FIGURE 5-14 Diagram 1 DFD shows details of the FILL ORDER process in the order system.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

160

Chapter 5 Data and Process Modeling

5.7 Drawing Lower-Level DFDs

As Figure 5-14 shows, all processes are numbered using a decimal notation
consisting of the parent’s reference number, a decimal point, and a sequence number
within the new diagram. In Figure 5-14, the parent process of diagram 1 is process 1, so
the processes in diagram 1 have reference numbers of 1.1, 1.2, and 1.3. If process 1.3,
ASSEMBLE ORDER, is decomposed further, then it would appear in diagram 1.3 and
the processes in diagram 1.3 would be numbered as 1.3.1, 1.3.2, 1.3.3, and so on.
This numbering technique makes it easy to integrate and identify all DFDs.

When Figure 5-13 and Figure 5-14 are compared, it is apparent that Figure 5-14
(the exploded FILL ORDER process) shows two data stores (CUSTOMER and
PRODUCTS) that do not appear on Figure 5-13, which is the parent DFD. Why not?
The answer is based on a simple rule: When drawing DFDs, a data store is shown
only when two or more processes use that data store. The CUSTOMER and PROD-
UCTS data stores were internal to the FILL ORDER process, so the analyst did not
show them on diagram 0, which is the parent. When the FILL ORDER process is
exploded into a diagram 1 DFD, however, three processes (1.1, 1.2, and 1.3) interact-
ing with the two data stores are now shown.

Now compare Figure 5-14 and Figure 5-15. Note that Figure 5-15 shows the same
data flows as Figure 5-14 but does not show the CUSTOMER and WAREHOUSE
entities. Analysts often use this technique to simplify a DFD and reduce unnecessary
clutter. Because the missing symbols appear on the parent DFD, that diagram can be
used to identify the source or destination of the data flows.

CREDIT
HISTORY

FIGURE 5-15 This diagram does not show the symbols that connect to data flows entering or leaving
FILL ORDER on the context diagram.

BALANCING EXAMPLES: Balancing ensures that the input and output data flows
of the parent DFD are maintained on the child DFD. For example, Figure 5-16 shows
two DFDs: The order system diagram 0 is shown at the top of the figure, and the
exploded diagram 3 DFD is shown at the bottom.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

161

Phase 2 Systems Analysis

5.7 Drawing Lower-Level DFDs

The two DFDs are balanced because the child diagram at the bottom has the
same input and output flows as the parent process 3 shown at the top. To verify the

Order System Diagram 0 DFD

Order System Diagram 3 DFD

FIGURE 5-16 The order system diagram 0 is shown at the top of the figure, and the exploded diagram 3 DFD
(for the APPLY PAYMENT process) is shown at the bottom. The two DFDs are balanced because the child diagram
at the bottom has the same input and output flows as the parent process 3 shown at top.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

162

Chapter 5 Data and Process Modeling

5.7 Drawing Lower-Level DFDs

balancing, note that the parent process 3, APPLY PAYMENT, has one incoming data
flow from an external entity and three outgoing data flows to external entities. Exam-
ine the child DFD, which is diagram 3. Ignore the internal data flows and count the
data flows to and from external entities. From the diagram, it is evident that the three
processes maintain the same one incoming and three outgoing data flows as the par-
ent process.

Another example of balancing is shown in Figures 5-17 and 5-18. The DFDs in
these figures were created using the Visible Analyst CASE tool.

Figure 5-17 shows a sample context diagram. The process 0 symbol has two input
flows and two output flows. Note that process 0 can be considered as a black box

EXTERNAL
ENTITY A

EXTERNAL
ENTITY C

EXTERNAL
ENTITY D

EXTERNAL
ENTITY B

INPUT DATA
FLOW 1

OUTPUT DATA
FLOW 1

OUTPUT DATA
FLOW 2

INPUT DATA
FLOW 2

PROCESS 0

1

FIGURE 5-17 Examples of a parent DFD diagram, showing process 0 as a black box.

EXTERNAL
ENTITY A

EXTERNAL
ENTITY C

EXTERNAL
ENTITY D

EXTERNAL
ENTITY B

INPUT DATA
FLOW 1

OUTPUT DATA
FLOW 1

OUTPUT DATA
FLOW 2

INTERNAL
DATA
FLOW 4

INTERNAL
DATA
FLOW 2

INTERNAL
 DATA

FLOW 1

INTERNAL
 DATA

FLOW 3

INPUT DATA
FLOW 2

PROCESS 1

1

PROCESS 3

3

PROCESS 2

2

DATA STORE 1D4 DATA STORE 2D5

FIGURE 5-18 In the next level of detail, the process 0 black box reveals three processes, two data stores, and
four internal data flows—all of which are shown inside the dashed line.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

163

Phase 2 Systems Analysis

5.7 Drawing Lower-Level DFDs

with no internal detail shown. In Figure 5-18, process 0 (the parent DFD) is exploded
into the next level of detail. Now three processes, two data stores, and four internal
data flows are visible. Note that the details of process 0 are shown inside a dashed
line, just as if the inside of the process was visible.

The DFDs in Figures 5-17 and 5-18 are balanced because the four data flows into
and out of process 0 are maintained on the child DFD. The DFDs also are leveled
because each internal process is numbered to show that it is a child of the parent
process.

CASE IN POINT 5.1: Big Ten UniversiTy

You are the IT director at Big Ten University. As part of a training program, you decide to draw
a DFD that includes some obvious mistakes to see whether your newly hired junior analysts
can find them. You came up with the diagram 0 DFD shown in Figure 5-19. Based on the rules
explained in this chapter, how many problems should the analysts find?

FIGURE 5-19 What are the mistakes in this diagram 0 DFD?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

164

Chapter 5 Data and Process Modeling

5.8 Data Dictionary

5.8 data dictionary

A set of DFDs produces a logical model of the system, but the details within those
DFDs are documented separately in a data dictionary, which is the second component
of structured analysis.

A data dictionary, or data repository, is a central storehouse of information about
the system’s data. An analyst uses the data dictionary to collect, document, and
organize specific facts about the system, including the contents of data flows, data
stores, entities, and processes. The data dictionary also defines and describes all data
elements and meaningful combinations of data elements. A data element, also called
a data item or field, is the smallest piece of data that has meaning within an informa-
tion system. Examples of data elements are student grade, salary, Social Security num-
ber, account balance, and company name. Data elements are combined into records,
also called data structures. A record is a meaningful combination of related data ele-
ments that is included in a data flow or retained in a data store. For example, an auto
parts store inventory record might include part number, description, supplier code,
minimum and maximum stock levels, cost, and list price.

Significant relationships exist among the items in a data dictionary. For example,
data stores and data flows are based on data structures, which in turn are composed
of data elements. Data flows are connected to data stores, entities, and processes.
Accurately documenting these relationships is essential so the data dictionary is con-
sistent with the DFDs. The more complex the system, the more difficult it is to main-
tain full and accurate documentation. Fortunately, modern CASE tools simplify the
task by flowing documentation automatically from the modeling diagrams into the
central repository, along with information entered by the user.

A CASE repository ensures data consistency, which is especially important where
multiple systems require the same data. In a large company, for example, the sales,
accounting, and shipping systems all might use a data element called CUSTOMER
NUMBER. Once the CUSTOMER NUMBER element has been defined in the repos-
itory, other processes can access it, data flows, and data stores. The result is that all
systems across the enterprise can share data that is up to date and consistent.

5.8.1 Documenting the Data Elements
Every data element in the data dictionary must be documented. Some analysts like to
record their notes in online or manual forms. Others prefer to enter the information
directly into a CASE tool. Irrespective of the specific CASE tool used, the objective is
the same: to provide clear, comprehensive information about the data and processes
that make up the system.

Figure 5-20 shows a sample screen that illustrates how a data element representing
a SOCIAL SECURITY NUMBER might be recorded in the Visible Analyst data dic-
tionary. Regardless of the terminology or method, the following attributes usually are
recorded and described in the data dictionary:

• Data element name or label. The data element’s standard name, which should
be meaningful to users.

• Alias. Any name(s) other than the standard data element name; this alternate
name is called an alias. For example, if there is a data element named
 CURRENT BALANCE, various users might refer to it by alternate names such
as OUTSTANDING BALANCE, CUSTOMER BALANCE, RECEIVABLE
 BALANCE, or AMOUNT OWED.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

165

Phase 2 Systems Analysis

5.8 Data Dictionary

• Type and length. Type refers to
whether the data element contains
numeric, alphabetic, or character val-
ues. Length is the maximum number
of characters for an alphabetic or a
character data element or the maxi-
mum number of digits and number
of decimal positions for a numeric
data element. In addition to text and
numeric data, sounds and images
also can be stored in digital form.
In some systems, these binary data
objects are managed and processed
just as traditional data elements are.
For example, an employee record
might include a digitized photo
image of the person.

• Default value. The default value is the
value for the data element if a value
otherwise is not entered for it. For
example, all new customers might
have a default value of $500 for the
CREDIT LIMIT data element.

• Acceptable values. Specification of
the data element’s domain, which is
the set of values permitted for the
data element. These values either can
be specifically listed or referenced
in a table or can be selected from a
specified range of values. Also indicate if a value for the data element is optional.
Some data elements have additional validity rules. For example, an employee’s
salary must be within the range defined for the employee’s job classification.

• Source. The specification for the origination point for the data element’s values.
The source could be a specific form, a department or an outside organization,
another information system, or the result of a calculation.

• Security. Identification for the individual or department that has access or
update privileges for each data element. For example, only a credit manager
has the authority to change a credit limit, while sales reps are authorized to
access data in a read-only mode.

• Responsible user(s). Identification of the user(s) responsible for entering and
changing values for the data element.

• Description and comments. This part of the documentation permits the entry
of additional notes.

5.8.2 Documenting the Data Flows
In addition to documenting each data element, all data flows in the data dictionary
must be documented. Although terms can vary, the typical attributes are as follows:

• Data flow name or label. The data flow name as it appears on the DFDs.

• Description. Describes the data flow and its purpose.

FIGURE 5-20 A Visible Analyst screen describes the data element named
SOCIAL SECURITY NUMBER.
Source: Screenshot used with permission from Visible Systems Corp.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

166

Chapter 5 Data and Process Modeling

5.8 Data Dictionary

• Alternate name(s). Aliases for the DFD data flow name(s).

• Origin. The DFD beginning, or source, for the data flow; the origin can be a
process, a data store, or an entity.

• Destination. The DFD ending point(s) for the data flow; the destination can be
a process, a data store, or an entity.

• Record. Each data flow represents a group of related data elements called a
record or data structure. In most data dictionaries, records are defined sepa-
rately from the data flows and data stores. When records are defined, more
than one data flow or data store can use the same record, if necessary.

• Volume and frequency. Describes the expected number of occurrences for the
data flow per unit of time. For example, if a company has 300 employees, a
TIME CARD data flow would involve 300 transactions and records each week
as employees submit their work hour data.

5.8.3 Documenting the Data Stores
Every DFD data store in the data dictionary must be documented. Figure 5-21 shows
the definition of a data store named IN STOCK. Typical characteristics of a data store
are as follows:

• Data store name or label. The data store name as it appears on the DFDs.

• Description. Describes the data store and its purpose.

• Alternate name(s). Aliases for the DFD data store name.

• Attributes. Standard DFD names that enter or leave the data store.

• Volume and frequency. Describes the estimated number of records in the data
store and how frequently they are updated.

1

2

3

FIGURE 5-21 A Visible Analyst screen that documents a data store
named IN STOCK.
Source: Screenshot used with permission from Visible Systems Corp.

1. This data store has
an alternative name,
or alias.

2. For consistency, data
flow names are stan-
dardized throughout
the data dictionary.

3. It is important to
document these
estimates because
they will affect
design decisions in
subsequent SDLC
phases.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

167

Phase 2 Systems Analysis

5.8 Data Dictionary

5.8.4 Documenting the Processes
Every process must be documented, as shown in Figure 5-22. The documentation includes
a description of the process’s characteristics and, for functional primitives, a process
description, which is a model that documents the processing steps and business logic.

The following are typical characteristics of a process:

• Process name or label. The process name as it appears on the DFDs.

• Description. A brief statement of the process’s purpose.

• Process number. A reference number that identifies the process and indicates
relationships among various levels in the system.

• Process description. This section includes the input and output data flows. For
functional primitives, the process description also documents the processing steps
and business logic. The next section explains how to write process descriptions.

5.8.5 Documenting the Entities
By documenting all entities, the data dictionary can describe all external entities that
interact with the system. Typical characteristics of an entity include the following:

• Entity name. The entity name as it appears on the DFDs.

• Description. Describe the entity and its purpose.

• Alternate name(s). Any aliases for the entity name.

• Input data flows. The standard DFD names for the input data flows to the entity.

• Output data flows. The standard DFD names for the data flows leaving the entity.

5.8.6 Documenting the Records
A record is a data structure that contains a set of related data elements that are stored
and processed together. Data flows and data stores consist of records that must

2

1

FIGURE 5-22 A Visible Analyst screen that describes a process named
VERIFY ORDER.
Source: Screenshot used with permission from Visible Systems Corp.

1. The process num-
ber identifies this
process. Any sub-
processes are num-
bered 1.1, 1.2, 1.3,
and so on.

2. These data flows
will be described
specifically else-
where in the data
dictionary.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

168

Chapter 5 Data and Process Modeling

5.8 Data Dictionary

be documented in the data dictionary. Characteristics of each record must also be
defined, as shown in Figure 5-23.

Typical characteristics of a record include the following:

• Record or data structure name. The record name as it appears in the related
data flow and data store entries in the data dictionary.

• Definition or description. A brief definition of the record.

• Alternate name(s). Any aliases for the record name.

• Attributes. A list of all the data elements, or fields, included in the record. The
data element names must match exactly those entered in the data dictionary.

2

1

1. This data structure
is named CREDIT
STATUS.

2. The CREDIT
STATUS data
structure consists
of two data
elements:
CUSTOMER
NUMBER and
CUSTOMER
STATUS CODE.

FIGURE 5-23 A Visible Analyst screen that documents a record, or data
structure, named CREDIT STATUS.
Source: Screenshot used with permission from Visible Systems Corp.

5.8.7 Data Dictionary Reports
The data dictionary serves as a central storehouse of documentation for an informa-
tion system. A data dictionary is created when the system is developed and is updated
constantly as the system is implemented, operated, and maintained. In addition to
describing each data element, data flow, data store, record, entity, and process, the
data dictionary documents the relationships among these components.

Many valuable reports can be obtained from a data dictionary, including the following:

• An alphabetized list of all data elements by name

• A report describing each data element and indicating the user or department
that is responsible for data entry, updating, or deletion

• A report of all data flows and data stores that use a particular data element

• Detailed reports showing all characteristics of data elements, records, data
flows, processes, or any other selected item stored in the data dictionary

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

169

Phase 2 Systems Analysis

5.9 Process Description Tools in Modular Design

5.9 Process descriPtion tooLs in ModuLar design

A process description documents the details of a functional primitive and represents
a specific set of processing steps and business logic. When a functional primitive is
analyzed, the processing steps are broken down into smaller units in a process called
modular design. Using a set of process description tools, a model is created that is
accurate, complete, and concise. Typical process description tools include structured
English, decision tables, and decision trees.

5.9.1 Process Descriptions in Object-Oriented Development
This chapter deals with structured analysis, but the process descriptions can also be used
in object-oriented (O-O) development, which is described in Chapter 6. As explained in
Chapter 1, O-O analysis combines data and the processes that act on the data into things
called objects, and similar objects can be grouped together into classes, and O-O processes
are called methods. Although O-O programmers use different terminology, they create the
same kind of modular coding structures, except
that the processes, or methods, are stored inside
the objects, rather than as separate components.

5.9.2 Modular Design
Modular design is based on combinations
of three logical structures, sometimes called
 control structures, which serve as building
blocks for the process. Each logical structure
must have a single entry and exit point. The
three structures are called sequence, selection,
and iteration. A rectangle represents a step
or process, a diamond shape represents a
 condition or decision, and the logic follows the
lines in the direction indicated by the arrows.

1. Sequence. The completion of steps in
sequential order, one after another, as
shown in Figure 5-24. One or more of the
steps might represent a subprocess that
contains additional logical structures.

2. Selection. The completion of one of
two or more process steps based on
the results of a test or condition. In
the example shown in Figure 5-25, the
system tests the input, and if the hours
are greater than 40, it performs the
CALCULATE OVERTIME PAY process.

3. Iteration. The completion of a process
step that is repeated until a specific con-
dition changes, as shown in Figure 5-26.
An example of iteration is a process that
continues to print paychecks until it
reaches the end of the payroll file. Itera-
tion also is called looping.

VERIFY
STOCK
LEVEL

VERIFY
PRICE

VERIFY
PRODUCT

CODE

FIGURE 5-24 Sequence structure.

CALCULATE
OVERTIME

PAY

HOURS
>40?

YES

NO

FIGURE 5-25 Selection structure.

PRINT
PAYCHECKNO

YES

END
OF

FILE?

FIGURE 5-26 Iteration structure.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

170

Chapter 5 Data and Process Modeling

5.9 Process Description Tools in Modular Design

Sequence, selection, and iteration structures can be combined in various ways to
describe processing logic.

5.9.3 Structured English
Structured English is a subset of standard English that describes logical processes
clearly and accurately. When using structured English, be mindful of the following
guidelines:

• Use only the three building
blocks of sequence, selection, and
iteration.

• Use indentation for readability.

• Use a limited vocabulary, includ-
ing standard terms used in the data
dictionary and specific words that
describe the processing rules.

An example of structured
English appears in Figure 5-27,
which shows the VERIFY ORDER
process that was illustrated earlier.
Note that the structured English
version documents the actual logic
that will be coded into the sys-
tem. Structured English can help
process descriptions accurate and
understandable to users and system
developers.

Structured English might look
familiar to programming students
because it resembles pseudocode,
which is used in program design.
Although the techniques are similar,

the primary purpose of structured English is to describe the underlying business logic,
while programmers, who are concerned with coding, mainly use pseudocode as a
shorthand notation for the actual code.

Following structured English rules ensures that process descriptions are under-
standable to users who must confirm that the process is correct, as well as to other
analysts and programmers who must design the information system from the
descriptions.

5.9.4 Decision Tables
A decision table is a logical structure that shows every combination of conditions and
outcomes. Analysts often use decision tables to describe a process and ensure that
they have considered all possible situations. Decision tables can be created using tools
such as Microsoft PowerPoint, Word, or Excel.

TABLES WITH ONE CONDITION: If a process has a single condition, there only are
two possibilities—yes or no. Either the condition is present or it is not, so there are only
two rules. For example, to trigger an overtime calculation, the process condition might
be: Are the hours greater than 40? If so, the calculation is made. Otherwise, it is not.

Structured English
statements

FIGURE 5-27 The VERIFY ORDER process description includes logical rules and
a structured English version of the policy. Note the alignment and indentation of
the logic statements.
Source: Screenshot used with permission from Visible Systems Corp.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

171

Phase 2 Systems Analysis

5.9 Process Description Tools in Modular Design

TABLES WITH TWO CONDITIONS: Suppose there is a need to create a decision table
based on the VERIFY ORDER business process shown in Figure 5-28. When document-
ing a process, it is important to ensure that every possibility is listed. In this example, the
process description contains two conditions: product stock status and customer credit
status. If both conditions are met, the order is accepted. Otherwise the order is rejected.

VERIFY ORDER Business Process with Two Conditions

• An order will be accepted only if the product is in stock and the customer’s credit status is OK.

• All other orders will be rejected.

FIGURE 5-28 The VERIFY ORDER business process has two conditions. For an order to be accepted, the
product must be in stock and the customer must have an acceptable credit status.

After all the conditions and outcomes have been identified, the next step is to create a
decision table similar to the one shown in Figure 5-29. Note that each condition has two
possible values, so the number of rules doubles each time another condition is added.
For example, one condition creates two rules, two conditions create four rules, three
conditions create eight rules, and so on. In the two-condition example in Figure 5-29,
four possibilities exist, but Rule 1 is the only combination that will accept an order.

TABLES WITH THREE CONDITIONS: Suppose the company now decides that the
credit manager can waive the customer credit requirement, as shown in Figure 5-30.
That creates a third condition, so there will be eight possible rules. The new decision
table might resemble the one shown in Figure 5-31.

 1 2 3 4

Credit status is OK Y Y N N
Product is in stock Y N Y N

Accept order X
Reject order X X X

2

1

4

3

VERIFY ORDER Process

FIGURE 5-29 Example of a simple decision table showing the processing logic of the VERIFY ORDER
process. To create the table, follow the four steps shown.

1. Place the
name of the
process in a
heading at
the top left.

2. Enter the
conditions
under the
heading, with
one condi-
tion per line,
to represent
the customer
status and availability
of products.

3. Enter all potential
combinations of Y/N
for the conditions.
Each column rep-
resents a numbered
possibility called a
rule.

4. Place an X in the
action entries area for
each rule to indicate
whether to accept or
reject the order.

FIGURE 5-30 A third condition has been added to the VERIFY ORDER business process. For an order to be
accepted, the product must be in stock and the customer must have an acceptable credit status. However, the
credit manager now has the authority to waive the credit status requirements.

VERIFY ORDER Business Process with Three Conditions

• An order will be accepted only if the product is in stock and the customer’s credit status is OK.

• The credit manager can waive the credit status requirement.

• All other orders will be rejected.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

172

Chapter 5 Data and Process Modeling

5.9 Process Description Tools in Modular Design

First, the Y-N patterns must be filled in, as shown in Figure 5-31. The best way
to assure that all combinations appear is to use patterns like these. The first con-
dition uses a pattern of Y-Y-Y-Y followed by N-N-N-N, the second condition uses
a repeating Y-Y-N-N pattern, and the pattern in the third condition is a series of
Y-Ns.

 1 2 3 4 5 6 7 8

Credit status is OK Y Y Y Y N N N N
Product is in stock Y Y N N Y Y N N
Waiver from credit manager Y N Y N Y N Y N

Accept order X X X
Reject order X X X X X

VERIFY ORDER Process with Credit Waiver (initial version)

FIGURE 5-31 This decision table is based on the VERIFY ORDER conditions shown in Figure 5-30. With
three conditions, there are eight possible combinations or rules.

The next step is very important, regardless of the number of conditions. Each
numbered column, or rule, represents a different set of conditions. The logic must be
carefully analyzed and the outcome for each rule shown. Before going further, study
the table in Figure 5-31 to be sure the logical outcome for each of the eight rules is
understood.

When all the outcomes have been determined, the next step is to simplify the table.
In a multi-condition table, some rules might be duplicates, redundant, or unrealistic.
To simplify the table, follow these steps:

1. Study each combination of conditions and outcomes. When there are rules with
three conditions, only one or two of them may control the outcome, and the
other conditions simply do not matter.

2. If there are conditions that do not affect the outcome, mark them with dashes
(-) as shown in the first table in Figure 5-32.

3. Now combine and renumber the rules, as shown in the second table in
Figure 5-32.

After following these steps, Rules 1 and 2 can be combined, because credit status
is OK in both rules, so the waiver would not matter. Rules 3, 4, 7, and 8 also can be
combined because the product is not in stock, so other conditions do not matter. The
result is that instead of eight possibilities, only four logical rules control the Verify
Order process.

MULTIPLE OUTCOMES: In addition to multiple conditions, decision tables can have
more than two possible outcomes. For example, the sales promotion policy shown in
Figure 5-33 includes three conditions: Was the customer a preferred customer, did the
customer order $1,000 or more, and did the customer use our company charge card?
Based on these conditions, four possible actions can occur, as shown in the decision
table in Figure 5-34.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

173

Phase 2 Systems Analysis

5.9 Process Description Tools in Modular Design

VERIFY ORDER Process with Credit Waiver (after rule combination and
simplification)

 1 2 3 4 5 6 7 8

Credit status is OK Y Y - - N N - -
Product is in stock Y Y N N Y Y N N
Waiver from credit manager - - - - Y N - -

Accept order X X X
Reject order X X X X X

1. Because the
product is not in
stock, the other
conditions do not
matter.

2. Because the
other conditions
are met, the
waiver does not
matter.2

1

VERIFY ORDER Process with Credit Waiver (with rules marked for
combination)

FIGURE 5-32 In the first decision table, dashes have been added to indicate that a condition is not relevant. In
the second version of the decision table, rules have been combined following the steps shown below. Note that in
the final version, only four rules remain. These rules document the logic and will be transformed into program code
when the system is developed.

 1 2 3 4
 (COMBINES (COMBINES
 PREVIOUS 1, 2) (PREVIOUS 5) (PREVIOUS 6) PREVIOUS 3, 4, 7, 8)

Credit status is OK Y N N -
Product is in stock Y Y Y N
Waiver from credit manager - Y N -

Accept order X X
Reject order X X

FIGURE 5-33 A sales promotion policy with three conditions. Note that the first statement contains two
separate conditions: one for the 5% discount and another for the additional discount.

SALES PROMOTION POLICY – Holiday Season

• Preferred customers who order $1,000 or more are entitled to a 5% discount and an
additional 5% discount if they use our charge card.

• Preferred customers who do not order $1,000 or more will receive a $25 bonus coupon.

• All other customers will receive a $5 bonus coupon.

FIGURE 5-34 This decision table is based on the sales promotion policy in Figure 5-33. This is the initial
version of the table before simplification.

Sales Promotion Policy (initial version)
 1 2 3 4 5 6 7 8

Preferred customer Y Y Y Y N N N N
Ordered $1,000 or more Y Y N N Y Y N N
Used our charge card Y N Y N Y N Y N

5% discount X X
Additional 5% discount X
$25 bonus coupon X X
$5 bonus coupon X X X X

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

174

Chapter 5 Data and Process Modeling

5.9 Process Description Tools in Modular Design

As explained in the preceding section, most tables can be simplified, and this one is no
exception. After studying the conditions and outcomes, the following becomes apparent:

• In Rule 1, all three conditions are met, so both 5% discounts apply.

• In Rule 2, a preferred customer orders $1,000 or more but does not use our
charge card, so only one 5% discount applies.

• Rules 3 and 4 can be combined into a single rule. Why? If preferred customers
do not order $1,000 or more, it does not matter whether they use our charge
card—either way, they earn only a $25 bonus coupon. Therefore, Rules 3 and 4
really are a single rule.

• Rules 5, 6, 7, and 8 also can be combined into a single rule—because if the per-
son is not a preferred customer, he or she can only receive a $5 bonus coupon,
and the other conditions simply do not matter. A dash is inserted if a condition
is irrelevant, as shown in Figure 5-35.

If dashes are added for rules that are not relevant, the table should resemble the
one shown in Figure 5-35. When the results are combined and simplified, only four
rules remain: Rule 1, Rule 2, Rule 3 (a combination of initial Rules 3 and 4), and
Rule 4 (a combination of initial Rules 5, 6, 7, and 8).

 1 2 3 4 5 6 7 8

Preferred customer Y Y Y Y N N N N

Ordered $1,000 or more Y Y N N - - - -

Used our charge card Y N - - - - - -

5% discount X X

Additional 5% discount X

$25 bonus coupon X X

$5 bonus coupon X X X X

FIGURE 5-35 In this version of the decision table, dashes have been added to indicate that a condition is not
relevant. As this point, it appears that several rules can be combined.

Sales Promotion Policy (final version)

Decision tables often are the best way to describe a complex set of conditions.
Many analysts use decision tables because they are easy to construct and understand,
and programmers find it easy to work from a decision table when developing code.

CASE IN POINT 5.2: rock solid oUTfiTTers (ParT 1)

The marketing director at Rock Solid Outfitters, a medium-sized supplier of outdoor climbing and
camping gear, has asked the IT manager to develop a special web-based promotion. Rock Solid will
provide free shipping for any customer who either completes an online survey form or signs up
for the Rock Solid online newsletter. Additionally, if a customer completes the survey and signs up
for the newsletter, Rock Solid will provide a $10 merchandise credit for orders of $100 or more.
The IT manager has asked you to develop a decision table that will reflect the promotional rules
that a programmer will use. She wants you to show all possibilities, and then to simplify the results
to eliminate any combinations that would be unrealistic or redundant. How will you proceed?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

175

Phase 2 Systems Analysis

5.9 Process Description Tools in Modular Design

5.9.5 Decision Trees
A decision tree is a graphical representation of the conditions, actions, and rules
found in a decision table. Decision trees show the logic structure in a horizontal form
that resembles a tree with the roots at the left and the branches to the right. Like
flowcharts, decision trees are useful ways to present the system to management. Deci-
sion trees and decision tables provide the same results but in different forms. In many
situations, a graphic is the most effective means of communication.

Figure 5-36 is based on the sales promotion policy shown in Figure 5-33. A deci-
sion tree is read from left to right, with the conditions along the various branches and
the actions at the far right. Because the example has two conditions with four result-
ing sets of actions, the example has four terminating branches at the right side of the
tree.

Preferred
customer?

Ordered
$1,000 or
more?

Used our
charge card?

5% discount and
an additional 5%
discount

5% discount

$25 bonus coupon

$5 bonus coupon

Y

N

N

N

Y

Y

FIGURE 5-36 This decision tree example is based on the same Sales Promotion Policy shown in the decision
tables in Figures 5-34 and 5-35. Like a decision table, a decision tree shows all combinations of conditions and
outcomes. The main difference is the graphical format, which some viewers may find easier to interpret.

Whether to use a decision table or a decision tree often is a matter of personal
preference. A decision table might be a better way to handle complex combinations
of conditions. On the other hand, a decision tree is an effective way to describe a rela-
tively simple process.

CASE IN POINT 5.3: rock solid oUTfiTTers (ParT 2)

The IT manager at Rock Solid Outfitters thinks you did a good job on the decision table task
she assigned to you. Now she wants you to use the same data to develop a decision tree that
will show all the possibilities for the web-based promotion described in Part 1 of the case. She
also wants you to discuss the pros and cons of decision tables versus decision trees. How shall
you proceed this time?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

176

Chapter 5 Data and Process Modeling

5.10 Summary

5.10 suMMary

Structured analysis tools can be used to develop a logical model during one systems
analysis phase and a physical model during the systems design phase. Many analysts
use a four-model approach, which involves a physical model of the current system, a
logical model of the current system, a logical model of the new system, and a physical
model of the new system.

During data and process modeling, a systems analyst develops graphical models
to show how the system transforms data into useful information. The end product of
data and process modeling is a logical model that will support business operations
and meet user needs. Data and process modeling involves three main tools: DFDs, a
data dictionary, and process descriptions.

DFDs graphically show the movement and transformation of data in the informa-
tion system. DFDs use four symbols: The process symbol transforms data, the data
flow symbol shows data movement, the data store symbol shows data at rest, and the
external entity symbol represents someone or something connected to the information
system. Various rules and techniques are used to name, number, arrange, and annotate
the set of DFDs to make them consistent and understandable.

A set of DFDs is like a pyramid with the context diagram at the top. The context
diagram represents the information system’s scope and its external connections but not
its internal workings. Diagram 0 displays the information system’s major processes,
data stores, and data flows and is the exploded version of the context diagram’s pro-
cess symbol, which represents the entire information system. Lower-level DFDs show
additional detail of the information system through the leveling technique of number-
ing and partitioning. Leveling continues until the functional primitive processes are
reached, which are not decomposed further and are documented with process descrip-
tions. All diagrams must be balanced to ensure their consistency and accuracy.

The data dictionary is the central documentation tool for structured analysis. All data
elements, data flows, data stores, processes, entities, and records are documented in the data
dictionary. Consolidating documentation in one location allows the analyst to verify the infor-
mation system’s accuracy and consistency more easily and generate a variety of useful reports.

Each functional primitive process is documented using structured English, decision
tables, and decision trees. Structured English uses a subset of standard English that
defines each process with combinations of the basic building blocks of sequence, selec-
tion, and iteration. Using decision tables or decision trees can also document the logic.

A QUESTION OF ETHICS

This is your first week in your new job at Safety Zone, a leading producer of IT modeling
software. Your prior experience with a smaller competitor gave you an edge in landing the
job, and you are excited about joining a larger company in the same field.

So far, all is going well, and you are getting used to the new routine. However, you are
concerned about one issue. In your initial meeting with the IT manager, she seemed very
interested in the details of your prior position, and some of her questions made you a little
uncomfortable. She did not actually ask you to reveal any proprietary information, but she
made it clear that Safety Zone likes to know as much as possible about its competitors.

Thinking about it some more, you try to draw a line between information that is OK to
discuss and topics such as software specifics or strategy that should be considered private.
This is the first time you have ever been in a situation like this. How will you handle it?

iStockphoto.com/faberfoto_it

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 177

Phase 2 Systems Analysis

Key Terms

alias A term used in various data dictionaries to indicate an alternate name, or a name other than the
standard data element name, that is used to describe the same data element.

balancing A process used to maintain consistency among an entire series of diagrams, including input
and output data flows, data definition, and process descriptions.

black box A metaphor for a process or an action that produces results in a non-transparent or non-
observable manner. In DFDs, a process appears as a black box where the inputs, outputs, and general
function of the process are known, but the underlying details are not shown.

black hole A process that has no output.

business logic Rules to determine how a system handles data and produces useful information, reflecting
the operational requirements of the business. Examples include adding the proper amount of sales tax
to invoices, calculating customer balances and finance charges, and determining whether a customer
is eligible for a volume-based discount. Also called business rules.

business rules See business logic.

child diagram The lower-level diagram in an exploded DFD.

context diagram A top-level view of an information system that shows the boundaries and scope.

control structure Serve as building blocks for a process. Control structures have one entry and exit
point. They may be completed in sequential order, as the result of a test or condition, or repeated until
a specific condition changes. Also called logical structure.

data dictionary A central storehouse of information about a system’s data.

data element A single characteristic or fact about an entity. A data element, field, or attribute is the
smallest piece of data that has meaning within an information system. For example, a Social Security
number or company name could be examples of a data element. Also called data item.

data flow A path for data to move from one part of the information system to another.

data flow diagram (DFD) Diagram that shows how the system stores, processes, and transforms data
into useful information.

data item See data element.

data repository A symbol used in DFDs to represent a situation in which a system must retain data
because one or more processes need to use that stored data at a later time. Used interchangeably with
the term data store.

data store See data repository.

data structure A meaningful combination of related data elements that are included in a data flow or
retained in a data store. A framework for organizing and storing data.

decision table A table that shows a logical structure, with all possible combinations of conditions and
resulting actions.

decision tree A graphical representation of the conditions, actions, and rules found in a decision table.

decomposing Another way of conveying a process or system that has been broken down from a general,
top-level view to more detail. The terms exploded and partitioned also can be used.

diagram 0 A diagram depicting the first level of detail below the initial context diagram. Diagram 0
(zero) zooms in on the context diagram and shows major processes, data flows, and data stores, as
well as repeating the external entities and data flows that appear in the context diagram.

diverging data flow A data flow in which the same data travels to two or more different locations.

domain The set of values permitted for a data element.

entity A person, a place, a thing, or an event for which data is collected and maintained. For example, an
online sales system may include entities named CUSTOMER, ORDER, PRODUCT, and SUPPLIER.

exploding A diagram is said to be exploded if it “drills down” to a more detailed or expanded view

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

178

Chapter 5 Data and Process Modeling

Key Terms

field A single characteristic or fact about an entity. A field, or attribute, is the smallest piece of data that
has meaning within an information system. For example, a Social Security number or company name
could be examples of a field. The terms data element, data item, and field are used interchangeably.

four-model approach A physical model of the current system, a logical model of the current system, a
logical model of the new system, and a physical model of the new system are all developed.

functional primitive A single function that is not exploded further. The logic for functional primitives is
documented in a data dictionary process description.

Gane and Sarson A popular symbol set used in DFDs. Processes, data flows, data stores, and external
entities all have a unique symbol.

gray hole A process with an input obviously insufficient to generate the shown output.

iteration The completion of a process step that is repeated until a specific condition changes.

leveling The process of drawing a series of increasingly detailed diagrams to reach the desired level of detail.

logical model Shows what a system must do, regardless of how it will be implemented physically.

logical structure See control structure.

looping Refers to a process step that is repeated until a specific condition changes. For example, a
process that continues to print paychecks until it reaches the end of the payroll file is looping. Also
known as repetition.

modular design A design that can be broken down into logical blocks. Also known as partitioning or
top-down design.

parent diagram The higher or more top-level diagram in an exploded DFD.

partitioning The breaking down of overall objectives into subsystems and modules.

physical model A model that describes how a system will be constructed.

process Procedure or task that users, managers, and IT staff members perform. Also, the logical rules of
a system that are applied to transform data into meaningful information. In DFDs, a process receives
input data and produces output that has a different content, form, or both.

process 0 In a DFD, process 0 (zero) represents the entire information system but does not show the
internal workings.

process description A documentation of a functional primitive’s details, which represents a specific set of
processing steps and business logic.

pseudocode A technique for representing program logic.

record A set of related fields that describes one instance, or member of an entity, such as one customer,
one order, or one product. A record might have one or dozens of fields, depending on what informa-
tion is needed. Also called a tuple.

selection A control structure in modular design, it is the completion of two or more process steps based
on the results of a test or condition.

sequence The completion of steps in sequential order, one after another.

sink An external entity that receives data from an information system.

source An external entity that supplies data to an information system.

spontaneous generation An unexplained generation of data or information. With respect to DFDs,
 processes cannot spontaneously generate data flows—they must have an input to have an output.

structured English A subset of standard English that describes logical processes clearly and accurately.

terminator A DFD symbol that indicates a data origin or final destination. Also called an external entity.

validity rules Checks that are applied to data elements when data is entered to ensure that the value
entered is valid. For example, a validity rule might require that an employee’s salary number be within
the employer’s predefined range for that position.

Yourdon A type of symbol set that is used in DFDs. Processes, data flows, data stores, and external
 entities each have a unique symbol in the Yourdon symbol set.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

179

Phase 2 Systems Analysis

Exercises

Exercises

Questions
1. What is the relationship between logical and physical models?
2. What is the function of a DFD in the SDLC?
3. Draw examples of the four basic DFD symbols.
4. What are the six guidelines to follow when drawing DFDs?
5. What is the difference between a context diagram and diagram 0?
6. Which symbol is not used in a context diagram?
7. How would you level a DFD?
8. How would you balance a DFD?
9. What is a data element?

10. What is the purpose of a decision table?

Discussion Topics
1. How would you convince management that following a four-model approach is wise?
2. When might it be appropriate to violate the “no crossed lines” guideline in DFDs?
3. What is the relationship between system requirements and context diagrams?
4. How might CASE tools be used to document the design of a data dictionary?
5. Some systems analysts find it better to start with a decision table, and then construct a decision tree.

Others believe it is easier to do it in the reverse order. Which do you prefer? Why?

Projects
1. The data flow symbols shown in Figure 5-1 were designed by Ed Yourdon, who was a well-known IT

author, lecturer, and consultant. Many IT professionals consider him to be among the most influential
men and women in the software field. Learn more about Mr. Yourdon by visiting online resources and
write a brief review of his work.

2. Explore three CASE tools that provide the ability to draw the four basic DFD symbols and describe
what you liked and disliked about each tool.

3. Draw a context diagram and a diagram 0 DFD that represents the information system at a typical
library.

4. Create a decision table with three conditions. You can make one up or use a scenario from everyday
life. Either way, be sure to show all possible outcomes.

5. Explore the use of Structured English to describe processes in fields other than systems analysis.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 6 Object Modeling

C O N T E N T S
6.1 Object-Oriented Analysis
 Case in Point 6.1: TravelBiz
6.2 Objects
6.3 Attributes
6.4 Methods
6.5 Messages
6.6 Classes
6.7 Relationships Among Objects and Classes
6.8 The Unified Modeling Language (UML)
 Case in Point 6.2: Hilltop Motors
 Case in Point 6.3: Train the Trainers, Inc.
6.9 Tools
 A Question of Ethics
6.10 Summary
 Key Terms
 Exercises

CHAPTER 6 Object Modeling

Chapter 6 is the third of the four chapters in the
 systems analysis phase of the SDLC. This chapter
 discusses object modeling techniques that analysts use to
create a logical model. In addition to structured analysis,
object-oriented analysis is another way to represent and
design an information system.

The chapter includes three “Case in Point”
 discussion questions to help contextualize the concepts
described in the text. A “Question of Ethics” considers
the situation where an employee wants to skip a course
and just sit the exam and requests a copy of the training
materials from someone else who took the course.

L E A R N I N G O B J E C T I V E S
When you finish this chapter, you should be
able to:

1. Demonstrate how object-oriented analysis can
be used to describe an information system

2. Explain what an object represents in an informa-
tion system

3. Explain object attributes

4. Explain object methods

5. Explain object messages

6. Explain classes

7. Explain relationships among objects and classes

8. Draw an object relationship diagram

9. Demonstrate use of the UML to describe
object-oriented systems, including use cases,
use case diagrams, class diagrams, sequence
diagrams, state transition diagrams, activity dia-
grams, and business process models

10. Explain how tools can support object modeling

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

181

Phase 2 Systems Analysis

6.2 Objects

6.1 Object-Oriented AnAlysis

As stated in Chapter 1, the most popular systems development options are structured
analysis, object-oriented (O-O) analysis, and agile methods. The table in Figure 1-17
shows the three alternatives and describes some pros and cons for each approach. As
the table indicates, O-O methodology is popular because it integrates easily with O-O
programming languages such as C++, Java, and Python. Programmers also like O-O
code because it is modular, reusable, and easy to maintain.

Object-oriented (O-O) analysis describes an information system by identifying
things called objects. An object represents a real person, place, event, or transaction.
For example, when a patient makes an appointment to see a doctor, the patient is an
object, the doctor is an object, and the appointment itself is an object.

O-O analysis is a popular approach that sees a system from the viewpoint of the objects
themselves as they function and interact. The end product of O-O analysis is an object
model, which represents the information system in terms of objects and O-O concepts.

Chapter 4 stated that the Unified Modeling Language (UML) is a widely used
method of visualizing and documenting an information system. In this chapter, the
UML is used to develop object models. The first step is to understand basic O-O
terms, including objects, attributes, methods, messages, and classes. This chapter
shows how systems analysts use those terms to describe an information system.

CASE IN POINT 6.1: TravelBiz

TravelBiz is a nationwide travel agency that specializes in business travel. It has decided to
expand into the vacation travel market by launching a new business division called TravelFun. The
IT director assigned two systems analysts to create a flexible and an efficient information system
for the new division. One analyst wants to use traditional analysis and modeling techniques for
the project, while the other analyst wants to use an O-O methodology. Which approach would
you suggest and why?

6.2 Objects

An object represents a person, a place, an event, or a transaction that is significant to
the information system. In Chapter 5, DFDs were created that treated data and pro-
cesses separately. An object, however, includes data and the processes that affect that
data. For example, a customer object has a name, an address, an account number, and
a current balance. Customer objects also can perform specific tasks, such as placing
an order, paying a bill, and changing their address.

Consider a simplistic example of how the UML might describe a family with par-
ents and children. UML represents an object as a rectangle with the object name at
the top, followed by the object’s attributes and methods.

Figure 6-1 shows a PARENT object with certain attributes such as name, age, sex,
and hair color. If there are two parents, then there are two instances of the PARENT
object. The PARENT object can perform methods, such as reading a bedtime story,
driving the carpool van, or preparing a school lunch. When a PARENT object receives
a message, it performs an action, or method.

For example, the message GOOD NIGHT from a child might tell the PARENT
object to read a bedtime story, while the message DRIVE from another parent signals
that it is the PARENT object’s turn to drive in the carpool.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

182

Chapter 6 Object Modeling

6.2 Objects

Continuing with the family example, the CHILD object in Figure 6-2 possesses the
same attributes as the PARENT object and an additional attribute that shows the num-
ber of siblings. A CHILD object performs certain methods, such as picking up toys, eat-
ing dinner, playing, cooperating, and getting ready for bed. To signal the CHILD object
to perform those tasks, a parent can send certain messages that the CHILD object will
understand. For example, the DINNER’S READY message tells a CHILD object to
come to the table, while the SHARE WITH YOUR BROTHER/SISTER message tells a
CHILD object to cooperate with other CHILD objects.

PARENT

 Attributes
Name

Age

Sex

Hair color

 Methods
Read bedtime story

Drive in the car pool

Characteristics
that describe the
PARENT object

Tasks that the
PARENT object
can perform

Mary Smith
 Age 25
 Female
 Red

Ahmed Ali
 Age 34
 Male
 Brown

Anthony Greene
 Age 42
 Male
 Brown

PARENT Object
Instances of

the PARENT Object

FIGURE 6-1 The PARENT object has four attributes and two methods. Mary Smith, Ahmed Ali, and
Anthony Greene are instances of the PARENT object.

CHILD

 Attributes
Name
Age
Sex
Hair color
Number of siblings

 Methods
Pick up toys
Eat dinner
Play
Cooperate
Get ready for bed

Characteristics
that describe the
CHILD object

Tasks that the
CHILD object can
perform

James Smith
 Age 3
 Male
 Red

Amelia Ali
 Age 1
 Female
 Brown

Misty Greene
 Age 12
 Female
 Blonde

CHILD Object
Instances of

the CHILD Object

FIGURE 6-2 The CHILD object has five attributes and five methods. James Smith, Amelia Ali, and
Misty Greene are instances of the CHILD object.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

183

Phase 2 Systems Analysis

6.5 Messages

6.3 Attributes

An object has certain attributes, which are characteristics that describe the object. If
objects are similar to nouns, attributes are similar to adjectives that describe the char-
acteristics of an object. For example, a car has attributes such as make, model, and
color. Some objects might have a few attributes; others might have dozens.

Systems analysts define an object’s attributes during the systems design process. In
an O-O system, objects can inherit, or acquire, certain attributes from other objects.

Objects can have a specific attribute called a state. The state of an object is an
adjective that describes the object’s current status. For example, depending on the
state, a student can be a future student, a current student, or a past student. Similarly,
a bank account can be active, inactive, closed, or frozen.

6.4 MethOds

An object also has methods, which are tasks or functions that the object performs
when it receives a message, or command, to do so. For example, a car performs a
method called OPERATE WIPERS when it is sent a
message with the wiper control, and it can APPLY
BRAKES when it is sent a message by pressing the
brake pedal. A method defines specific tasks that
an object can perform. Just as objects are similar to
nouns and attributes are similar to adjectives, methods
 resemble verbs that describe what and how an object
does something.

Consider a server who prepares fries in a fast-
food restaurant. A systems analyst might describe the
 operation as a method called MORE FRIES, as shown
in Figure 6-3. The MORE FRIES method includes the
steps required to heat the oil, fill the fry basket with
frozen potato strips, lower it into the hot oil, check for
readiness, remove the basket when ready and drain the
oil, pour the fries into a warming tray, and add salt.

6.5 MessAges

A message is a command that tells an
object to perform a certain method. For
 example, the message PICK UP TOYS
directs the CHILD class to perform
all the necessary steps to pick up the
toys. The CHILD class understands the
 message and executes the method.

The same message to two different
objects can produce different results.
The concept that a message gives
 different meanings to different objects
is called polymorphism. For example, in
 Figure 6-4, the message GOOD NIGHT
signals the PARENT object to read a

Method:
MORE FRIES

Steps:

1. Heat oil

2. Fill fry basket with frozen
 potato strips

3. Lower basket into hot oil

4. Check for readiness

5. When ready, raise basket
 and let drain

6. Pour fries into warming
 tray

7. Add salt

FIGURE 6-3 The MORE FRIES method requires the
server to perform seven specific steps.

Message: GOOD NIGHT

PARENT DOG CHILD

Causes the
PARENT object to
read a bedtime story

Causes the DOG
object to go to sleep

Causes the CHILD
object to get ready
for bed

FIGURE 6-4 In an example of polymorphism, the message GOOD NIGHT
produces different results, depending on which object receives it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

184

Chapter 6 Object Modeling

6.6 Classes

bedtime story, but the same message to the CHILD object signals it to get ready for bed.
If the family also had a DOG object, the same message would tell the dog to sleep.

An object can be viewed as a black box, because a message to the object triggers
changes within the object without specifying how the changes must be carried out.
A gas pump is an example of a black box. When the economy grade is selected at a
pump, it is not necessary to think about how the pump determines the correct price
and selects the right fuel, as long as it does so properly.

The black box concept is an example of encapsulation, which means that all
data and methods are self-contained. A black box does not want or need outside
 interference. By limiting access to internal processes, an object prevents its internal
code from being altered by another object or process. Encapsulation allows objects
to be used as modular components anywhere in the system, because objects send and
receive messages but do not alter the internal methods of other objects.

O-O designs typically are implemented with O-O programming languages. A major
advantage of O-O designs is that systems analysts can save time and avoid errors by
using modular objects, and programmers can translate the designs into code, work-
ing with reusable program modules that have been tested and verified. For example,
in Figure 6-5, an INSTRUCTOR object sends an ENTER GRADE message to an

instance of the STUDENT RECORD
class. Note that the INSTRUCTOR
object and STUDENT RECORD class
could be reused, with minor modifi-
cations, in other school information
 systems where many of the attributes
and methods would be similar.

6.6 clAsses

An object belongs to a group or category called a class. For example, Ford Fiestas
belong to a class called CAR. An instance is a specific member of a class. A Toyota
Camry, for example, is an instance of the CAR class. At an auto dealership, many
instances of the CAR class may be observed: the TRUCK class, the MINIVAN class,
and the SPORT UTILITY VEHICLE class, among others.

All objects within a class share common attributes and methods, so a class is like
a blueprint or template for all the objects within the class. Objects within a class can
be grouped into subclasses, which are more specific categories within a class. For
example, TRUCK objects represent a subclass within the VEHICLE class, along with
other subclasses called CAR, MINIVAN, and SCHOOL BUS, as shown in Figure 6-6.
Note that all four subclasses share common traits of the VEHICLE class, such as
make, model, year, weight, and color. Each subclass also can possess traits that are
uncommon, such as a load limit for the TRUCK or an emergency exit location for the
SCHOOL BUS.

A class can belong to a more general category called a superclass. For example, a
NOVEL class belongs to a superclass called BOOK, because all novels are books in
this example. The NOVEL class can have subclasses called HARDCOVER, PAPER-
BACK, and DIGITAL.

Similarly, consider a fitness center illustrated in Figure 6-7 that might have
 students, instructors, class schedules, and a registration process. As shown in
 Figure 6-8, the EMPLOYEE class belongs to the PERSON superclass, because every
employee is a person, and the INSTRUCTOR class is a subclass of EMPLOYEE.

Message:
ENTER GRADE

INSTRUCTOR
STUDENT
RECORD

FIGURE 6-5 In a school information system, an INSTRUCTOR object sends an
ENTER GRADE message to an instance of the STUDENT RECORD class.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

185

Phase 2 Systems Analysis

6.6 Classes

Common
attributes

Uncommon
attributes

Uncommon
attributes

Common
methods

VEHICLE

 Attributes
Make
Model
Year
Weight
Color

 Methods
Start
Stop
Park

Class

CAR

Attributes

MINIVAN

Attributes

TRUCK

Attributes

SCHOOL BUS

Attributes

Subclass

Load limit

Emergency exit location

FIGURE 6-6 The VEHICLE class includes common attributes and methods.
CAR, TRUCK, MINIVAN, and SCHOOL BUS are instances of the VEHICLE class.

INSTRUCTOR

Attributes

Subclass

Instructor type

Availability

Methods
Teach fitness-class

PERSON

Attributes

Methods

Name

Date of birth

Breathe

Eat

Sleep

Superclass
name

Common
attributes

Common
methods

Superclass

EMPLOYEE

Attributes

Methods

Social Security number

Telephone number

Hire date

Title

Pay rate

Get hired

Terminate

Change telephone

Class
name

Subclass
name

Uncommon
attributes

Uncommon
methods

Class

Uncommon
attributes

Uncommon
methods

FIGURE 6-8 At the fitness center, the PERSON subclass includes common attributes and methods.
EMPLOYEE is a class within the PERSON superclass. INSTRUCTOR is a subclass within the EMPLOYEE class.

FIGURE 6-7 A typical fitness center might
have students, instructors, class schedules, and a
registration process.
StockLite/Shutterstock.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

186

Chapter 6 Object Modeling

6.7 Relationships Among Objects and Classes

6.7 relAtiOnships AMOng Objects And clAsses

Relationships enable objects to communicate and interact as they perform business
functions and transactions required by the system. Relationships describe what
objects need to know about each other, how objects respond to changes in other
objects, and the effects of membership in classes, superclasses, and subclasses. Some
relationships are stronger than others (just as a relationship between family members
is stronger than one between casual acquaintances). The strongest relationship is
called inheritance. Inheritance enables an object, called a child, to derive one or more
of its attributes from another object, called a parent. In the example in Figure 6-9,
the INSTRUCTOR object (child) inherits many traits from the EMPLOYEE object
(parent), including SOCIAL SECURITY NUMBER, TELEPHONE NUMBER, and
HIRE DATE. The INSTRUCTOR object also can possess additional attributes, such
as TYPE OF INSTRUCTOR. Because all employees share certain attributes, those
attributes are assumed through inheritance and do not need to be repeated in the
INSTRUCTOR object.

EMPLOYEE

Attributes

Methods

Social Security number

Telephone number

Hire date

Title

Pay rate

Get hired

Terminate

Change telephone

INSTRUCTOR

Attributes

Methods

Type of Instructor

Social Security number

Telephone number

Hire date

Title

Pay rate

Get hired

Terminate

Change telephone

Inheritance

Parent Child Inherits

FIGURE 6-9 An inheritance relationship exists between the INSTRUCTOR
and EMPLOYEE objects. The INSTRUCTOR (child) object inherits characteristics
from the EMPLOYEE (parent) class, and can have additional attributes of its own.

After objects, classes, and relationships have been identified, an object relation-
ship diagram can be prepared to provide an overview of the system. That model
is used as a guide to continue to develop additional diagrams and documentation.
Figure 6-10 shows an object relationship diagram for a fitness center. Note that the
model shows the objects and how they interact to perform business functions and
transactions.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

187

Phase 2 Systems Analysis

6.8 The Unified Modeling Language (UML)

6.8 the unified MOdeling lAnguAge (uMl)
Just as structured analysis uses DFDs to model data and processes, systems analysts
use UML to describe O-O systems. Chapter 4 explained that UML is a popular
technique for documenting and modeling a system. UML uses a set of symbols to
represent graphically the various components and relationships within a system.
Although the UML can be used for business process modeling and requirements
modeling, it is mainly used to support O-O system analysis and to develop object
models.

6.8.1 Use Case Modeling
A use case represents the steps in a specific business function or process. An external
entity, called an actor, initiates a use case by requesting the system to perform a
function or process. For example, in a medical office system, a PATIENT (actor) can
MAKE APPOINTMENT (use case), as shown in Figure 6-11.

Note that the UML symbol for a use case is an oval with a label that describes the
action or event. The actor is shown as a stick figure, with a
label that identifies the actor’s role. The line from the actor
to the use case is called an association, because it links a
 particular actor to a use case.

Use cases also can interact with other use cases. When
the outcome of one use case is incorporated by another use
case, we say that the second case uses the first case. UML
indicates the relationship with an arrow that points at the
use case being used. Figure 6-12 shows an example where a
student adds a fitness class and PRODUCE FITNESS-CLASS
ROSTER uses the results of ADD FITNESS-CLASS to
 generate a new fitness-class roster. Similarly, if an instructor
changes his or her availability, UPDATE INSTRUCTOR
INFORMATION uses the CHANGE AVAILABILITY

EMPLOYEE

Is a

Determines Administers Indicates
availability

Teaches

Takes
Generates
roster

Adds
Lists open
fitness-classes

STUDENT

FITNESS-CLASS
SCHEDULE

OFFICE STAFF INSTRUCTORMANAGER

FITNESS-CLASS

REGISTRATION
RECORD

FIGURE 6-10 An object relationship diagram for a fitness center.

MAKE APPOINTMENT
(Use Case)PATIENT

(Actor)

FIGURE 6-11 In a medical office system, a
PATIENT (actor) can MAKE APPOINTMENT (use
case). The UML symbol for a use case is an oval. The
actor is shown as a stick figure.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

188

Chapter 6 Object Modeling

6.8 The Unified Modeling Language (UML)

use case to update the
 instructor’s information.

To create use cases, start
by reviewing the informa-
tion that gathered during
the requirements modeling
phase. The objective is to
identify the actors and the
functions or transactions
they initiate. For each use
case, develop a use case
description in the form of
a table. A use case descrip-
tion documents the name
of the use case, the actor, a
description of the use case,
a step-by-step list of the
tasks and actions required
for successful completion,
a description of alternative
courses of action, precondi-
tions, postconditions, and

assumptions. Figure 6-13 shows an example of the ADD NEW STUDENT use case
for the fitness center.

Add Fitness-Class

<<uses>>

<<uses>>

Produce Fitness-Class
RosterStudent

Change Availability Update Instructor
InformationInstructor

FIGURE 6-12 When a student adds a class, PRODUCE FITNESS-CLASS ROSTER uses the
results of ADD FITNESS-CLASS to generate a new roster. When an instructor changes his or
her availability, UPDATE INSTRUCTOR INFORMATION uses the CHANGE AVAILABILITY use
case to update the instructor’s information.

Add New StudentADD NEW STUDENT Use Case

 Name: Add New Student

 Actor: Student/Manager

 Description: Describes the process used to add a student to a fitness-class

 Successful 1. Manager checks FITNESS-CLASS SCHEDULE object for availability
 completion: 2. Manager notifies student
 3. Fitness-class is open and student pays fee
 4. Manager registers student

 Alternative: 1. Manager checks FITNESS-CLASS SCHEDULE object for availability
 2. Fitness-class is full
 3. Manager notifies student

 Precondition: Student requests fitness-class

 Postcondition: Student is enrolled in fitness-class and fees have been paid

 Assumptions: None

FIGURE 6-13 The ADD NEW STUDENT use case description documents the process used to add a current
student into an existing class at the fitness center.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

189

Phase 2 Systems Analysis

6.8 The Unified Modeling Language (UML)

When use cases are identified, all the related transactions should be grouped into a
single use case. For example, when a hotel customer reserves a room, the reservation
system blocks a room, updates the occupancy forecast, and sends the customer a
 confirmation. Those events are all part of a single use case called RESERVE ROOM,
and the specific actions are step-by-step tasks within the use case.

6.8.2 Use Case Diagrams
A use case diagram is a visual summary of several related use cases within a system or
subsystem. Consider a typical auto service department, as shown in Figure 6-14. The
service department involves customers, service writers who prepare work orders and
invoices, and mechanics who perform the work. Figure 6-15 shows a possible use case
diagram for the auto service department.

FIGURE 6-14 A typical auto service department might involve customers, service
writers who prepare work orders and invoices, and mechanics who perform the work.
michaeljung/Shutterstock.com

When a use case diagram is created, the first step is to identify the system
 boundary, which is represented by a rectangle. The system boundary shows what is
included in the system (inside the rectangle) and what is not included in the system
(outside the rectangle). After the system boundary is identified, use cases are placed
on the diagram, the actors are added, and the relationships shown.

CASE IN POINT 6.2: HillTop MoTors

You were hired by Hilltop Motors as a consultant to help the company plan a new information
system. Hilltop is an old-line dealership, and the prior owner was slow to change. A new man-
agement team has taken over, and they are eager to develop a first-class system. Right now, you
are reviewing the service department, which is going through a major expansion. You decide to
create a model of the service department in the form of a use case diagram. The main actors
in the service operation are customers, service writers who prepare work orders and invoices,
and mechanics who perform the work. You are meeting with the management team tomorrow
morning. How would you create a draft of the diagram to present to them?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

190

Chapter 6 Object Modeling

6.8 The Unified Modeling Language (UML)

6.8.3 Class Diagrams
A class diagram shows the object classes and relationships involved in a use case. Like
a DFD, a class diagram is a logical model, which evolves into a physical model and
finally becomes a functioning information system. In structured analysis, entities, data
stores, and processes are transformed into data structures and program code. Similarly,
class diagrams evolve into code modules, data objects, and other system components.

In a class diagram, each class appears as a rectangle, with the class name at the
top, followed by the class’s attributes and methods. Lines show relationships between
classes and have labels identifying the action that relates the two classes. To create
a class diagram, review the use case and identify the classes that participate in the
underlying business process.

The class diagram also includes a concept called cardinality, which describes how
instances of one class relate to instances of another class. For example, an employee
might have earned no vacation days or one vacation day or many vacation days.
 Similarly, an employee might have no spouse or one spouse. Figure 6-16 shows
 various UML notations and cardinality examples. Note that in Figure 6-16, the first
column shows a UML notation symbol that identifies the relationship shown in the
second column. The third column provides a typical example of the relationship,
which is described in the last column. In the first row of the figure, the UML notation
0..* identifies a zero or many relation. The example is that an employee can have no
 payroll deductions or many deductions.

Figure 6-17 shows a class diagram for a sales order use case. Note that the sales
office has one sales manager who can have anywhere from zero to many sales reps.
Each sales rep can have anywhere from zero to many customers, but each customer
has only one sales rep.

Customer Service
Writer

Update
Work

Schedule

Create
Work
Order

Use Case Diagram: Auto Service Department

UpdateUpdate

Writes

Checks

Performs
work

Notifies

Requests
service

Mechanic

Prepare
 Invoice

FIGURE 6-15 A use case diagram to handle work at an auto service department.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

191

Phase 2 Systems Analysis

6.8 The Unified Modeling Language (UML)

Add Fitness-class

 UML Nature of the Example Description
 Notation Relationship

 0..* Zero or many An employee can have no payroll
deductions or many deductions.

 0..1 Zero or one An employee can have no spouse or
one spouse.

 1 One and only one An office manager manages one and
only one office.

 1..* One or many One order can include one or many
items ordered.

Employee

 1 0..*

 1 0..1

 1 1

 1 1..*

Employee Spouse

Payroll Deduction

Office Manager Sales Office

Order Item Ordered

FIGURE 6-16 Examples of UML notations that indicate the nature of the relationship between instances of one class
and instances of another class.

CASE IN POINT 6.3: Train THe Trainers, inc.

Train the Trainer develops seminars and workshops for corporate training managers, who in turn
train their employees. Your job at Train the Trainer is to put together the actual training materials.
Right now, you are up against a deadline. The new object modeling seminar has a chapter on
 cardinality, and the client wants you to come up with at least three more examples for each of
the four cardinality categories listed in Figure 6-16. The four categories are zero or many, zero or
one, one and only one, and one or many. Even though you are under pressure, you are determined
to use examples that are realistic and familiar to the students. What examples will you submit?

Attributes

Methods

Sales Manager

Attributes

Methods

Sales Office

Attributes

Methods

Order

Attributes

Methods

Sales Rep

Attributes

Methods

Customer

Attributes

Methods

Items Ordered

Manages

Manages

Assigned to

Assigned

Includes

Places
1

1

1

1 1

1

0..*

0..*

0..*

0..*

0..* 1..*

FIGURE 6-17 Class diagram for a sales order use case (attributes and
methods omitted for clarity).

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

192

Chapter 6 Object Modeling

6.8 The Unified Modeling Language (UML)

6.8.4 Sequence Diagrams
A sequence diagram is a dynamic model of a use case, showing the interaction among
classes during a specified time period. A sequence diagram graphically documents
the use case by showing the classes, the messages, and the timing of the messages.
Sequence diagrams include symbols that represent classes, lifelines, messages, and
focuses. These symbols are shown in Figure 6-18.

Lifeline

FocusFocus

Message 1

Lifeline

CLASS 1 CLASS 2

Message 2

FIGURE 6-18 A sequence diagram with two classes. Notice the X that
indicates the end of the CLASS 2 lifeline. Also notice that each message is
represented by a line with a label that describes the message, and that each
class has a focus that shows the period when messages are sent or received.

CLASSES: A class is identified by a rectangle with the name inside. Classes that send
or receive messages are shown at the top of the sequence diagram.

LIFELINES: A lifeline is identified by a dashed line. The lifeline represents the time
during which the object above it is able to interact with the other objects in the use
case. An X marks the end of the lifeline.

MESSAGES: A message is identified by a line showing direction that runs between
two objects. The label shows the name of the message and can include additional
information about the contents.

FOCUSES: A focus is identified by a narrow vertical shape that covers the lifeline.
The focus indicates when an object sends or receives a message.

Figure 6-19 shows a sequence diagram for the ADD NEW STUDENT use case in
the fitness center example. Note that the vertical position of each message indicates
the timing of the message.

6.8.5 State Transition Diagrams
Earlier in this chapter, it was explained that state refers to an object’s current status.
A state transition diagram shows how an object changes from one state to another,
depending on events that affect the object. All possible states must be documented in
the state transition diagram, as shown in Figure 6-20. A bank account, for example,
could be opened as a NEW account, change to an ACTIVE or EXISTING account,
and eventually become a CLOSED or FORMER account. Another possible state for a
bank account could be FROZEN, if the account’s assets are legally attached.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

193

Phase 2 Systems Analysis

6.8 The Unified Modeling Language (UML)

Focus

Request
fitness-class

Pay

Notify

Check

Register

STUDENT MANAGER FITNESS-CLASS
SCHEDULE

REGISTRATION
RECORD

FIGURE 6-19 The sequence diagram for the ADD NEW STUDENT use case. The use case
description for ADD NEW STUDENT is shown in Figure 6-13.

New

Frozen

Active/
Existing

Closed/
Former

Opens
account

Makes first
deposit Customer closes account

Bank closes account

Assets
released

Assets
attached

FIGURE 6-20 An example of a state transition diagram for a bank account.

In a state transition diagram, the states appear as rounded rectangles with the
state names inside. The small circle to the left is the initial state or the point where
the object first interacts with the system. Reading from left to right, the lines show
direction and describe the action or event that causes a transition from one state to
another. The circle at the right with a hollow border is the final state.

6.8.6 Activity Diagrams
An activity diagram resembles a horizontal flowchart that shows the actions and
events as they occur. Activity diagrams show the order in which the actions take
place and identify the outcomes. Figure 6-21 shows an activity diagram for a cash
 withdrawal at an ATM machine. Note that the customer initiates the activity by
inserting an ATM card and requesting cash. Activity diagrams also can display
 multiple use cases in the form of a grid, where classes are shown as vertical bars and
actions appear as horizontal arrows.

Sequence diagrams, state transition diagrams, and activity diagrams are dynamic
modeling tools that can help a systems analyst understand how objects behave and
interact with the system.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

194

Chapter 6 Object Modeling

6.8 The Unified Modeling Language (UML)

6.8.7 Business Process Modeling
In addition to sequence diagrams and activity diagrams, business process modeling
(BPM) can be used to represent the people, events, and interaction in a system. BPM
initially was discussed in Chapter 4 as a requirement diagramming tool, but it can be
used anytime during the systems development process. BPM works well with object
modeling, because both methods focus on the actors and the way they behave.

There are a number of tools supporting BPM. For example, on Windows, the
Bizagi Modeler tool supports business process modeling and simulation using the
standard BPM notation. On the Mac, Visual Paradigm supports the creation of BPM
diagrams (and several other modeling notations). Figure 6-22 shows a sample BPM
for an online discussion cycle.

Customer
inserts

ATM card

Customer
enters PIN

Customer
needs cash

Card is
accepted

PIN is
accepted Customer

requests
cash

ATM
adjusts
balance

ATM
notifies

customer

ATM
provides

cash

Sufficient funds available

Sufficient funds not available

Start

FIGURE 6-21 An activity diagram showing the actions and events involved in withdrawing cash from an ATM.

FIGURE 6-22 A BPM for an online discussion cycle.
Source: Wikimedia Commons

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

195

Phase 2 Systems Analysis

6.10 Summary

6.9 tOOls

Object modeling requires many types of diagrams to represent the proposed
 system. Creating the diagrams by hand is time consuming and tedious, so systems
 analysts rely on tools to speed up the process and provide an overall framework for
 documenting the system components. In addition, tools ensure consistency and pro-
vide common links so that once objects are described and used in one part of the
design, they can be reused multiple times without further effort.

There are many CASE tools tailored to UML. Tools such as Visio are popular for
drawing UML diagrams, but they lack semantics: They are useful for creating visually
pleasing figures, but they have no knowledge of the underlying artifacts. This means a
systems analyst can create diagrams that appear to be correct but are in fact incorrect
when it comes to the rules of the UML.

To overcome this shortcoming, proper systems modeling tools, such as Cameo
Systems Modeler or IBM’s Rational product family, are typically used. These tools
understand the meaning of the diagrams they help create, which suggests it’s diffi-
cult to create a UML diagram that is syntactically incorrect. These tools also provide
traceability, an important feature in the SDLC that links design artifacts backward to
requirements and forward to development and testing.

A QUESTION OF ETHICS

Your company sent several staff members for UML training by an outside vendor.
 Everyone who attended the training received a copy of the instructor’s materials, which
included study guides and sample exam questions and solutions.

After completing the training course, you are eligible to sit a certification exam. If you
pass the exam, you will be credentialed as a “UML Expert” by an independent agency. You
can parlay these credentials into a higher salary and boost your career.

A coworker who did not attend the training asks for a copy of the training materials.
He wants to take the exam without “wasting his time in class.” Should you give him a
copy of the training materials? If you do, how might this diminish your accomplishments?
If you don’t, would you be hurting the team by not helping another member become more
knowledgeable about the UML?

iStock.com/faberfoto_it

6.10 suMMAry

This chapter introduced object modeling, which is a popular technique that
describes a system in terms of objects. Objects represent real people, places, events,
and transactions. Unlike structured analysis, which treats data and processes
 separately, objects include data and processes that can affect the data. During the
 implementation process, systems analysts and programmers transform objects into
program code modules that can be optimized, tested, and reused as often as necessary.

O-O terms include attributes, methods, messages, and classes. Attributes are
 characteristics that describe the object. Methods are tasks or functions that the object
performs when it receives a command to do so. Objects can send messages, or com-
mands, that require other objects to perform certain methods, or tasks. The concept
that a message gives different meanings to different objects is called polymorphism. An
object resembles a black box with encapsulated, or self-contained, data and methods.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

196

Chapter 6 Object Modeling

6.10 Summary

Classes include objects that have similar attributes, or characteristics. Individual
members of a class are called object instances. Objects within a class can be grouped
into subclasses, which are more specific categories within the class. A class also can
belong to a more general category called a superclass.

After identifying the objects, classes, and relationships, an object relationship dia-
gram is prepared that shows the objects and how they interact to perform business
functions and transactions. The strongest relationship between objects is inheritance.

The UML is a widely used method of visualizing and documenting an informa-
tion system. UML techniques include use cases, use case diagrams, class diagrams,
sequence diagrams, state transition diagrams, and activity diagrams.

A use case describes a business situation initiated by an actor, who interacts with
the information system. Each use case represents a specific transaction, or scenario.
A use case diagram is a visual summary of related use cases within a system or sub-
system. A class diagram represents a detailed view of a single use case, showing the
classes that participate in the underlying business transaction, and the relationship
among class instances, which is called cardinality. A sequence diagram is a dynamic
model of a use case, showing the interaction among classes during a specified time
period. Sequence diagrams include lifelines, messages, and focuses. A state transition
diagram shows how an object changes from one state to another, depending on events
that affect the object. An activity diagram resembles a horizontal flowchart that
shows actions and events as they occur in a system.

In addition to object models, business process modeling (BPM) can be used to rep-
resent the people, events, and interaction in a system.

CASE tools provide an overall framework for system documentation. CASE tools
can speed up the development process, ensure consistency, and provide common links
that enable reuse during O-O analysis.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 197

Phase 2 Systems Analysis

Key Terms

activity diagram A diagram that resembles a horizontal flowchart that shows the actions and events as
they occur. Activity diagrams show the order in which actions take place and identify the outcome.

actor An external entity with a specific role. In a use case model, actors are used to model interaction
with the system.

attribute A single characteristic or fact about an entity. An attribute, or field, is the smallest piece of data
that has meaning within an information system. For example, a Social Security number or company
name could be examples of an attribute. In O-O analysis, an attribute is part of a class diagram that
describes the characteristics of objects in the class. Also known as a data element.

black box A metaphor for a process or an action that produces results in a non-transparent or
non-observable manner. In data flow diagrams, a process appears as a black box where the inputs,
outputs, and general function of the process are known, but the underlying details are not shown.

cardinality A concept that describes how instances of one entity relate to instances of another entity.
Described in entity-relationship diagrams by notation that indicates combinations that include zero or
one-to-many, one-to-one, and many-to-many.

child In inheritance, a child is the object that derives one or more attributes from another object, called
the parent.

class A term used in object-oriented modeling to indicate a collection of similar objects.

class diagram A detailed view of a single use case, showing the classes that participate in the use case,
and documenting the relationship among the classes.

encapsulation The idea that all data and methods are self-contained, as in a black box.

focus In a sequence diagram, a focus indicates when an object sends or receives a message. It is indicated
by a narrow vertical rectangle that covers the lifeline.

inheritance A type of object relationship. Inheritance enables an object to derive one or more of its
attributes from another object (e.g., an INSTRUCTOR object may inherit many traits from the
EMPLOYEE object, such as hire date).

instance A specific member of a class.

lifeline In a sequence diagram, a lifeline is used to represent the time during which the object above it is
able to interact with the other objects in the use case. An X marks the end of a lifeline.

message An O-O command that tells an object to perform a certain method.

method Defines specific tasks that an object must perform. Describes what and how an object does
something.

object Represents a real person, place, event, or transaction.

object model Describes objects, which combine data and processes. Object models are the end product
of O-O analysis.

object-oriented (O-O) analysis Describes an information system by identifying things called objects.
An object represents a real person, place, event, or transaction. O-O analysis is a popular approach
that sees a system from the viewpoint of the objects themselves as they function and interact with the
system.

parent In inheritance, a parent is the object from which the other object, the child, derives one or more
attributes.

polymorphism The concept that a message gives different meanings to different objects (e.g., a GOOD
NIGHT message might produce different results depending if it is received by a child or the family
dog).

relationships Enable objects to communicate and interact as they perform the business functions and
transactions required by a system. Relationships describe what objects need to know about each other,

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

198

Chapter 6 Object Modeling

Key Terms

how objects respond to changes in other objects, and the effects of membership in classes, super-
classes, and subclasses.

sequence diagram A diagram that shows the timing of transactions between objects as they occur.

state An adjective that describes an object’s current status (e.g., a student could be a CURRENT,
FUTURE, or PAST student).

state transition diagram Shows how an object changes from one state to another, depending on the
events that affect the object.

subclass A further division of objects in a class. Subclasses are more specific categories within a class.

superclass A more generalized category to which objects may belong (e.g., a NOVEL class might belong
to a superclass called BOOK).

system boundary Shows what is included and excluded from a system. Depicted by a shaded rectangle
in use case diagrams.

Unified Modeling Language (UML) A widely used method of visualizing and documenting software
systems design. UML uses O-O design concepts, but it is independent of any specific programming
language and can be used to describe business processes and requirements generally.

use case Represents the steps in a specific business function or process in UML.

use case description A description in UML that documents the name of the use case, the actor, a
 description of the use case, a step-by-step list of the tasks required for successful completion, and
other key descriptions and assumptions.

use case diagram A visual representation that illustrates the interaction between users and the
 information system in UML.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

199

Phase 2 Systems Analysis

Exercises

Exercises

Questions
1. What is O-O analysis?
2. Define an object in an information system and provide three examples.
3. Define an attribute and provide three examples.
4. Define a method and provide three examples.
5. Define encapsulation and explain how it is used in O-O analysis.
6. Define a class, subclass, and superclass and provide three examples of each.
7. Explain the concept of inheritance in object relationships.
8. Draw an object relationship diagram for a typical library system.
9. Define a use case and a use case diagram and prepare a sample of each.

10. Why is it important to use a modeling tool and not just a diagramming tool
during O-O analysis?

Discussion Topics
1. You are an IT consultant, and you are asked to create a new system for a small

real estate brokerage firm. You have no experience with O-O approach, and you
decide to try it. How will you begin? How will the tasks differ from structured
analysis?

2. Some professionals believe that it is harder for experienced analysts to learn
object-modeling techniques, because the analysts are accustomed to thinking
about data and processes as separate entities. Others believe that solid analytical
skills are easily transferable and do not see a problem in crossing over to the
newer approach. What do you think, and why?

3. The concept that the same message gives different meanings to different objects
is called polymorphism. Can you think of examples where this behavior may
provide unexpected results?

4. You are creating a system for a bowling alley to manage information about its
leagues. During the modeling process, you create a state transition diagram for
an object called League Bowlers. What are the possible states of a league bowler,
and what happens to a bowler who quits the league and rejoins the following
season?

5. The UML is a large and complex modeling language. How can an IT professional
tell when a UML diagram is correct and not just visually pleasing?

Projects
1. Contact the IT staff at your school or at a local business to learn if they use O-O

programming languages. If so, determine what languages and versions are used,
how long they have been in use, and why they were selected.

2. Create a presentation explaining O-O analysis, including definitions of basic
terms, including objects, attributes, methods, messages, and classes.

3. Draw an activity diagram showing the actions and events involved in depositing
a check to a bank account using a mobile app.

4. Investigate business process modeling languages, such as BPEL.
5. Prepare a report on at least three tools that provide UML support. Use the

tools’ capabilities for creating class diagrams and sequence diagrams as a key
requirement.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 7 Development Strategies

L E A R N I N G O B J E C T I V E S
When you finish this chapter, you should be able
to:

1. Explain the differences between traditional and
web-based systems development

2. Explain how Web 2.0, cloud computing, and
mobile devices may affect systems development

3. Explain how to select one of the four in-house
software development options

4. Explain outsourcing

5. Explain the main advantages and the unique
concerns of offshoring

6. Describe the concept of Software as a Service

7. Explain how a systems analyst helps in selecting
a development strategy

8. Execute the five steps in the software acquisition
process

9. Describe a request for proposal (RFP) and a
request for quotation (RFQ)

10. Summarize the tasks involved in completing the
systems analysis phase of the SDLC

C O N T E N T S
7.1 Traditional Versus Web-Based Systems

Development
7.2 Evolving Trends
7.3 In-House Software Development Options
 Case in Point 7.1: Doug’s Sporting Goods
7.4 Outsourcing
7.5 Offshoring
 Case in Point 7.2: Turnkey Services
7.6 Software as a Service
7.7 Selecting a Development Strategy
 Case in Point 7.3: Sterling Associates
7.8 The Software Acquisition Process
7.9 Completion of Systems Analysis Tasks
 A Question of Ethics
7.10 Summary
 Key Terms
 Exercises

CHAPTER7 Development
Strategies

Chapter 7 is the final chapter in the systems
 analysis phase of the SDLC. The main objective of
the systems analysis phase is to build a logical model
of the new information system. Chapters 4, 5, and 6
explained requirements modeling, data and process
 modeling, and object modeling. Chapter 7 describes
the remaining activities in the systems analysis phase,
which include evaluation of alternative solutions,
preparation of the system requirements document,

and presentation of the system requirements
 document to management. The chapter also explains
the transition to systems design.

The chapter includes three “Case in Point”
 discussion questions to help contextualize the concepts
described in the text. The “Question of Ethics” concerns
how truthful an answer should be when submitting a
response to an RFP. Is a slight exaggeration acceptable if
it means the company will win the contract?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

7.1 Traditional Versus Web-Based Systems Development 201

Phase 2 Systems Analysis

7.1 TradiTional Versus Web-based sysTems deVelopmenT

Just a few years ago, a typical company either developed software itself, purchased
a software package (which might need some modification), or hired consultants or
outside resources to perform the work. Today, a company has many more choices for
software acquisition, including application service providers, web-hosted software
options, and firms that offer a variety of enterprise-wide software solutions. This pro-
liferation of choices is due in part due to the enormous changes in business methods
and operations made possible by the Internet.

A systems analyst must consider whether development will take place in a tra-
ditional environment or in a web-centric framework. There are similarities and dif-
ferences with both approaches. For example, in an Internet-based system, the web
becomes an integral part of the application, rather than just a communication chan-
nel, and systems analysts need new application development tools and solutions to
handle the new systems.

Two representative web-based development environments are Microsoft’s .NET
and the open source MERN stack. Microsoft describes .NET as a developer plat-
form for building and running a variety of application types written in C# and
Visual Basic, including web-based, mobile, and traditional desktop applications.
The acronym MERN stands for MongoDB, Express, React, and Node. MERN
is used to develop universal applications in JavaScript. MongoDB is a database,
and Express, React, and Node are libraries or frameworks used for full-stack web
development.

Although there is a major trend toward web-based architecture, many firms rely
on traditional systems, either because they are using legacy applications that are not
easily replaced, or because they do not require a web component to satisfy user needs.
To choose between traditional and web-based development, consider some key differ-
ences between them. Building the application in a web-based environment can offer
greater benefits (and sometimes greater risks) when compared to a traditional envi-
ronment. The following sections list some characteristics of traditional versus web-
based development.

7.1.1 Traditional Development: In a traditional systems development
environment

• Compatibility issues, including existing hardware and software platforms and
legacy system requirements, influence systems design.

• Systems are designed to run on local and wide-area company networks.

• Systems often utilize Internet links and resources, but web-based features are
treated as enhancements rather than core elements of the design.

• Development typically follows one of three main paths: in-house development,
purchase of a software package with possible modification, or use of outside
consultants.

• Scalability can be affected by network limitations and constraints.

• Many applications require substantial desktop computing power and resources.

• Security issues usually are less complex than with web-based systems,
because the system operates on a private company network, rather than the
Internet.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

202

Chapter 7 Development Strategies

7.2 Evolving Trends

7.1.2 Web-Based Development: In a web-based systems development
environment

• Systems are developed and delivered in an Internet-based framework such as
.NET

• Internet-based development treats the web as the platform, rather than just a
communication channel.

• Web-based systems are easily scalable and can run on multiple hardware
environments.

• Large firms tend to deploy web-based systems as enterprise-wide software solu-
tions for applications such as customer relationship management, order pro-
cessing, and materials management.

• Web-based software treats the software application as a service that is less
dependent on desktop computing power and resources.

• When companies acquire web-based software as a service rather than a product
they purchase, they can limit in-house involvement and have the vendor install,
configure, and maintain the system by paying agreed-upon fees.

• Web-based software usually requires additional layers, called middleware, to
communicate with existing software and legacy systems.

• Web-based solutions open more complex security issues that should be addressed.

7.2 eVolVing Trends

In the constantly changing world of IT, no area is more dynamic than Internet tech-
nology. Three examples of evolving trends are Web 2.0, cloud computing, and mobile
devices. Systems analysts should be aware of these trends and consider them as they
plan large-scale systems.

Many IT professionals use the term Web 2.0 to describe
a second generation of the web that enables people to
collaborate, interact, and share information much more
effectively. This new environment is based on continuously
available user applications rather than static HTML web-
pages, without limitations regarding the number of users or
how they access, modify, and exchange data. The Web 2.0
environment enhances interactive experiences, including
wikis and blogs, and social networking applications such as
Facebook, LinkedIn, and Twitter.

As shown in Figure 7-1, the National Institute of Stan-
dards and Technology (NIST) defines cloud computing as
“a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing
resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with
minimal management effort or service provider interaction.”
Cloud computing is often represented by a cloud symbol
that indicates a network or the Internet. Cloud computing
can be viewed as an online SaaS and data environment sup-
ported by powerful computers that makes Web 2.0 possible.

FIGURE 7-1 NIST definition of cloud computing.
Source: NIST

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

203

Phase 2 Systems Analysis

7.3 In-House Software Development Options

Mobile devices have become ubiquitous. Smartphones and tablets are now found
in personal use and across the enterprise in most organizations. Today’s mobile
devices have enough computing power to provide processing “at the edge,” which
means at the end of a network, in the user’s hands. Developing apps for mobile
devices requires many new platforms, although many of today’s development tools
support web-based and mobile application development at the same time.

7.3 in-House sofTWare deVelopmenT opTions

A company can choose to develop its own systems or purchase (and possibly cus-
tomize) a software package. These development alternatives are shown in Figure 7-2.
Although many factors influence this decision, the most important consideration is
the total cost of ownership (TCO), which was explained in Chapter 4. In addition to
these options, companies also develop user applications designed around commer-
cial software packages, such as Microsoft Office, to improve user productivity and
efficiency.

FIGURE 7-2 Instead of outsourcing, a company can choose to develop a system in-house or
purchase and possibly customize a commercial package.

7.3.1 Make or Buy Decision
The choice between developing versus purchasing software often is called a make
or buy, or build or buy, decision. The company’s IT department makes, builds, and
develops in-house software. A software package is obtained from a vendor or an
application service provider.

The package might be a standard commercial application or a customized pack-
age designed specifically for the purchaser. Companies that develop software for sale
are called software vendors. A firm that enhances a commercial package by adding
custom features and configuring it for a particular industry is called a value-added
reseller (VAR).

Software packages are available for every type of business activity. A software
package that can be used by many different types of organizations is called a horizontal
application. An accounting package is a good example of a horizontal application
because many different businesses or separate divisions that exist in large, diversified
companies can utilize it.

In contrast, a software package developed to handle information requirements for
a specific type of business is called a vertical application. For example, organizations

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

204

Chapter 7 Development Strategies

7.3 In-House Software Development Options

with special system requirements include colleges, banks, hospitals, insurance com-
panies, construction companies, real estate firms, and airlines. Figure 7-3 shows a
typical restaurant point of sale (POS) system running on various devices. The organi-
zations may need vertical applications to handle their unique business requirements
but often use horizontal applications for basic business needs, such as payroll process-
ing and accounts payable.

FIGURE 7-3 Restaurants use vertical applications like point of sale (POS)
systems to support their unique business requirements.
Source: rmpos

Of the in-house software acquisition options—developing a system, buying a
software package, or customizing a software package—each has advantages, disad-
vantages, and cost considerations, as shown in Figure 7-4. These software acquisition
options are described in detail in the following sections.

REASONS FOR IN-HOUSE
DEVELOPMENT

REASONS FOR PURCHASING A
SOFTWARE PACKAGE

Satisfy unique business requirements Lower costs

Minimize changes in business procedures
and policies

Requires less time to implement

Meet constraints of existing systems Proven reliability and performance
benchmarks

Meet constraints of existing technology Requires less technical development staff

Develop internal resources and capabilities Future upgrades provided by the vendor

Satisfy unique security requirements Obtain input from other companies

FIGURE 7-4 Companies consider various factors when comparing in-house development with the purchase of a
software package.

7.3.2 Developing Software In-House
With an enormous variety of software packages available to handle horizontal
and vertical business operations, why would a firm choose to develop its own soft-
ware? Typically, companies choose in-house development to satisfy unique business

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

205

Phase 2 Systems Analysis

7.3 In-House Software Development Options

requirements, minimize changes in business procedures and policies, meet constraints
of existing systems and existing technology, and develop internal resources and
capabilities.

SATISFY UNIQUE BUSINESS REQUIREMENTS: Companies often decide to develop
software in-house because no commercially available software package can meet
their unique business requirements. A college, for example, needs a course scheduling
system based on curriculum requirements, student demand, classroom space, and
available instructors. A package delivery company needs a system to identify the
best combination of routes and loading patterns for the company’s fleet of delivery
trucks. If existing software packages cannot handle those requirements, then in-house
developed software might be the only choice.

MINIMIZE CHANGES IN BUSINESS PROCEDURES AND POLICIES: A company
also might choose to develop its own software if available packages will require
changes in current business operations or processes. Installing a new software
package almost always requires some degree of change in how a company does
business; however, if the installation of a purchased package will be too disruptive,
the organization might decide to develop its own software instead.

MEET CONSTRAINTS OF EXISTING SYSTEMS: Any new software installed must
work with existing systems. For example, if a new budgeting system must interface
with an existing accounting system, finding a software package that works correctly
with the existing accounting system might prove difficult. If so, a company could
develop its own software to ensure that the new system will interface with the old
system.

MEET CONSTRAINTS OF EXISTING TECHNOLOGY: Another reason to develop
software in-house is that the new system must work with existing hardware and
legacy systems. That could require a custom design, an upgrade to the environment,
or in-house software that can operate within those constraints. A systems analyst
addresses the issue of technical feasibility during the preliminary investigation. Now,
in the systems analysis phase, the analyst must determine whether in-house software
development is the best overall solution.

DEVELOP INTERNAL RESOURCES AND CAPABILITIES: By designing a system
in-house, companies can develop and train an IT staff who understands the
organization’s business functions and information support needs. Many firms feel
that in-house IT resources and capabilities provide a competitive advantage because
an in-house team can respond quickly when business problems or opportunities arise.
For example, if a company lacks internal resources, it must depend on an outside firm
for vital business support. Also, outsourcing options might be attractive, but a series
of short-term solutions would not necessarily translate into lower TCO over the long
term. Top managers often feel more comfortable with an internal IT team to provide
overall guidance and long-term stability. In-house development also allows a firm to
leverage the skill set of the IT team, which is already on board and being compensated.

7.3.3 Purchasing a Software Package
If a company decides not to outsource, a commercially available software package
might be an attractive alternative to developing its own software. Advantages of pur-
chasing a software package over developing software in-house include lower costs,

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

206

Chapter 7 Development Strategies

7.3 In-House Software Development Options

less time to implement a system, proven reliability and performance benchmarks, less
technical development staff, future upgrades that are provided by the vendor, and
the ability to obtain input from other companies who already have implemented the
software.

LOWER COSTS: Because many companies use software packages, software vendors
spread the development costs over many customers. Compared with software
developed in-house, a software package almost always is less expensive, particularly
in terms of initial investment. However, even though the initial cost is less, purchased
software can involve expenses caused by business disruption, changing business
processes, and retraining employees.

REQUIRES LESS TIME TO IMPLEMENT: When a software package is purchased,
it already has been designed, programmed, tested, and documented. The in-house
time normally spent on those tasks, therefore, is eliminated. Of course, the
software must still be installed and integrated into the systems environment,
which can take a significant amount of time. Also, even though implementation
is quicker, TCO can be higher due to added training expenses and software
modifications.

PROVEN RELIABILITY AND PERFORMANCE BENCHMARKS: If the package has
been on the market for any length of time, any major problems probably have been
detected already and corrected by the vendor. If the product is popular, it almost
certainly has been rated and evaluated by independent reviewers.

REQUIRES LESS TECHNICAL DEVELOPMENT STAFF: Companies that use
commercial software packages often are able to reduce the number of programmers
and systems analysts on the IT staff. Using commercial software also means that
the IT staff can concentrate on systems whose requirements cannot be satisfied by
software packages.

FUTURE UPGRADES PROVIDED BY THE VENDOR: Software vendors regularly
upgrade software packages by adding improvements and enhancements to create a
new version or release. A new release of a software package, for example, can include
drivers to support a new laser printer or a new type of data storage technology.
In many cases, the vendor receives input and suggestions from current users when
planning future upgrades.

INPUT FROM OTHER COMPANIES: Using a commercial software package means
that users in other companies can be contacted to obtain their input and impressions.
Trying the package or making a site visit to observe the system in operation may be
very useful before a final decision is made. Companies can make use of user groups to
share experiences with a software package.

7.3.4 Customizing a Software Package
If the standard version of a software product does not satisfy a company’s require-
ments, the firm can consider adapting the package to meet its needs. Three ways to
customize a software package are as follows:

• Purchase a basic package that vendors will customize to suit the project’s
needs. Many vendors offer basic packages in a standard version with add-on
components that are configured individually. A vendor offers options when the

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

207

Phase 2 Systems Analysis

7.3 In-House Software Development Options

standard application will not satisfy all customers. A human resources infor-
mation system is a typical example, because each company handles employee
compensation and benefits differently.

• Negotiate directly with the software vendor to make enhancements to meet the
project’s needs by paying for the changes.

• Purchase the package and make project-specific modifications, if this is permis-
sible under the terms of the software license. A disadvantage of this approach is
that systems analysts and programmers might be unfamiliar with the software
and will need time to learn the package and make the modifications correctly.

Additionally, some advantages of purchasing a standard package disappear if
the product must be customized. If the vendor does the customizing, the modified
package probably will cost more and take longer to obtain. Another issue is future
support: Although vendors regularly upgrade their standard software packages, they
might not upgrade a customized version. In addition, if the modifications are done by
the company purchasing the software, when a new release of the package becomes
available, the company might have to modify the new version on its own, because the
vendor will not support modifications installed by the customer.

7.3.5 Creating User Applications
Business requirements sometimes can be fulfilled by a user application, rather than a
formal information system or commercial package. User applications are examples of
user productivity systems, which were discussed in Chapter 1.

A user application utilizes standard business software, such as Microsoft Word or
Microsoft Excel, which has been configured in a specific manner to enhance user pro-
ductivity. For example, to help a sales rep respond rapidly to customer price requests,
an IT support person can set up a form letter with links to a spreadsheet that calcu-
lates incentives and discounts. In addition to configuring the software, the IT staff can
create a user interface, which includes screens, commands, controls, and features that
enable users to interact more effectively with the application.

In some situations, user applications offer a simple, low-cost solution. Most IT
departments have a backlog of projects, and IT solutions for individuals or small
groups do not always receive a high priority. At the same time, application software
is more powerful, flexible, and user-friendly than ever. Companies such as Apple
and Microsoft offer software suites and integrated applications that can exchange
data with programs that include tutorials, wizards, and Help features to guide less-
experienced users who know what they need to do but do not know how to make it
happen.

Many companies empower lower-level employees by providing more access to data
and more powerful data management tools. The main objective is to allow lower-
level employees more access to the data they require to perform their jobs, with no
intervention from the IT department. This can be accomplished by creating effective
user interfaces for company-wide applications, such as accounting, inventory, and
sales systems. Another technique is to customize standard productivity software,
such as Microsoft Word or Microsoft Excel, to create user applications. In either
case, empowerment makes the IT department more productive because it can spend
less time responding to the daily concerns and data needs of users and more time on
high-impact systems development projects that support strategic business goals.

Empowerment reduces costs and makes good business sense, but companies
that adopt this approach must provide the technical support that empowered users
require. In most large- and medium-sized companies, a service desk within the IT

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

208

Chapter 7 Development Strategies

7.4 Outsourcing

department is responsible for providing user support. The service desk offers services
such as hotline assistance, training, and guidance to users who need technical help.

Users typically require spreadsheets, database management programs, and other
software packages to meet their information needs. If user applications access corpo-
rate data, appropriate controls must be provided to ensure data security and integrity.
For example, some files should be hidden totally from view; others should have read-
only properties, so users can view, but not change, the data.

CASE IN POINT 7.1: Doug’s sporting gooDs

Doug’s Sporting Goods sells hiking and camping supplies. The company has grown considerably
in the past two years. They want to develop a customer order entry system and hired your
IT consulting firm to advise them about development strategies. They are leaning toward
in-house development because they do not want to depend on outside vendors and suppliers
for technical support and upgrades. They also say they are not interested in selling on the Web,
but that could change in the future. They want to meet with you tomorrow to make a decision.
What will you say to them at the meeting?

7.4 ouTsourcing

Outsourcing is the transfer of information systems development, operation, or main-
tenance to an outside firm that provides these services, for a fee, on a temporary or
long-term basis. Outsourcing can refer to relatively minor programming tasks: renting
software from a service provider, outsourcing a basic business process (often called
business process outsourcing, or BPO), or handling a company’s entire IT function.

7.4.1 The Growth of Outsourcing
Traditionally, firms outsourced IT tasks as a way of controlling costs and dealing with
rapid technological change. Oracle cites data that shows that businesses spend up to
80% of their IT budgets maintaining existing software and systems, which forces IT
managers “. . . to spend time managing tedious upgrades instead of revenue-generating
IT projects.” While those reasons still are valid, outsourcing has become part of an
overall IT strategy for many organizations. The outsourcing trend also has affected
software vendors, who have adjusted their marketing accordingly.

A firm that offers outsourcing solutions is called a service provider. Some service
providers concentrate on specific software applications; others offer business services
such as order processing and customer billing. Still others offer enterprise-wide soft-
ware solutions that integrate and manage functions such as accounting, manufactur-
ing, and inventory control.

Two popular outsourcing options involve application service providers and firms
that offer Internet business services. These terms are explained in the following
sections.

APPLICATION SERVICE PROVIDERS: An application service provider (ASP) is a
firm that delivers a software application, or access to an application, by charging a
usage or subscription fee. An ASP provides more than a license to use the software;
it rents an operational package to the customer. ASPs typically provide commercially

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

209

Phase 2 Systems Analysis

7.4 Outsourcing

available software such as databases and accounting packages. If a company uses an
ASP to supply a data management package, for example, the company does not have
to design, develop, implement, or maintain the package.

INTERNET BUSINESS SERVICES: Some firms offer Internet business services (IBSs),
which provide powerful web-based support for transactions such as order processing,
billing, and customer relationship management. Another term for IBS is managed
hosting, because the outside firm (host) manages system operations.

An IBS solution is attractive to customers because it offers online data center sup-
port, mainframe computing power for mission-critical functions, and universal access
via the Internet. Many firms, such as Rackspace, compete in the managed cloud ser-
vices market, as shown in Figure 7-5.

7.4.2 Outsourcing Fees
Firms that offer Software as a Service, rather than a product, have developed fee
structures that are based on how the application is used by customers during a
specific time period. Several models exist, including fixed fee, subscription, and usage
or transaction. A fixed fee model uses a set fee based on a specified level of service
and user support. A subscription model has a variable fee based on the number of
users or workstations that have access to the application. Finally, a usage model
or transaction model charges a variable fee based on the volume of transactions or
operations performed by the application.

When a company considers outsourcing, it should estimate usage characteristics to
determine which fee structure would be most desirable and then attempt to negotiate
a service provider contract based on that model.

FIGURE 7-5 Rackspace managed cloud services.
Source: Rackspace

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

210

Chapter 7 Development Strategies

7.5 Offshoring

7.4.3 Outsourcing Issues and Concerns
When a company decides to outsource IT functions, it takes an important step
that can affect the firm’s resources, operations, and profitability. Mission-critical
IT systems should be outsourced only if the result is a cost-attractive, reliable
business solution that fits the company’s long-term business strategy and involves an
acceptable level of risk. Moving IT work overseas raises even more issues, including
potential concerns about control, culture, communication, and security.

In addition to long-term strategic consequences, outsourcing also can raise some
concerns. For example, a company must turn over sensitive data to an external service
provider and trust the provider to maintain security, confidentiality, and quality. Also,
before outsourcing, a company must carefully review issues relating to insurance,
potential liability, licensing and information ownership, warranties, and disaster recovery.

Most important, a company considering outsourcing must realize that the solu-
tion can be only as good as the outsourcing firm that provides the service. A dynamic
economy can give rise to business failures and uncertainty about the future. In this
climate, it is especially important to review the history and financial condition of an
outsourcing firm before making a commitment.

Mergers and acquisitions also can affect outsourcing clients. Even with large,
financially healthy firms, a merger or acquisition can have some impact on clients and
customers. If stability is important, an outsourcing client should consider these issues.

Outsourcing can be especially attractive to a company whose volume fluctuates
widely, such as a defense contractor. In other situations, a company might decide to
outsource application development tasks to an IT consulting firm if the company
lacks the time or expertise to handle the work on its own. Outsourcing relieves a
company of the responsibility of adding IT staff in busy times and downsizing when
the workload lightens. A major disadvantage of outsourcing is that it raises employee
concerns about job security. Talented IT people usually prefer positions where the
firm is committed to in-house IT development—if they do not feel secure, they might
decide to work directly for the service provider.

7.5 offsHoring

Offshoring, also known as offshore outsourcing or global outsourcing, refers to the
practice of shifting IT development, support, and operations to other countries. In
a trend similar to the outflow of manufacturing jobs over a several-decade period,
many firms are sending IT work overseas.

IT work can move offshore even faster than manufacturing, because it is easier to
ship work across networks and put consultants on airplanes than it is to ship bulky
raw materials, build factories, and deal with tariffs and transportation issues. Sev-
eral years ago, the IT consulting firm Gartner, Inc., accurately forecasted the steady
growth of offshore outsourcing and predicted that outsourcing would evolve from
labor-intensive maintenance and support to higher-level systems development and
software design.

The main reason for offshoring is the same as domestic outsourcing: lower
 bottom-line costs. Offshore outsourcing, however, involves some unique risks and
concerns. For example, workers, customers, and shareholders in some companies
have protested this trend and have raised public awareness of possible economic
impact. Even more important, offshore outsourcing involves unique concerns regard-
ing project control, security issues, disparate cultures, and effective communication
with critical functions that might be located halfway around the globe.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

211

Phase 2 Systems Analysis

7.7 Selecting a Development Strategy

7.6 sofTWare as a serVice

In the traditional model, software vendors develop and sell application packages to
customers. Typically, customers purchase licenses that give them the right to use the
software under the terms of the license agreement. Although this model still accounts
for a large percentage of software acquisition, a new model, called Software as a
Service (SaaS), is changing the picture dramatically.

SaaS is a model of software deployment in which an application is hosted as a
service provided to customers over the Internet. SaaS reduces the customer’s need for
software maintenance, operation, and support. In effect, SaaS provides the function-
ality the customer needs, but without the associated development, infrastructure, and
maintenance costs.

In a highly competitive marketplace, major vendors constantly strive to deliver
new and better solutions. For example, Microsoft claims that its SaaS platform offers
the best solution and business value. One of their more popular consumer SaaS offer-
ings is Office 365, shown in Figure 7-6. This is a full-fledged version of the Microsoft
Office suite that runs in a browser window.

CASE IN POINT 7.2: turnkey services

Turnkey Services is an ASP that offers payroll and tax preparation services for hundreds
of businesses in the Midwest. The firm is considering a major expansion into accounting
and financial services and is looking into the possibility of supporting this move by hiring IT
subcontractors in several foreign countries. Turnkey’s president has asked you to help him reach
a decision. Specifically, he wants you to cite the pros and cons of offshoring. He wants you to
present your views at a meeting of Turnkey managers next week. How will you proceed?

7.7 selecTing a deVelopmenT sTraTegy

Selecting the best development strategy is an important decision that requires com-
panies to consider multiple factors. The systems analyst has an important role to
play in this decision-making process. In particular, analyzing the costs and benefits of
each development alternative is a key to providing objective data to management. A
cost-benefit checklist can help guide this analysis.

FIGURE 7-6 Microsoft Office 365 provides web-based access to the complete Office suite.
Source: Microsoft Corporation

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

212

Chapter 7 Development Strategies

7.7 Selecting a Development Strategy

7.7.1 The Systems Analyst’s Role
At some point in the systems development process, the company must decide whether
to use an outsourcing option, develop software in-house, acquire a software package,
develop user applications, or select some combination of these solutions. The decision
depends on the company’s current and anticipated future needs. It will affect the
remaining SDLC phases and the systems analyst’s subsequent involvement in the
project. The decision to develop software in-house, for example, will require more
participation from the systems analyst than outsourcing or choosing a commercial
package. Management usually makes a determination after receiving written
recommendations from the IT staff and a formal presentation, which is described later
in this chapter.

Even a single system can use a mix of software alternatives. For example, a com-
pany might purchase a standard software package to process its payroll and then
develop its own software to handle the interface between the payroll package and the
company’s in-house manufacturing cost analysis system.

The evaluation and selection of alternatives is not a simple process. The objective
is to obtain the product with the lowest TCO, but actual cost and performance can
be difficult to forecast. When selecting hardware and software, systems analysts often
work as an evaluation and selection team. A team approach ensures that critical fac-
tors are not overlooked and that a sound choice is made. The evaluation and selection
team also must include users, who will participate in the selection process and feel a
sense of ownership in the new system.

The primary objective of the evaluation and selection team is to eliminate system
alternatives that will not meet requirements, rank the alternatives that are feasible,
and present the viable alternatives to management for a final decision. The process
begins with a careful study of the costs and benefits of each alternative, as explained
in the following section.

7.7.2 Analyzing Cost and Benefits
Financial analysis tools have been around for a long time. From the abacus to the
pocket calculator, people have always sought easier ways to work with numbers. This
section describes cost and benefit analysis and explains popular tools that can help a
systems analyst examine an IT project.

Chapter 2 explained that economic feasibility is one of the four feasibility
measurements that are made during the preliminary investigation of a systems
request. Now, at the end of the systems analysis phase of the SDLC, financial analysis
tools and techniques must be applied to evaluate development strategies and decide
how the project will move forward. Part C of the Systems Analyst’s Toolkit describes
three popular tools, which are payback analysis, return on investment (ROI), and net
present value (NPV). Payback analysis determines how long it takes an information
system to pay for itself through reduced costs and increased benefits. Return on
investment (ROI) is a percentage rate that compares the total net benefits (the return)
received from a project to the total costs (the investment) of the project. The net
present value (NPV) of a project is the total value of the benefits minus the total
value of the costs, with both costs and benefits adjusted to reflect the point in time at
which they occur.

These tools, and others, can be used to determine TCO, which was described in
Chapter 4. At this stage, the analyst will identify specific systems development strate-
gies and choose a course of action. For example, a company might find that its TCO
will be higher if it develops a system in-house, compared with outsourcing the project
or using an ASP.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

213

Phase 2 Systems Analysis

7.7 Selecting a Development Strategy

An accurate forecast of TCO is critical, because nearly 80% of total costs occur
after the purchase of the hardware and software, according to Gartner, Inc. An IT
department can develop its own TCO estimates or use TCO calculation tools offered
by vendors. For example, as shown in Figure 7-7, HP Enterprise offers several free
TCO calculators to determine the ROI of various development strategies and migra-
tion options.

FIGURE 7-7 HP Enterprise provides several free TCO calculators.
Source: Hewlett Packard(HP)

7.7.3 Cost-Benefit Analysis Checklist
Chapter 2 explained how to use the payback analysis tool during the preliminary
investigation to help determine whether a project is economically feasible. Now, all
the financial analysis tools will be used to evaluate various development strategies.
The best way to apply the tools is to develop a cost-benefit checklist with the follow-
ing steps:

• List each development strategy being considered.

• Identify all costs and benefits for each alternative. Be sure to indicate when
costs will be incurred and benefits realized.

• Consider future growth and the need for scalability.

• Include support costs for hardware and software.

• Analyze various software licensing options, including fixed fees and formulas
based on the number of users or transactions.

• Apply the financial analysis tools to each alternative.

• Study the results and prepare a report to management.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

214

Chapter 7 Development Strategies

7.8 The Software Acquisition Process

7.8 THe sofTWare acquisiTion process

Although each situation is different, the following section describes a typical example
of the issues and tasks involved in software acquisition.

Step 1: Evaluate the Information System Requirements
Based on the analysis of the system requirements, the system’s key features must be
identified; network and web-related issues considered; volume and future growth esti-
mated; any hardware, software, or personnel constraints specified; and an RFP or a
quotation prepared.

IDENTIFY KEY FEATURES: Whether in-house development or outsourcing
options are being considered, the analyst must develop a clear, detailed list of
features that can serve as an overall specification for the system. Using the data
gathered during fact-finding, which was discussed in Chapter 4, list all system
requirements and critical features. This information will be included in the system
requirements document, which is the end product of the SDLC systems analysis
phase.

CONSIDER NETWORK AND WEB-RELATED ISSUES: As the system requirements
are evaluated, the network and web-related issues must be considered. The analyst
must decide whether the system will run on a network, the Internet, or a company
intranet and build these requirements into the design. Also, it must be determined
whether the system will exchange data with vendor or customer systems and ensure
that the system will be compatible.

ESTIMATE VOLUME AND FUTURE GROWTH: The analyst needs to know the
 current volume of transactions and forecast future growth. Figure 7-8 shows volume
estimates for an order processing system. In addition to current levels, the figure
displays two forecasts; one based on the existing order processing procedures and
another that assumes a new website is operational.

A comparison of the two forecasts shows that the website will generate more new
customers, process almost 80% more orders, and substantially reduces the need for
sales reps and support staff. If in-house development is being considered, make sure
that the software and hardware can handle future transaction volumes and data
 storage requirements. Conversely, if outsourcing is being considered, volume and
usage data is essential to analyze ASP fee structures and develop cost estimates for
outsourcing options.

CASE IN POINT 7.3: sterling AssociAtes

Sterling Associates specializes in advising clients on IT projects and information systems devel-
opment. Marketing is creating a brochure for prospective new clients, and they want you to
develop a section that describes payback analysis, ROI, and NPV in simple terms and mentions
the pros and cons of each financial analysis tool. How do you proceed?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

215

Phase 2 Systems Analysis

7.8 The Software Acquisition Process

SPECIFY HARDWARE, SOFTWARE, OR PERSONNEL CONSTRAINTS: The
analyst must determine whether existing hardware, software, or personnel issues will
affect the acquisition decision. For example, if the firm has a large number of legacy
systems or if an Enterprise Resource Planning (ERP) strategy has been adopted, these
factors will have an impact on the decision. Also, the company’s policy regarding
outsourcing IT functions must be investigated, and whether outsourcing is part of a
long-term strategy. With regard to personnel issues, in-house staffing requirements
must be defined to develop, acquire, implement, and maintain the system—and
determine whether the company is willing to commit to those staffing levels versus an
outsourcing option.

PREPARE A REQUEST FOR PROPOSAL OR QUOTATION: To obtain the informa-
tion needed to make a decision, the analyst should prepare an RFP or an RFQ. The
two documents are similar but used in different situations, based on whether or not a
specific software product has been selected.

A request for proposal (RFP) is a document that describes the company, lists
the IT services or products needed, and specifies the features required. An RFP
helps ensure that the organization’s business needs will be met. An RFP also spells
out the service and support levels required. Based on the RFP, vendors can decide
if they have a product that will meet the company’s needs. RFPs vary in size and
complexity, just like the systems they describe. An RFP for a large system can
contain dozens of pages with unique requirements and features. An RFP can be used
to designate some features as essential and others as desirable. An RFP also requests
specific pricing and payment terms. There are several online sources where RFP
templates can be found.

When several responses to an RFP are evaluated, it is helpful to use an evaluation
model. An evaluation model is a technique that uses a common yardstick to measure
and compare vendor ratings.

Figure 7-9 shows two evaluation models for a network project. The evaluation
model at the top of the figure simply lists the key elements and each vendor’s score.
The model at the bottom of the figure adds a weight factor. In this example, each
element receives a rating based on its relative importance. Although the initial scores
are the same in both models, note that vendor A has the highest point total in the top
example, but vendor C emerges as the best in the weighted model.

CURRENT LEVEL

FUTURE GROW TH
(based on existing

procedures)

FUTURE GROW TH
(assuming new website is

operational)

Customers 36,500 40,150 63,875

Daily Orders 1,435 1,579 2,811

Daily Order Lines 7,715 7,893 12,556

Sales Reps 29 32 12

Order Processing
Support Staff

2 4 3

Products 600 650 900

FIGURE 7-8 Volume estimates for an order processing system showing current activity levels and two forecasts: one based on
the existing order processing procedures and another that assumes a new website is operational.

Online Order Processing System Estimated Activity During Next 12-Month Period

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

216

Chapter 7 Development Strategies

7.8 The Software Acquisition Process

No standard method exists for assigning the weight factors. Each firm will have
its own approach, which might be tailored to fit a specific situation. An analyst usu-
ally obtains as much input as possible and then circulates proposed values for further
comment and, hopefully, a consensus.

Evaluation models are valuable tools that can be used throughout the SDLC. A
spreadsheet program can be used to build an evaluation model, experiment with dif-
ferent weighting factors, and graph the results.

A request for quotation (RFQ) is more specific than an RFP. When an RFQ is
used, the specific product or service desired is already known; only price quotations
or bids are needed. RFQs can involve outright purchase or a variety of leasing options
and can include maintenance or technical support terms. Some vendors even provide
convenient RFP or RFQ forms on their websites. RFPs and RFQs have the same
objective: to obtain vendor replies that are clear, comparable, and responsive, so that
a well-informed selection decision can be made.

Step 2: Identify Potential Vendors or Outsourcing Options
The next step is to identify potential vendors or outsourcing providers. The Internet
is a primary marketplace for all IT products and services, and descriptive information
can be found on the web about all major products and acquisition alternatives.

FIGURE 7-9 The three vendors have the same initial ratings, but the two evaluation models produce different
results. In the unweighted model at the top of the figure, vendor A has the highest total points. However, after
applying weighting factors, vendor C is the winner, as shown in the model at the bottom of the figure.

Instructions: Rate each vendor on a scale from 1(low) to 10 (high), then add vendor scores
to calculate total points.

 VENDOR A VENDOR B VENDOR C

Price 6 5 9

Completion Date 2 5 8

Layout/Design 8 8 5

References 10 6 3

TOTAL POINTS 26 24 25

Unweighted Evaluation Model for a Network Project

Instructions: Rate each vendor on a scale from 1(low) to 10 (high), then multiply the vendor’s
score by the weight factor. Add vendor scores to calculate total points.

 WEIGHT
 FACTOR VENDOR A VENDOR B VENDOR C

Price 25 6 * 25 = 150 5 * 25 = 125 9 * 25 = 225

Completion Date 25 2 * 25 = 50 5 * 25 = 125 8 * 25 = 200

Layout/Design 35 8 * 35 = 280 8 * 35 = 280 5 * 35 = 175

References 15 10 * 15 = 150 6 * 15 = 90 3 * 15 = 45

TOTAL POINTS 100 630 620 645

Weighted Evaluation Model for a Network Project

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

217

Phase 2 Systems Analysis

7.8 The Software Acquisition Process

If vertical applications for specific industries need to be located, industry trade jour-
nals or websites can be used to find reviews for industry-specific software. Industry trade
groups can often provide referrals to companies that offer specific software solutions.

Another approach is to work with a consulting firm. Many IT consultants offer
specialized services that help companies select software packages. A major advantage
of using a consultant is that the analyst can tap into broad experience that is difficult
for any one company to acquire. Consultants can be located by contacting profes-
sional organizations or industry sources or simply by searching the Internet. Using a
consultant involves additional expense but can prevent even more costly mistakes.

No matter what the topics of interest are, there are sure to be one or more online
forums where people gather to meet, offer support, and exchange ideas. Forums can
be hosted by private or public entities, or reside in larger communities such as Google
Groups or Reddit, which allow users to join existing groups or start their own. A
web search can locate forums of interest, or the websites of specific companies, such
as Microsoft, and can provide a valuable source of information for IT professionals,
including blogs, forums, webcasts, and other resources, as shown in Figure 7-10.

FIGURE 7-10 Microsoft Community is a valuable resource for IT professionals.
Source: Microsoft Corporation

Step 3: Evaluate the Alternatives
After identifying the alternatives, the analyst must select the one that best fits the
company’s needs. Information about the options should be obtained from as many
sources as possible, including vendor presentations and literature, product documen-
tation, trade publications, and companies that perform software testing and evalu-
ation. To learn more about particular software packages, search the Internet using
keywords that describe the application. Websites maintained by consultants and soft-
ware publishers often include product references and links to vendors. As part of the
evaluation process, try to obtain information from existing users, test the application,
and benchmark the package.

EXISTING USERS: Existing users can be contacted to obtain feedback and learn
about their experiences. For large-scale software packages, ASPs and vendors typically

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

218

Chapter 7 Development Strategies

7.8 The Software Acquisition Process

supply user references. User references are important because it must be known
whether the software package has worked well for similar companies. Be aware that
some vendors limit their reference lists to satisfied clients, so mostly positive feedback
should be expected from those firms.

APPLICATION TESTING: If a software package is one of the options, find out if it is
possible for users in the organization to try the product. For horizontal applications
or small systems, using a demo copy to enter a few sample transactions could be an
acceptable test. For vertical applications or large systems, a team of IT staff and users
might need several days or weeks to perform tests.

BENCHMARKING: To determine whether a package can handle a certain transac-
tion volume efficiently, a benchmark test can be performed. A benchmark measures
the time a package takes to process a certain number of transactions. For example, a
benchmark test can measure the time needed to post 1,000 sales transactions.

If benchmarks are used, remember that a benchmark test is conducted in a con-
trolled environment, which might not resemble the actual day-to-day situation at the
project’s company. Although benchmarking cannot predict project-specific results,
benchmark testing is a good way to measure relative performance of two or more
competing products in a standard environment.

Many IT publications publish regular reviews of individual packages, including
benchmark tests, and often have annual surveys covering various categories of soft-
ware. Most of the publications now offer online and mobile versions, with additional
features, search capability, and IT links.

Information can also be obtained from independent firms that benchmark various
software packages and sell comparative analyses of the results, as shown in Figure 7-11.
The Transaction Processing Performance Council (TPC) is an example of a nonprofit
organization that publishes standards and reports for its members and the general public.

FIGURE 7-11 The Transaction Processing Performance Council (TPC) is a
nonprofit organization that publishes standards and reports for its members
and the general public.
Source: Transaction Processing Performance Council (TPC)

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

219

Phase 2 Systems Analysis

7.9 Completion of Systems Analysis Tasks

Finally, each package should be matched against the RFP features and rank the
choices. If some features are more important than others, give them a higher weight
using an evaluation model similar to the one shown in Figure 7-11.

Step 4: Perform Cost-Benefit Analysis
Review the suggestions in this chapter and in Part C of the Systems Analyst’s Toolkit to
develop a spreadsheet to identify and calculate TCO for each option being considered.
Be sure to include all costs, using the volume forecasts prepared. If outsourcing options
are being considered, carefully study the alternative fee structure models described
earlier. If possible, prepare charts to show the results graphically, and build in what-if
capability so the impact of one or more variables changing can be gauged.

If a software package is being considered, be sure to consider acquisition options.
When software is purchased, a software license is being bought that gives the purchaser
the right to use the software under certain terms and conditions. For example, the license
could allow the software to be used only on a single computer, a specified number of
computers, a network, or an entire site, depending on the terms of the agreement. Other
license restrictions could prohibit making the software available to others or modifying the
program. For desktop applications, software license terms and conditions usually cannot
be modified. For large-scale systems, license agreement terms often can be negotiated.

Also consider user support issues, which can account for a significant part of TCO.
If an outsourcing alternative is selected, the arrangement probably will include cer-
tain technical support and maintenance. If in-house development is chosen, the cost
of providing these services must be considered. If a software package is purchased,
consider a supplemental maintenance agreement, which offers additional support and
assistance from the vendor. The agreement might provide full support for a period
of time or list specific charges for particular services. Some software packages pro-
vide free technical support for a period of time. Afterward, support is offered with a
charge per occurrence, or per minute or hour of technical support time. Some soft-
ware vendors contact registered owners whenever a new release is available and usu-
ally offer the new release at a reduced price.

Step 5: Prepare a Recommendation
The analyst should prepare a recommendation that evaluates and describes the
alternatives, together with the costs, benefits, advantages, and disadvantages of each
option. At this point, it may be required to submit a formal system requirements
document and deliver a presentation. Review the suggestions for presenting
written proposals and oral presentations in Part A of the Systems Analyst’s Toolkit.
Additional suggestions about preparing the system requirements document and the
management presentation are contained in the following section.

7.9 compleTion of sysTems analysis Tasks

To complete the systems analysis phase, the analyst must finalize the system require-
ments document, present their findings to management, and begin the transition to
systems design.

7.9.1 System Requirements Document
The system requirements document contains the requirements for the new system,
describes the alternatives that were considered, and makes a specific recommenda-
tion to management. This important document is the starting point for measuring the

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

220

Chapter 7 Development Strategies

7.9 Completion of Systems Analysis Tasks

performance, accuracy, and completeness of the finished system before entering the
systems design phase.

The system requirements document is like a contract that identifies what the sys-
tem developers must deliver to users. Recall that system requirements are identified
during the fact-finding process, and a system requirements checklist is created at that
time. Various examples of system requirements are listed in Chapter 4. The system
requirements document should be written in language that users can understand so
they can offer input, suggest improvements, and approve the final version.

Because the system requirements document can be lengthy, they should be format-
ted and organized, so it is easy to read and use. The system requirements document
should include a cover page and a detailed table of contents. An index and a glossary
of terms can be added to make the document easier to use. The content of the sys-
tem requirements document will depend on the company and the complexity of the
system.

7.9.2 Presentation to Management
The presentation to management at the end of the systems analysis phase is one of the
most critical milestones in the systems development process. At this point, managers
make key decisions that affect the future development of the system.

Prior to a management presentation, two other presentations may be given: one to
the principal individuals in the IT department to keep them posted, and another pre-
sentation to users to answer their questions and invite feedback. The system require-
ments document is the basis for all three presentations, and it (or a summary) should
be distributed in advance so the recipients can review it.

When preparing the presentation, review the suggestions in Part A of the Systems
Analyst’s Toolkit, which can help design and deliver a successful presentation. If a
slide presentation is planned, review the Toolkit guidelines for effective presentations.
In addition to the techniques found in the Toolkit, also keep the following suggestions
in mind:

• Begin the presentation with a brief overview of the purpose and primary objec-
tives of the system project, the objectives of this presentation, and what deci-
sions need to be made.

• Summarize the primary viable alternatives. For each alternative, describe the
costs, advantages, and disadvantages.

• Explain why the evaluation and selection team chose the recommended
alternative.

• Allow time for discussion and for questions and answers.

• Obtain a final decision from management or agree on a timetable for the next
step in the process.

The object of the management presentation is to obtain approval for the develop-
ment of the system and to gain management’s full support, including necessary finan-
cial resources. Management probably will choose one of five alternatives: develop an
in-house system, modify a current system, purchase or customize a software package,
perform additional systems analysis work, or stop all further work. Depending on
their decision, the next task of the systems analyst will be one of the following:

• Implement an outsourcing alternative. If outsourcing is selected, the analyst
will work with representatives of the service provider to achieve a smooth tran-
sition to the new environment.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

221

Phase 2 Systems Analysis

7.9 Completion of Systems Analysis Tasks

• Develop an in-house system. Begin systems design tasks, as described in
 Chapters 8, 9, and 10.

• Purchase or customize a software package. Negotiate the purchase terms with
the software vendor for management approval. Then, if the package will be
used without modification, the analyst can begin planning the systems imple-
mentation phase. If modifications must be made to the package, the next step
is to start the systems design phase. If the vendor will make the modifications,
then the analyst’s next step is to start planning the testing and documentation
of the modifications as part of the systems implementation phase, which is
described in Chapter 11.

• Perform additional systems analysis work. Management might want the analyst
to investigate certain alternatives further, explore alternatives not examined,
develop a prototype, reduce the project scope because of cost constraints, or
expand the project scope based on new developments. If necessary, the analyst
will perform the additional work and schedule a follow-up presentation.

• Stop all further work. The decision might be based on the analyst’s recommen-
dation, a shift in priorities or costs, or for other reasons. Whatever the reason,
if that is management’s decision, then there are no additional tasks for the proj-
ect other than to file all the research in a logical location, so it can be retrieved
if the project is reopened in the future.

After the presentation and management decision, the project will begin a transition
to the systems design phase of the SDLC. If an in-house system is being developed,
or a package is being modified, a model of the proposed system will be built, and the
analyst will start designing the user interface, output, input, and data structures.

7.9.3 Transition to Systems Design
In a traditional SDLC environment, systems design usually started when the systems
analysis phase was done. Using the system requirements specification as a blueprint,
developers transformed the logical design into a working model that could be tested,
reviewed by users, and implemented. Today, the process is much more dynamic. In
general, systems development is faster, more flexible, and more user oriented. The
introduction of agile development has changed the landscape significantly. Depending
on the project, system developers often blend traditional and cutting-edge develop-
ment methods, because what works in one situation might not work in another.

This textbook discusses systems analysis in Chapters 4, 5, 6, and 7 and systems
design in Chapters 8, 9, and 10. However, in a typical IT workplace, all these tasks—
and more—are integrated and managed together.

Regardless of the development method, systems design requires accurate documen-
tation. Traditionally, a system requirements document provided detailed specifications
for output, input, data, processes, and whatever else was needed. Although agile
methods do not require a particular form of documentation, a successful development
team must understand and record user requirements as they evolve during the project.

A logical design defines what must take place, not how it will be accomplished.
Logical designs do not address the actual methods of implementation. In contrast,
a physical design is like a set of blueprints for the actual construction of a building.
Typically, a physical design describes the actual processes of entering, verifying, and
storing data; the physical layout of data files and sorting procedures; the format of
reports; and so on. Because logical and physical designs are related so closely, good
systems design is impossible without careful, accurate systems analysis. For example,

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

222

Chapter 7 Development Strategies

7.10 Summary

the analyst might return to fact-finding if it was discovered that an important issue
was overlooked, if users had significant new needs, or if legal or governmental
requirements changed.

A QUESTION OF ETHICS

A junior analyst at a medium-sized IT consulting firm has been asked by her manager to
draft a response to an RFP from a large company that is seeking IT consulting services in
connection with a new accounting system.

As the analyst worked on the RFP, she noticed a specific question about her firm’s
recent experience on this type of system. To the best of her knowledge, the firm has only
worked on one other accounting project in the past three years. When the manager saw
the analyst’s draft response, he was upset about the way she answered the question. “You
don’t have to be quite that candid,” he said. “Even though we only had one formal project,
we do have several people who worked on accounting systems before they came here.”

“Yes,” the analyst replied, “But that isn’t what the question is asking.” As he left her
office, the manager’s final comment was, “If we want that job, we’ll have to come up with a
better answer.” Thinking about it, the analyst isn’t comfortable with anything but a straight
answer. Is this an ethical question? What are her options?

iStock.com/faberfoto_it

7.10 summary

This chapter described system development strategies and the preparation and presen-
tation of the system requirements document.

Traditional systems must function in various hardware and software environ-
ments, be compatible with legacy systems, and operate within the constraints of com-
pany networks and desktop computing capability. Such systems utilize Internet links
and resources as enhancements. In contrast, Internet-based systems treat the web as
the platform, rather than just a communication channel. Many large companies use
web-based systems to handle enterprise-wide applications. Compared to traditional
systems, web-based systems are more scalable, less dependent on specific hardware
and software, and more adaptable to outsourcing the operation and support of a soft-
ware application.

Systems analysts must consider web-based development environments such as
.NET, MERN, and various outsourcing options, including ASPs and IBSs. ASPs charge
subscription fees for providing application software packages. IBSs offer powerful
web-based servers, software hosting, and IT support services to customers.

The web generation called Web 2.0 is fueling the expansion of information shar-
ing, user collaboration, and social networking applications such as Twitter, LinkedIn,
and Facebook. Another development, called cloud computing because of the com-
monly used cloud symbol for the Internet, describes an overall online software and
data environment, powered by supercomputer technology that is the ultimate form of
SaaS.

If a company chooses to handle its own software development needs, it can create
in-house systems or purchase (and possibly customize) commercially available soft-
ware packages from a software vendor or VAR.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

223

Phase 2 Systems Analysis

7.10 Summary

Compared with developing an in-house system, an existing commercial software
package can be an attractive alternative, because a package generally costs less,
takes less time to implement, has a proven track record, and is upgraded frequently.
In-house development or customizing a software package might be the best choice
when a standard software package cannot meet specific business requirements or
constraints. In addition to customizing software packages, companies can create
user applications based on standard software that has been specially configured to
enhance user productivity.

An important trend that views SaaS, rather than a product, has created new devel-
opment options. SaaS is a model of software deployment in which an application is
hosted as a service provided to customers over the Internet.

Offshoring, also known as offshore outsourcing or global outsourcing, refers to
the practice of shifting IT development, support, and operations to other countries.
In a trend similar to the outflow of manufacturing jobs over a several-decade period,
many firms are sending IT work overseas. The main reason for offshoring is the same
as domestic outsourcing: lower bottom-line costs. Offshore outsourcing, however,
involves some unique risks and concerns.

The systems analyst’s role in the software development process depends on the
specific development strategy. In-house development requires much more involvement
than outsourcing or choosing a commercial package.

The most important factor in choosing a development strategy is TCO. Financial
analysis tools include payback analysis, which determines how long it takes for a sys-
tem to pay for itself through reduced costs and increased benefits; ROI, which com-
pares a project’s total return with its total costs; and NPV, which analyzes the value of
a project by adjusting costs and benefits to reflect the time that they occur.

The process of acquiring software involves a series of steps: Evaluate the system
requirements, consider network and web-related issues, identify potential software
vendors or outsourcing options, evaluate the alternatives, perform cost-benefit analy-
sis, prepare a recommendation, and implement the solution. During software acquisi-
tion, a company can use an RFP or an RFQ. An RFP invites vendors to respond to a
list of system requirements and features; an RFQ seeks bids for a specific product or
service.

The system requirements document is the deliverable, or end product, of the sys-
tems analysis phase. The document details all system requirements and constraints,
recommends the best solution, and provides cost and time estimates for future devel-
opment work. The system requirements document is the basis for the management
presentation. At this point, the firm might decide to develop an in-house system, mod-
ify the current system, purchase or customize a software package, perform additional
systems analysis work, or stop all further work.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

224

Chapter 7 Development Strategies

Key Terms

Key Terms

application service provider (ASP) A firm that delivers a software application, or access to an applica-
tion, by charging a usage or subscription fee.

benchmark A measures of the time a package takes to process a certain number of transactions.

build or buy A choice between developing in-house software and purchasing software, often called a
build or buy, or make or buy, decision.

business process outsourcing (BPO) The outsourcing of a basic business process. See also outsourcing.

cloud computing An online software and data environment in which applications and services are
accessed and used through an Internet connection rather than on a local computer; refers to the cloud
symbol for the Internet.

evaluation and selection team A group of people involved in selecting hardware and software. The group
includes systems analysts and users. A team approach ensures that critical factors are not overlooked
and that a sound choice is made.

evaluation model A technique that uses a common yardstick to measure and compare vendor ratings.

fixed fee model A service model that charges a set fee based on a specified level of service and user
support.

forum An online discussion on a particular topic, where people meet, offer support, and exchange ideas.

global outsourcing The practice of shifting IT development, support, and operations to other countries.

horizontal application A software package that can be used by many different types of organizations.

in-house software An information center or help desk within the IT department responsible for provid-
ing user support and offering services such as hotline assistance, training, and guidance to users who
need technical help.

Internet business services (IBSs) Services that provide powerful web-based support for transactions such
as order processing, billing, and customer relationship management.

logical design The definition of an information system’s functions and features, and the relationships
among its components.

maintenance agreement A specification of the conditions, charges, and time frame for users to contact
the vendor for assistance when they have system problems or questions.

make or buy The choice between developing in-house software and purchasing software often is called a
make or buy, or build or buy, decision.

managed hosting An operation is managed by the outside firm, or host. Another term for IBSs.

middleware Software that connects dissimilar applications and enables them to communicate and
exchange data. For example, middleware can link a departmental database to a web server that can
be accessed by client computers via the Internet or a company intranet.

mobile device Smartphones, tablets, and other computing devices that are not permanently tethered to a
desk. They connect to the network wirelessly.

net present value (NPV) The total value of the benefits minus the total value of the costs, with both the
costs and benefits being adjusted to reflect the point in time at which they occur.

offshore outsourcing The practice of shifting IT development, support, and operations to other
countries.

offshoring See offshore outsourcing.

outsourcing The transfer of information systems development, operation, or maintenance to an outside
firm that provides these services, for a fee, on a temporary or long-term basis.

payback analysis A determination of how long it takes an information system to pay for itself through
reduced costs and increased benefits.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 225

Phase 2 Systems Analysis

physical design A plan for the actual implementation of the system.

request for proposal (RFP) A written list of features and specifications given to prospective vendors
before a specific product or package has been selected.

request for quotation (RFQ) Used to obtain a price quotation or bid on a specific product or package.

return on investment (ROI) A percentage rate that measures profitability by comparing the total net ben-
efits (the return) received from a project to the total costs (the investment) of the project. ROI = (total
benefits − total costs)/total costs.

service desk A centralized resource staffed by IT professionals that provides users with the support they
need to do their jobs. Also called help desk.

service provider A firm that offers outsourcing solutions. Two popular outsourcing options involve ASPs
and firms that offer IBSs.

Software as a Service (SaaS) A model of software delivery in which functionality is delivered on demand
as a network-accessible service, rather than as a traditional software application that is downloaded
and installed on the customer’s computer.

software license A legal agreement that gives users the right to use the software under certain terms and
conditions.

software package Software that is purchased or leased from another firm. A commercially produced
software product, or family of products.

system requirements document A document that contains the requirements for the new system, describes
the alternatives that were considered, and makes a specific recommendation to management. It is the
end product of the systems analysis phase.

software vendor Company that develops software for sale.

subscription model A service model that charges a variable fee for an application based on the number
of users or workstations that have access to the application.

transaction model A service model that charges a variable fee for an application based on the volume of
transactions or operations performed by the application. Also called a usage model.

usage model See transaction model.

user application Programs that utilize standard business software, such as Microsoft Office, which has
been configured in a specific manner to enhance user productivity.

user interface Includes screens, commands, controls, and features that enable users to interact more
effectively with an application. See also graphical user interface (GUI).

value-added reseller (VAR) A firm that enhances a commercial package by adding custom features and
configuring it for a particular industry.

vertical application A software package that has been developed to handle information requirements for
a specific type of business.

Web 2.0 A second generation of the web that enables people to collaborate, interact, and share infor-
mation much more dynamically, based on continuously available user applications rather than static
HTML web pages. Interactive experience is a hallmark of Web 2.0.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

226

Chapter 7 Development Strategies

Exercises

Exercises

Questions
1. List three characteristics each of traditional and web-based development.
2. How does cloud computing support Web 2.0 applications?
3. Why would a company choose in-house software development?
4. What is outsourcing?
5. List two reasons offshoring may be risky.
6. What is SaaS?
7. What is the primary objective of the evaluation and selection team in selecting a development

strategy?
8. What are the five steps in the software acquisition process?
9. What is an RFP, and how does it differ from an RFQ?

10. Explain the relationship between logical and physical design.

Discussion Topics
1. How has the proliferation of mobile devices affected IT professionals?
2. As more companies outsource systems development, will there be less need for in-house systems ana-

lysts? Why or why not?
3. Select a financial SaaS application, and describe its main features.
4. Suppose you tried to explain the concept of weighted evaluation models to a manager, and she

responded by asking, “So, how do you set the weight factors? Is it just a subjective guess?” How
would you reply?

5. What decisions might management reach at the end of the systems analysis phase, and what would be
the next step in each case?

Projects
1. Investigate the ROI of cloud-based software development environments.
2. Many financial tools are developed using Microsoft Excel. Identify three applications built using

Excel, and describe how they are used in an organization.
3. Visit the IT department at your school or at a local company, and determine whether the systems were

developed in-house or purchased. If packages were acquired, find out what customizing was done, if
any. Write a brief memo describing the results.

4. Profile three companies that provide offshore software development services.
5. Various firms and organizations offer IT benchmarking. Locate an example on the Internet, and

describe its services.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

227

PHASE3SYSTEMS DESIGN

DELIVERABLE
Systems design specification

Systems design is the third of five phases in the systems development life cycle. In the previous
phase, systems analysis, a logical model of the new system was developed. The output of that
phase, the system requirements document, is used as input to the systems design phase, where a
physical design is created that satisfies the system requirements.

The components of a system are interdependent; therefore, the design phase is not a series of
clearly defined steps. Although work may start in one area, it is possible to be working with several
different elements at the same time. For example, a decision to change a report format might
require changes in data design or input screens. The design checklist will include the user interface,
input and output procedures, data design, and system architecture. At the end of this phase, the
analyst prepares a systems design specification and delivers a presentation to management.

The goal of systems design is to build a system that is effective, reliable, and maintainable:

• A system is effective if it supports business requirements and meets user needs.

• A system is reliable if it handles input errors, processing errors, hardware failures, or
human mistakes. A good design will anticipate errors, detect them as early as possible,
make it easy to correct them, and prevent them from damaging the system itself. Other
characteristics of a reliable system include it being available nearly all of the time and
proper backups maintained in case of system failure.

• A system is maintainable if it is flexible, scalable, and easily modified. Changes might be needed
to correct problems, adapt to user requirements, or take advantage of new technology.

Chapter 8 focuses on user interface design. This includes human-computer interaction, seven
habits of successful interface designers, guidelines for user interface design, source document and
form design, printed output, technology issues, security and control issues, and emerging trends.

Chapter 9 focuses on the data design skills that are necessary for a systems analyst to construct
the physical model of the information system. This includes DBMS components, web-based
design, data design terms, entity-relationship diagrams, data normalization, codes, data storage
and access, and data control.

Chapter 10 focuses on system architecture, which translates the logical design of an information
system into a physical blueprint. This includes an architecture checklist, the evolution of system
architecture, client/server architecture, the impact of the Internet, e-commerce architecture,
processing methods, network models, wireless networks, and systems design completion.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 8 User Interface Design

CHAPTER8 User Interface
Design

Chapter 8 is the first of three chapters in the sys-
tems design phase of the SDLC. User interface design
is the first task in this phase. Designing the interface is
extremely important because everyone wants a system
that is easy to learn and use. This chapter explains how
to design an effective user interface and how to handle
data security and control issues. The chapter stresses
the importance of user feedback and involvement in all
design decisions.

The chapter includes three “Case in Point” dis-
cussion questions to help contextualize the concepts
described in the text. The “Question of Ethics” consid-
ers the ethical (and possibly legal) constraints on how
far the creative work of others can be used without
crediting the source, for example, in the design of a
company’s website.

C O N T E N T S
8.1 User Interfaces
8.2 Human-Computer Interaction
 Case in Point 8.1: Casual Observer Software
8.3 Seven Habits of Successful Interface Designers
8.4 Guidelines for User Interface Design
 Case in Point 8.2: Boolean Toys
8.5 Source Document and Form Design
8.6 Printed Output
 Case in Point 8.3: Lazy Eddie
8.7 Technology Issues
8.8 Security and Control Issues
8.9 Emerging Trends
 A Question of Ethics
8.10 Summary
 Key Terms
 Exercises

L E A R N I N G O B J E C T I V E S
When you finish this chapter, you should be able
to:

1. Explain user interfaces

2. Explain the concept of human-computer interac-
tion, including user-friendly interface design

3. Summarize the seven habits of successful inter-
face designers

4. Summarize the 10 guidelines for user interface
design

5. Design effective source documents and forms

6. Explain printed output report design guidelines
and principles

7. Describe three types of printed output reports

8. Discuss output and input technology issues

9. Describe output and input security and control
issues

10. Explain emerging user interface trends, includ-
ing modular design, responsive web design, and
prototypes

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

229

Phase 3 Systems Design

8.1 User Interfaces

8.1 User Interfaces

A user interface (UI) describes how users interact with a computer system and con-
sists of all the hardware, software, screens, menus, functions, output, and features
that affect two-way communications between the user and the computer. The user
interface is the key to usability, which includes user satisfaction, support for business
functions, and system effectiveness.

Traditionally, a chapter on user interface design started with a discussion of output
because output is what users touched, viewed, and needed to do their jobs. Today, the
situation is different, for several important reasons:

• Users can design their own output. System designers are more aware of user
needs and desires. A system can maintain data integrity and still allow users to
view, sort, filter, and examine data in any way that helps them do their jobs.
There was a time when the MIS department made those choices and users
had little or no say in the matter. Today, successful applications are designed
quite differently—the system developer identifies user needs and then creates a
design that will satisfy users and meet corporate requirements.

• Centralized IT departments no longer produce reams of printed reports. Those
reports often gathered dust while sitting on top of file cabinets. While a few
examples might persist, the overwhelming trend has been to customer-designed
output. The customer might be an individual user, or a community of users,
such as a department. As Chapter 4 pointed out, the IT team must understand
user requirements before creating a solution.

• The user interface itself has evolved into a two-way channel, with powerful
output capability, and most user information needs can be met with screen-gen-
erated data, which a user can print, view, or save. Well into the 1980s and
beyond, a user interface was a blank character-based screen, which might or
might not offer menu choices. If a user entered a command improperly, the sys-
tem responded with an error message, which frustrated users and stifled pro-
ductivity. Many hardware-centric vendors did not understand the importance
of the user interface and its implications.

Apple was a pioneer in user interface development, introducing the graphical user
interface (GUI), complete with mouse and screen icons, in the early 1980s. At that
point, not many companies were ready for this concept. When software giant Microsoft
finally jumped on the GUI bandwagon with its Windows® operating system, the corpo-
rate doors swung open, and everyone from managers on down said, “How did we ever
do without this?”

Many industry leaders believe that the best interfaces are the ones that users do
not even notice—they make sense because they do what users expect them to do. For
example, as shown in Figure 8-1, Apple believes that designing an exceptional user
interface is essential to a successful app. Apple has long distinguished itself from its
competitors by the intuitiveness of its products. Apple’s command of the market sug-
gests that consumers are willing to pay a premium for products that “just work.”

When developing older systems, analysts typically designed all the printed and
screen output first and then worked on the inputs necessary to produce the results.
Often, the user interface mainly consisted of process-control screens that allowed the
user to send commands to the system. That approach worked well with traditional
systems that simply transformed input data into structured output.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

230

Chapter 8 User Interface Design

8.2 Human-Computer Interaction

As information management evolved from centralized data processing to dynamic,
enterprise-wide systems, the primary focus also shifted—from the IT department to
the users themselves. The IT group became a supplier of information technology,
rather than a supplier of information. Today, the main focus is on users within and
outside the company, how they communicate with the information system, and how
the system supports the firm’s business operations.

In a user-centered system, the distinction blurs between input, output, and the
interface itself. Most users work with a varied mix of input, screen output, and data
queries as they perform their day-to-day job functions. Because all those tasks require
interaction with the computer system, the user interface is a vital element in the sys-
tems design phase.

User interface design requires an understanding of human-computer interaction
and user-centered design principles, which are discussed in the next section.

8.2 HUman-compUter InteractIon

A user interface is based on basic principles of human-computer interaction.
Human-computer interaction (HCI) describes the relationship between computers
and the people who use them to perform their jobs, like the worker shown
in Figure 8-2. HCI concepts apply to everything from smartphones to global
networks. In its broadest sense, HCI includes all the communications and
instructions necessary to enter input to the system and to obtain output in the form
of screen displays or printed reports.

Early user interfaces involved users typing complex commands on a keyboard,
which displayed as green text on a black screen. Then came the GUI, which was a
huge improvement because it used icons, graphical objects, and pointing devices.
Today, designers strive to translate user behavior, needs, and desires into an interface
that users don’t really notice. IBM has stated that the best user interfaces are “almost
transparent—you can see right through the interface to your own work.” In other
words, a transparent interface does not distract the user and calls no attention to
itself.

FIGURE 8-1 Apple has long been a leader in creating elegant user interfaces for its
products.
Source: Apple Inc.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

231

Phase 3 Systems Design

8.2 Human-Computer Interaction

A systems analyst designs user interfaces for in-house-developed software and
customizes interfaces for various commercial packages and user productivity appli-
cations. The main objective is to create a user-friendly design that is easy to learn and
use.

Industry leaders Microsoft and IBM both devote considerable resources to user
interface research. Figure 8-3 describes IBM Research’s work on HCI. Their stated
goal is to “design systems that are easier and more delightful for people to use.”

FIGURE 8-2 HCI is essential to employee productivity, whether the work is done in a
traditional office setting or on a construction site like the one shown in this figure.
goodluz/Shutterstock.com

FIGURE 8-3 IBM’s research division is a leader in exploring human-computer
interaction (HCI).
Source: IBM Corporation

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

232

Chapter 8 User Interface Design

8.3 Seven Habits of Successful Interface Designers

Because HCI has a major impact on user productivity, it gets lots of attention—
especially where multimillion-dollar issues are concerned. For example, in the article
“Human-Computer Interaction in Electronic Medical Records: From the Perspectives
of Physicians and Data Scientists” by E. Bologva et al. from Procedia Computer
Science 100 (Elsevier, 2016), the authors describe how software usability has a major
impact on the medical profession, and not everyone is happy about it—particularly
physicians who often struggle with electronic health records (EHRs) systems that
are poorly designed. In her article, Ms. Gardner points out that physicians often
multitask, answering a question about one patient while writing a prescription for
another, and EHR software was not designed around that type of workflow.

CASE IN POINT 8.1: Casual Observer sOftware

Casual Observer Software’s main product is a program that monitors and analyzes user key-
strokes and mouse clicks to learn more about the way employees use their computer systems.
The problem is that some users feel this is an unwarranted intrusion into their privacy, and
they prefer not to be observed. Some even fear that the data would be used for other reasons,
including performance appraisal. You are a consultant who has been hired by a client firm that is
trying to decide whether or not to use this software.

Before you advise the client, remember the Hawthorne effect, which suggests that
employees might behave differently when they know they are being observed. Finally,
think about the ethical issues that might be involved in this situation. What will you
advise your client, and why?

8.3 seven HabIts of sUccessfUl Interface DesIgners

Although IT professionals have different views about interface design, most would
agree that good design depends on seven basic principles. Successful interface designers
use these basic principles as a matter of course—they become habits. These desirable
habits are described in the following sections.

8.3.1 Understand the Business
The interface designer must understand the underlying business functions and how
the system supports individual, departmental, and enterprise goals. The overall objec-
tive is to design an interface that helps users to perform their jobs. A good starting
point might be to analyze a functional decomposition diagram (FDD). As described in
Chapter 4, an FDD is a graphical representation of business functions that starts with
major functions and then breaks them down into several levels of detail. An FDD can
provide a checklist of user tasks that must be included in the interface design.

8.3.2 Maximize Graphical Effectiveness
Studies show that people learn better visually. The immense popularity of Apple’s
iOS and Microsoft Windows is largely the result of their GUIs that are easy to learn
and use. A well-designed interface can help users learn a new system rapidly and be
more productive. Also, in a graphical environment, a user can display and work with

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

233

Phase 3 Systems Design

8.3 Seven Habits of Successful Interface Designers

multiple windows on a single screen and transfer data between programs. If the inter-
face supports data entry, it must follow the guidelines for data entry screen design
that are discussed later in this chapter.

8.3.3 Think like a User
A systems analyst should understand user experience, knowledge, and skill levels. If a
wide range of capability exists, the interface should be flexible enough to accommo-
date novices as well as experienced users.

To develop a user-centered interface, the designer must learn to think like a user
and see the system through a user’s eyes. The user interface must be easy to learn,
using terms and metaphors that are familiar to users. Users are likely to have real-
world experience with many other machines and devices that provide feedback, such
as automobiles, ATMs, and microwave ovens. Based on that experience, users will
expect useful, understandable feedback from a computer system.

Carefully examine any point where users provide input or receive output. Input
processes should be easy to follow, intuitive, and forgiving of errors. Predesigned out-
put should be attractive and easy to understand, with an appropriate level of detail.

8.3.4 Use Models and Prototypes
From a user’s viewpoint, the interface is the most critical part of the system design
because it is where he or she interacts with the system—perhaps for many hours each
day. It is essential to construct models and prototypes for user approval. An interface
designer should obtain as much feedback as possible, as early as possible. Initial screen
designs can be presented to users in the form of a storyboard, which is a sketch that
shows the general screen layout and design. The storyboard can be created with software
or drawn freehand. Users must test all aspects of the interface design and provide
feedback to the designers. User input can be obtained in interviews, via questionnaires,
and by observation. Interface designers also can obtain data, called usability metrics, by
using software that can record and measure user interaction with the system.

8.3.5 Focus on Usability
The user interface should include all tasks, commands,
and communications between users and the information
system. The opening screen should show the main options
(Figure 8-4 is an illustration). Each screen option leads to
another screen, with more options. The objective is to offer
a reasonable number of choices that a user easily can com-
prehend. Too many options on one screen can confuse a
user—but too few options increase the number of submenu
levels and complicate the navigation process. Often, an
effective strategy is to present the most common choice as a
default but allow the user to select other options.

8.3.6 Invite Feedback
Even after the system is operational, it is important to monitor
system usage and solicit user suggestions. The analyst can determine if system features are
being used as intended by observing and surveying users. Sometimes, full-scale operations
highlight problems that were not apparent when the prototype was tested. Based on user
feedback, Help screens might need revision and design changes to allow the system to
reach its full potential.

STUDENT SERVICES

Print Class
Rosters

Enter Grades

Help

Exit System

Print Grade
Reports

Register
Students

FIGURE 8-4 The opening screen displays the main
options for a student registration system. A user can click
an option to see lower-level actions and menu choices.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

234

Chapter 8 User Interface Design

8.4 Guidelines for User Interface Design

8.3.7 Document Everything
All screen designs should be documented for later use by programmers. If a CASE
tool or screen generator is being used, the screen designs should be numbered and
saved in a hierarchy similar to a menu tree. User-approved sketches and storyboards
also can be used to document the user interface.

By applying basic user-centered design principles, a systems analyst can plan,
design, and deliver a successful user interface.

8.4 gUIDelInes for User Interface DesIgn

A system might have advanced technology and powerful features, but the real test is
whether users like it and feel that it meets their needs. What follows is a set of general
guidelines for successful user interface design. These guidelines are distilled from years
of best practices in the industry. There is some overlap because many of the main
guidelines share common elements.

Although there is no standard approach to interface
design, these guidelines are a starting point suitable for
traditional systems development. User interface development
for web applications or for mobile apps has its own unique
considerations, above and beyond these general guidelines.
Perhaps the most important guideline is that not all of these
recommendations must be followed—the best interface is the one
that works best for the users.

8.4.1 Create an Interface That Is Easy to Learn and Use

 1. Focus on system design objectives, rather than calling atten-
tion to the interface.

 2. Create a design that is easy to understand and remember.
Maintain a common design in all modules of the interface,
including the use of color, screen placements, fonts, and the
overall “look and feel.”

 3. Provide commands, actions, and system responses that are
consistent and predictable.

 4. Allow users to correct errors easily.

 5. Clearly label all controls, buttons, and icons.

 6. Select familiar images that users can understand, and provide
on-screen instructions that are logical, concise, and clear. For
example, the top screen in Figure 8-5 shows four control
buttons, but none of them has an obvious meaning. In the
bottom screen, the first five messages provide little or no
information. The last message is the only one that is easy to
understand.

 7. Show all commands in a list of menu items, but dim any
commands that are not available to the user.

 8. Make it easy to navigate or return to any level in the menu
structure.

FIGURE 8-5 In the example at the top, the
icons do not have a clear message. In the
Help text examples at the bottom, only one
message is understandable. The others would
frustrate and annoy most users.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

235

Phase 3 Systems Design

8.4 Guidelines for User Interface Design

8.4.2 Enhance User Productivity
The interface is where a user interacts with the system, so it can have a dramatic
effect on productivity. If the interface empowers a user and enables him or her to han-
dle more complex tasks, the user becomes more productive. Conversely, if the inter-
face is difficult to work with, productivity declines.

1. Organize tasks, commands, and functions in groups that resemble actual busi-
ness operations. Group functions and submenu items in a multilevel menu hier-
archy, or tree, that is logical and reflects how users typically perform the tasks.
Figure 8-6 shows an example of a menu hierarchy for an order tracking system.

2. Create alphabetical menu lists or place the selections used frequently at the
top of the menu list. No universally accepted approach to menu item place-
ment exists. The best strategy is to design a prototype and obtain feedback
from users. Some applications even allow menus to show recently used com-
mands first. Some users like that feature, but others find it distracting. The best
approach is to offer a choice and let users decide.

3. Provide shortcuts for experienced users so they can avoid multiple menu levels.
Shortcuts can be created using hot keys that allow a user to press the Alt key +
the underlined letter of a command.

4. Use default values if the majority of values in a field are the same. For example,
if 90% of the firm’s customers live in Albuquerque, use Albuquerque as the
default value in the City field.

5. Use a duplicate value function that enables users to insert the value from the
same field in the previous record, but allow users to turn this feature on or off
as they prefer.

6. Provide a fast-find feature that displays a list of possible values as soon as users
enter the first few letters.

7. If available, consider a natural language feature that allows users to type
commands or requests in normal text phrases. For example, many applica-
tions allow users to request Help by typing a question into a dialog box. The
software then uses natural language technology to retrieve a list of topics that

Main Menu

Customer Order Tracking System

Orders ProductsCustomers

Add a New Customer

Update Customer Data

Delete a Customer

Enter a New Order

Modify Order Data

Cancel an Order

Enter a New Product

Update Product Data

Delete a Product

FIGURE 8-6 This menu hierarchy shows tasks, commands, and functions organized into
logical groups and sequences. The structure resembles a functional decomposition diagram
(FDD), which is a model of business functions and processes.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

236

Chapter 8 User Interface Design

8.4 Guidelines for User Interface Design

match the request. Natural language technology is used in speech recognition
systems, text-to-speech synthesizers, automated voice response systems, web
search engines, text editors, and language instruction materials.

8.4.3 Provide Flexibility
Suppose that a user wants a screen display of all customer balances that exceed
$5,000 in an accounts receivable system. How should that feature be designed? The
program could be coded to check customer balances against a fixed value of 5000,
which is a simple solution for both the programmer and the user because no extra
keystrokes are required to produce the display. However, that approach is inflexible.
A better approach would be to let the user enter the amount. Or start with a default
value that displays automatically. Users can press ENTER to accept the value or type
in another value. Often the best design strategy is to offer several alternatives, so users
can decide what will work best for them.

8.4.4 Provide Users with Help and Feedback
This is one of the most important guidelines because it has a high impact on users.
Never allow Help to slow a user down. Instead, make Help easy to find but not
around when users don’t need it.

1. Ensure that help is always available on demand. Help screens should provide
information about menu choices, procedures, shortcuts, and errors.

2. Provide user-selected help and context-sensitive help. User-selected help displays
information when the user requests it. By making appropriate choices through
the menus and submenus, the user eventually reaches a screen with the desired
information. Figure 8-7 shows the main Help screen for the student registration
system. Context-sensitive help offers assistance for the task in progress.

Help Topics

Print Class Rosters

Enter Grades

Index of Help Topics

Contact Tech Support

Print Grade Reports

Register Students

FIGURE 8-7 The main Help screen for a student registration
system.

3. Provide a direct route for users to return to the point from where help was
requested. Title every help screen to identify the topic, and keep help text sim-
ple and concise. Insert blank lines between paragraphs to make Help easier to
read, and provide examples where appropriate.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

237

Phase 3 Systems Design

8.4 Guidelines for User Interface Design

4. Include contact information, such as a telephone extension or email address if a
department or help desk is responsible for assisting users.

5. Require user confirmation before data deletion (Are you sure?) and provide a
method of recovering data that is deleted inadvertently. Build in safeguards that
prevent critical data from being changed or erased.

6. Provide an “Undo” key or a menu choice that allows the user to undo the
results of the most recent command or action.

7. When a user-entered command contains an error, highlight the erroneous
part and allow the user to make the correction without retyping the entire
command.

8. Use hypertext links to assist users as they navigate help topics.

9. Display messages at a logical place on the screen, and be consistent.

10. Alert users to lengthy processing times or delays. Give users an on-screen prog-
ress report, especially if the delay is lengthy.

11. Allow messages to remain on the screen long enough for users to read them.
In some cases, the screen should display messages until the user takes some
action.

12. Let the user know whether the task or operation was successful or not. For
example, use messages such as Update completed, All transactions have been
posted, or The ID Number was not found.

13. Provide a text explanation if an icon or image is used on a control button.
This can be accomplished using a “mouse hover” to display a pop-up box with
explanation when the mouse is moved over an icon or image.

14. Use messages that are specific, understandable, and professional. Avoid mes-
sages that are cute, cryptic, or vague, such as ERROR—You have entered an
unacceptable value, or Error DE-4-16. Better examples are as follows:

• Enter a number from 1 (low) to 5 (high)

• Customer number must be numeric

• Please re-enter a numeric value

• Call the Accounting Department, Ext. 239 for assistance

8.4.5 Create an Attractive Layout and Design
This is a subjective area because reasonable people can differ on what is attractive.
The analyst should consider color, layout, and ease of use. Screen mock-ups and menu
trees can be created and tried on users to get their input. If in doubt, err on the side of
doing a bit less. For example, blinking messages initially may seem like a good idea,
they might not be the best choice for the interface design. Also try to avoid too many
fonts, styles, and sizes, which can be distracting. Each separate style should communi-
cate something—a different level of detail, another topic, mandatory versus optional
actions, and so on.

1. Use appropriate colors to highlight different areas of the screen; avoid gaudy
and bright colors.

2. Use special effects sparingly. For example, animation and sound might be
effective in some situations, but too many special effects can be distracting and
annoying to a user, especially if he or she must view them repeatedly.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

238

Chapter 8 User Interface Design

8.4 Guidelines for User Interface Design

3. Use hyperlinks that allow users to navigate to related topics.

4. Group related objects and information. Visualize the screen the way a user will
see it, and simulate the tasks that the user will perform.

5. Screen density is important. Keep screen displays uncluttered, with enough
white space to create an attractive, readable design.

6. Display titles, messages, and instructions in a consistent manner and in the
same general locations on all screens.

7. Use consistent terminology. For example, do not use the terms delete, cancel,
and erase to indicate the same action. Similarly, the same sound always should
signal the same event.

8. Ensure that commands always will have the same effect. For example, if the
BACK control button returns a user to the prior screen, the BACK command
always should perform that function throughout the application.

9. Ensure that similar mouse actions will produce the same results throughout
the application. The results of pointing, clicking, and double-clicking should be
consistent and predictable.

10. When the user enters data that completely fills the field, do not move automati-
cally to the next field. Instead, require the user to confirm the entry by pressing
the Enter key or Tab key at the end of every fill-in field.

11. Remember that users are accustomed to a pattern of red = stop, yellow = cau-
tion, and green = go. Stick to that pattern and use it when appropriate to rein-
force on-screen instructions.

12. Provide a keystroke alternative for each menu command, with easy-to-remember
letters, such as File, Exit, and Help.

13. Use familiar commands if possible, such as Cut, Copy, and Paste.

14. Provide a Windows look and feel in the interface design if users are familiar
with Windows-based applications.

15. Avoid complex terms and technical jargon; instead,
select terms that come from everyday business pro-
cesses and the vocabulary of a typical user.

8.4.6 Enhance the Interface
A designer can include many features, such as menu bars,
toolbars, dialog boxes, text boxes, toggle buttons, list
boxes, scroll bars, drop-down list boxes, option buttons,
check boxes, command buttons, and calendar controls,
among others. Screen design requires a sense of aesthet-
ics as well as technical skills. User feedback should be
obtained early and often as the design process continues.

1. The opening screen is especially important because it
introduces the application and allows users to view the
primary options. The starting point can be a switchboard
with well-placed command buttons that allow users to
navigate the system. Figure 8-8 shows the switchboard
of TurboTax introducing a tax preparation program.
The main options are clearly displayed on an uncluttered

FIGURE 8-8 An example of a switchboard introducing
TurboTax. The main options are clearly displayed on an
uncluttered screen—something particularly important for
users who are likely to be confused and/or nervous when
beginning the tax preparation process.
Source: Intuit

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

239

Phase 3 Systems Design

8.4 Guidelines for User Interface Design

screen. The addition of the picture showing tax professionals ready to help
provides a sense of calm and confidence to the user—something particularly
important for users who are likely to be confused and/or nervous when begin-
ning the tax preparation process.

2. Use a command button to initiate an action such as printing a form or request-
ing help. For example, when a user clicks the Find Student command button in
Figure 8-9, a dialog box opens with instructions.

FIGURE 8-9 A data entry screen for a student registration system. This screen uses several design features
that are described in the text. When a user clicks the Find Student command button, a dialog box is displayed
with instructions.

2019–2020

3. If a software package is being used, check to see if it allows the creation of
customized menu bars and toolbars. If so, consider these options.

4. Add a shortcut feature that lets a user select a menu command either by
clicking the desired choice or by pressing the Alt key + the underlined letter.
Some forms also use a toolbar that contains icons or buttons that represent
shortcuts for executing common commands.

5. If variable input data is needed, provide a dialog box that explains what is required.

6. A toggle button makes it easy to show on or off status—clicking the toggle
button switches to the other state.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

240

Chapter 8 User Interface Design

8.4 Guidelines for User Interface Design

7. Use list boxes that display the available choices. If the list does not fit in the
box, a scroll bar allows the user to move through the available choices. Also, be
sure to provide another way to enter data that does not align with a specific list
choice.

8. Use an option button, or radio button, to control user choices. For example,
if the user can select only one option, display a suitable message (Choose one
item), but if there is no restriction, display a different message (Choose all that
apply). Use a black dot to show selected options.

9. If check boxes are used to select one or more choices from a group, show the
choices with a checkmark or an X.

10. When dates must be entered, use a calendar control that allows the user to
select a date that the system will use as a field value.

8.4.7 Focus on Data Entry Screens
Data entry is especially important because it is in the job description of so many users.

1. Whenever possible, use a data entry method called form filling, where a blank
form that duplicates or resembles the source document is completed on the
screen.

2. Restrict user access to screen locations where data is entered. For example, in
the Eventbrite event management data entry when the screen in Figure 8-10
appears, the system should position the insertion point in the first data entry
location. After the operator enters an event title, the insertion point should
move automatically to the entry location for the next field (Location). A user
should be able to position the insertion point only in places where data is
entered on the form.

FIGURE 8-10 In this data entry screen for creating events, the system generates start and end
dates and times automatically, but these can be changed by the user at any time. A red asterisk, as
shown beside Event Title, indicates required fields. Gray text within the data entry field lets the user
know what information to provide. This text is replaced with user input.
Source: Eventbrite

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

241

Phase 3 Systems Design

8.4 Guidelines for User Interface Design

3. Provide a way to leave the data entry screen at any time without entering the
current record, such as a “Cancel” button. Since the application shown in
Figure 8-10 is web based, this can be accomplished by selecting the “Back”
button of the browser (not shown).

4. Provide a descriptive caption for every field, and show the user where to enter
the data and the required or maximum field size. Typically, white boxes show
the location and length of each field. Other methods used to indicate field loca-
tions are video highlighting, underscores, special symbols, or a combination of
these features.

5. Provide a means for users to move among fields on the form in a standard
order or in any order they choose. In a GUI, the user can override the standard
field order and select field locations using the mouse or arrow keys.

6. Allow users to add, change, delete, and view records. Messages such as Apply
these changes? (Y/N) or Delete this record? (Y/N) should require users to
confirm the actions. Highlighting the letter N as a default response will avoid
problems if the user presses the Enter key by mistake.

7. Design the screen form layout to match the layout of the source document. If
the source document fields start at the top of the form and run down in a col-
umn, the input screen should use the same design.

8. Display a sample format if a user must enter values in a field in a specific for-
mat. For example, provide an on-screen instruction to let users know that the
date format is MMDDYY, and provide an example if the user must enter sepa-
rators, such as slashes.

9. In addition to the sample format in the preceding rule, it might be better to
use an input mask, which is a template or pattern that restricts data entry
and prevents errors. Microsoft Access provides standard input masks for
fields such as dates, telephone numbers, postal codes, and Social Security
numbers. In addition, custom input masks can be created, as shown in
Figure 8-11. Note that a mask can have a specific format. For example, if a
user enters text in lowercase letters, the input mask will capitalize the first
letter automatically.

10. Require an ending keystroke for every field. Pressing the Enter key or the Tab
key should signify the end of a field entry. Avoid a design that moves automat-
ically to the next item when the field is full. The latter approach requires an
ending keystroke only when the data entered is less than the maximum field
length. It is confusing to use two different data entry procedures.

11. Do not require users to type leading zeroes for numeric fields. For example,
if a three-digit project number is 045, the operator should be able to type 45
instead of 045 before pressing the Enter key. An exception to that rule might
occur when entering a date, where a leading zero is needed to identify single-
digit months or days, such as 06-04-2013.

12. Do not require users to type trailing zeroes for numbers that include decimals.
For example, when a user types a value of 98, the system should interpret the
value as 98.00 if the field has been formatted to include numbers with two
decimal places. The decimal point is needed only to indicate nonzero decimal
places, such as 98.76.

13. Display default values so operators can press the Enter key to accept the sug-
gested value. If the default value is not appropriate, the operator can change it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

242

Chapter 8 User Interface Design

8.4 Guidelines for User Interface Design

FIGURE 8-11 Microsoft Access provides various input masks
for dates, phone numbers, and postcodes, among others. In
addition, it is easy to create a custom mask using the characters
shown here.
Source: Microsoft Corporation

14. Use a default value when a field value will be constant for successive records or
throughout the data entry session. For example, if records are input in order by
date, the date used in the first transaction should be used as the default date until
a new date is entered, at which time the new date becomes the default value.

15. Display a list of acceptable values for fields, and provide meaningful error
messages if the user enters an unacceptable value. An even better method, which
was described under Rule 5: Enhance the Interface, is to provide a drop-down list
box containing acceptable values that allows the user to select a value by clicking.

16. Provide users with an opportunity to confirm the accuracy of input data before
entering it by displaying a message such as, Add this record? (Y/N). A positive
response (Y) adds the record, clears the entry fields, and positions the insertion
point in the first field so the user can input another record. If the response is
negative (N), the current record is not added and the user can correct the errors.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

243

Phase 3 Systems Design

8.4 Guidelines for User Interface Design

Data entry screens should also anticipate future needs. Consider a parts inventory
database that contains a one-character field for category, such as electrical, mechan-
ical, or hydraulic. The design works well, but what if the company decides to break
these overall groups down into more specific segments? A better design would antic-
ipate possible expansion to two or more characters. For example, in 1999, there was
widespread concern about what was called the Y2K issue because many older pro-
grams used only two characters to store the year and might not recognize the start of
a new century.

8.4.8 Use Validation Rules
Reducing input errors improves data quality. One way to reduce input errors is to
eliminate unnecessary data entry. For example, a user cannot misspell a customer
name if it is not entered or is entered automatically based on the user entering the
customer ID. Similarly, an outdated item price cannot be used if the item price is
retrieved from a master file instead of being entered manually. The best defense
against incorrect data is to identify and correct errors before they enter the system by
using data validation rules, as shown in Figure 8-12. A data validation rule improves
input quality by testing the data and rejecting any entry that fails to meet specified
conditions. The design can include at least eight types of data validation rules.

FIGURE 8-12 Microsoft Access provides validation rules that
can improve data quality by requiring the input to meet specific
requirements or conditions.
Source: Microsoft Corporation

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

244

Chapter 8 User Interface Design

8.4 Guidelines for User Interface Design

1. A sequence check can be used when the data must be in some predetermined
sequence. If the user must enter work orders in numerical sequence, for example,
then an out-of-sequence order number indicates an error, or if the user must
enter transactions chronologically, then a transaction with an out-of-sequence
date indicates an error.

2. An existence check can apply to mandatory data items. For example, if an
employee record requires a Social Security number, an existence check would
not allow the user to save the record until he or she enters a suitable value in
the Social Security number field.

3. A data type check can test to ensure that a data item fits the required data
type. For example, a numeric field must have only numbers or numeric sym-
bols, and an alphabetic field can contain only the characters A through Z (or a
through z).

4. A range check can be used to verify that data items fall between a specified
minimum and maximum value. The daily hours worked by an employee, for
example, must fall within the range of 0 to 24. When the validation check
involves a minimum or a maximum value, but not both, it is called a limit
check. Checking that a payment amount is greater than zero, but not specifying
a maximum value, is an example of a limit check.

5. A reasonableness check identifies values that are questionable but not neces-
sarily wrong. For example, input payment values of $0.05 and $5,000,000.00
both pass a simple limit check for a payment value greater than zero, and yet
both values could be errors. Similarly, a daily-hours-worked value of 24 passes
a 0 to 24 range check; however, the value seems unusual, and the system should
verify it using a reasonableness check.

6. A validity check can be used for data items that must have certain values. For
example, if an inventory system has 20 valid item classes, then any input item
that does not match one of the valid classes will fail the check. Verifying that
a customer number on an order matches a customer number in the customer
file is another type of validity check. Because the value entered must refer to
another value, that type of check also is called referential integrity, which is
explained in Chapter 9, Data Design. Another validity check might verify that a
new customer number does not match a number already stored in the customer
master file.

7. A combination check is performed on two or more fields to ensure that they
are consistent or reasonable when considered together. Even though all the
fields involved in a combination check might pass their individual validation
checks, the combination of the field values might be inconsistent or unreason-
able. For example, if an order input for 30 units of a particular item has an
input discount rate applicable only for purchases of 100 or more units, then
the combination is invalid; either the input order quantity or the input discount
rate is incorrect.

8. Batch controls are totals used to verify batch input. Batch controls might check
data items such as record counts and numeric field totals. For example, before
entering a batch of orders, a user might calculate the total number of orders
and the sum of all the order quantities. When the batch of orders is entered,
the order system also calculates the same two totals. If the system totals do

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

245

Phase 3 Systems Design

8.4 Guidelines for User Interface Design

not match the input totals, then a data entry error has occurred. Unlike the
other validation checks, batch controls do not identify specific errors. For
example, if the sum of all the order quantities does not match the batch control
total, the only thing known is that one or more orders in that batch were
entered incorrectly or not input. The batch control totals often are called hash
totals because they are not meaningful numbers themselves but are useful for
comparison purposes.

8.4.9 Manage Data Effectively
In addition to its effect on users, data management impacts company efficiency, pro-
ductivity, and security. To reduce input errors, the system should enter and verify data
as soon as possible, and each data item should have a specific type, such as alpha-
betic, numeric, or alphanumeric, and a range of acceptable values.

It is important to collect input data as close to its source as possible. For instance,
using barcode scanners rather than manual forms on a warehouse freight dock, or
having salespeople use tablets to record orders rather than filling in source docu-
ments. The easiest, most accurate, and least expensive data input strategy is auto-
mated data capture.

In an efficient design, data is entered only once. For example, if input data for
a payroll system also is needed for a human resources system, the analyst could
design an interface to transfer data automatically, or a central data storage area
could be created that both systems can access. Chapter 9 describes normalization,
which is a set of rules that can help avoid data design problems. A secure system
also includes audit trails that can log every instance of data entry and changes.
For example, the system should record when a customer’s credit limit was set,
by whom, and any other information necessary to construct the history of a
transaction.

8.4.10 Reduce Input Volume
This is the final guideline, but in some ways it should be the first because it affects all
the rest. When input volume is reduced, unnecessary labor costs are avoided, which in
turn gets the data into the system more quickly and decreases the number of errors.
Therefore, the analyst should start by reducing the number of data items required for
each transaction.

1. Input necessary data only. Do not input a data item unless it is needed by the
system. A completed order form, for example, might contain the name of the
clerk who took the order. If that data is not needed by the system, the user
should not enter it.

2. Do not input data that the user can retrieve from system files or calculate from
other data. This reduces input errors and data inconsistencies.

3. Do not input constant data. If orders are in batches with the same date, then
a user should enter the order date only once for the first order in the batch. If
orders are entered online, then the user can retrieve the order date automati-
cally using the current system date.

4. Use codes. Codes are shorter than the data they represent, and coded input can
reduce data entry time. Codes are discussed more in Chapter 9.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

246

Chapter 8 User Interface Design

8.5 Source Document and Form Design

8.5 soUrce DocUment anD form DesIgn

No matter how data enters an information system, the quality of the output is
only as good as the quality of the input. The term garbage in, garbage out (GIGO)
is familiar to IT professionals, who know that the best time to avoid problems
is when the data is entered. The main objective is to ensure the quality, accuracy,
and timeliness of input data. Unfortunately, the dream of a “paperless office” has
never been realized. Even with RFID technology and automated data capture, we
still enter data on source documents and forms, and instead of a human-computer
interface, systems analysts must deal with the challenge of a human-paper
interface.

A source document collects input data, triggers or authorizes an input action,
and provides a record of the original transaction. During the input design stage, the
analyst develops source documents that are easy to complete and use for data entry.
Source documents generally are paper based but also can be provided online. Either
way, the design considerations are the same.

Consider a time when it was a struggle to complete a poorly designed form. There
might have been insufficient space, confusing instructions, or poor organization—all
symptoms of incorrect form layout.

Good form layout makes the form easy to complete and provides enough space,
both vertically and horizontally, for users to enter the data. A form should indicate
data entry positions clearly using blank lines or boxes and descriptive captions. Also
consider using check boxes whenever possible, so users can select choices easily. How-
ever, be sure to include an option for any input that does not match a specific check
box.

The placement of information on a form also is important. Source documents
typically include most of the zones shown in Figure 8-13. The heading zone
usually contains the company name or logo and the title and number of the
form. The control zone contains codes, identification information, numbers, and
dates that are used for storing completed forms. The instruction zone contains
instructions for completing the form. The main part of the form, called the body
zone, usually takes up at least half of the space on the form and contains captions
and areas for entering variable data. If totals are included on the form, they
appear in the totals zone. Finally, the authorization zone contains any required
signatures.

CASE IN POINT 8.2: bOOlean tOys

Suppose you are a systems analyst studying the order processing system at Boolean Toys, a
fast-growing developer of software for preschool children. You know that many data entry
users have complained about the input screens. Some users would prefer to rearrange the
order of the fields, others would like to change the background color on their screens, and still
others want shortcuts that would allow them to avoid a series of introductory screens.

What if Boolean’s users could customize their own data entry screens without assis-
tance from the IT staff by using a menu-driven utility program? What would be the pros
and cons of such an approach? When should a systems analyst decide a design issue, and
when should users be allowed to select what works best for them?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

247

Phase 3 Systems Design

8.6 Printed Output

Information should flow on a form from left to right and top to bottom to match
the way users read documents naturally. That layout makes the form easy to use for
the individual who completes the form and for users who enter data into the system
using the completed form.

The same user-friendly design principles also apply to printed forms such as
invoices and monthly statements, except that heading information usually is pre-
printed. Column headings should be short but descriptive, avoiding nonstandard
abbreviations, with reasonable spacing between columns for better readability.

The order and placement of printed fields should be logical, and totals should be
identified clearly. When designing a preprinted form, contact the form’s vendor for
advice on paper sizes, type styles and sizes, paper and ink colors, field placement, and
other important form details. The goal is to design a form that is attractive, readable,
and effective.

Layout and design also are important on web-based forms. There are many
resources that will help with designing efficient, user-friendly forms. These include
websites that must conform to the U.S. Federal Government’s accessibility guidelines,
which can be found online at http://www.section508.gov.

8.6 prInteD oUtpUt

Before designing printed output, there are several questions to consider:

• Why is this being delivered as printed output, rather than screen-based infor-
mation, with an option for users to view, print, or save as needed?

• Who wants the information, why is it needed, and how will it be used?

• What specific information will be included?

• Will the printed output be designed for a specific device?

Heading
Zone

Control
Zone

Instruction Zone

Authorization Zone

Body
Zone

Totals
Zone

FIGURE 8-13 Source document zones.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

248

Chapter 8 User Interface Design

8.6 Printed Output

• When and how will the information be delivered, and how often must it be
updated?

• Do security or confidentiality issues exist? How will they be managed?

The design process should not begin until these questions have been answered.
Some information probably was gathered during the systems analysis phase. To gain
more understanding, the analyst should meet with users to find out exactly what kind
of output they are requesting. Prototypes and mock-ups can be used to obtain feed-
back throughout the design process.

8.6.1 Report Design
Although many organizations strive to reduce the flow of paper and printed reports,
few firms have been able to eliminate printed output totally. Because they are porta-
ble, printed reports are convenient and even necessary in some situations. Many users
find it handy to view screen output and then print the information they need for a
discussion or business meeting. Printed output also is used in turnaround documents,
which are output documents that are later entered back into the same or another
information system. In some areas, the telephone or utility bill, for example, might be
a turnaround document printed by the company’s billing system. When the required
portion of the bill is returned with payment, the bill is scanned into the company’s
accounts receivable system to record the payment accurately.

Designers use a variety of styles, fonts, and images to produce reports that are
attractive and user-friendly. Whether printed or viewed on-screen, reports must be
easy to read and well organized. Rightly or wrongly, some managers judge an entire
project by the quality of the reports they receive.

Database programs such as Microsoft Access include a variety of report design
tools, including a Report Wizard, which is a menu-driven feature that designers can
use to create reports quickly and easily. Many online web-based database systems also
provide similar report design guidelines.

Although the vast majority of reports are designed graphically, some systems still
produce one or more character-based reports that use a character set with fixed spac-
ing. Printing character-based reports on high-speed impact printers is a fast, inexpen-
sive method for producing large-scale reports, such as payroll or inventory reports, or
registration rosters at a school. This is especially true if multiple copies are required.

Users should approve all report designs in advance. The best approach is to pre-
pare a sample report, called a mock-up, or prototype, for users to review. The sample
should include typical field values and contain enough records to show all the design
features. Depending on the type of printed output, a Microsoft Word document can
be created, or a report generator used, to create mock-up reports.

8.6.2 Report Design Principles
Printed reports must be attractive, professional, and easy to read. For example, a
well-designed report should provide totals and subtotals for numeric fields. In the
report shown in Figure 8-14, note that when the value of a control field, such as Store
Number, changes, a control break occurs. A control break usually causes specific
actions, such as printing subtotals for a group of records. That type of detail report is
called a control break report. To produce a control break report, the records must be
arranged, or sorted, in control field order.

Good report design requires effort and attention to detail. To produce a well-
designed report, the analyst must consider design features such as report headers and
footers, page headers and footers, column headings and alignment, column spacing,
field order, and grouping of detail lines.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

249

Phase 3 Systems Design

8.6 Printed Output

REPORT HEADERS AND FOOTERS: Every report should have a report header and
a report footer. The report header, which appears at the beginning of the report, iden-
tifies the report and contains the report title, date, and other necessary information.
The report footer, which appears at the end of the report, can include grand totals for
numeric fields and other end-of-report information, as shown in Figure 8-14.

PAGE HEADERS AND FOOTERS: Every page should include a page header, which
appears at the top of the page and includes the column headings that identify the

data. The headings should be short but descriptive. Avoid abbreviations unless the
users will understand them clearly. Either a page header or a page footer, which
appears at the bottom of the page, is used to display the report title and the page
number.

Database programs such as Microsoft Access make it easy to create groups and
subgroups based on particular fields. The report can also calculate and display totals,
averages, record counts, and other data for any group or subgroup. For example, a
large company might want to see total sales and number of sales broken down by
product within each of the 50 states. The information shown in Figure 8-15 is part
of Access’ online help that refers to a step-by-step process for creating multilevel
grouping.

Employee Hours
Week ending date: 6/28/2019

Store
Number

Employee
Name Position

Regular
Hours

Overtime
Hours

Total
Hours

Page 1

8
8
8
8
8
8

17
17
17
17
17

Andres, Marguerite
Bogema, Michelle
Davenport, Kim
Lemka, Susan
Ramirez, Rudy
Ullery, Ruth

De Martini, Jennifer
Haff, Lisa
Rittenbery, Sandra
Wyer, Elizabeth
Zeigler, Cecille

Clerk
Clerk
Asst Mgr
Clerk
Manager
Clerk

Clerk
Manager
Clerk
Clerk
Clerk

20.0
12.5
40.0
32.7
40.0
20.0

165.2

40.0
40.0
40.0
20.0
32.0

172.0

337.2

0.0
0.0
5.0
0.0
8.5
0.0

13.5

8.4
0.0

11.0
0.0
0.0

19.4

32.9

20.0
12.5
45.0
32.7
48.5
20.0

178.7

48.4
40.0
51.0
20.0
32.0

191.4

370.1

Store 8 totals:

Store 17 totals:

Grand totals:

page header

report header

group footer

report footer

page footer

identifying fields hours fields

control break
on Store
Number field

FIGURE 8-14 The Employee Hours report is a detailed report with control breaks, subtotals, and grand totals. Note that a report
header identifies the report, a page header contains column headings, a group footer contains subtotals for each store, a report
footer contains grand totals, and a page footer identifies the page number.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

250

Chapter 8 User Interface Design

8.6 Printed Output

REPEATING FIELDS: Report design is an art, not a science. User involvement is
essential, but users often don’t know what they want without seeing samples. For
example, consider the issue of repeating fields. The sample report in Figure 8-14
repeats the store number on every row. Is that a good thing? The best advice is to ask
users what they think and be guided accordingly. A similar issue exists with regard to
the overtime hours column. Is it better to print the zero-overtime data, or only print
actual hours, so the data stands out clearly? Again, the best answer is usually the one
that works best for users.

CONSISTENT DESIGN: Look and feel are important to users, so reports should
be uniform and consistent. When a system produces multiple reports, each report
should share common design elements. For example, the date and page numbers
should print in the same place on each report page. Abbreviations used in reports also
should be consistent. For example, when indicating a numeric value, it is confusing
for one report to use #, another NO, and a third NUM. Items in a report also should
be consistent. If one report displays the inventory location as a shelf number column
followed by a bin number column, that same layout should be used on all inventory
location reports.

8.6.3 Types of Reports
To be useful, a report must include the information that a user needs. From a user’s
point of view, a report with too little information is of no value. Too much informa-
tion, however, can make a report confusing and difficult to understand. When design-
ing reports, the essential goal is to match the report to the user’s specific information
needs. Depending on their job functions, users might need one or more of the reports
described in the following sections.

FIGURE 8-15 Microsoft Access includes an easy-to-use tool for grouping data.
Source: Microsoft Corporation

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

251

Phase 3 Systems Design

8.7 Technology Issues

DETAIL REPORTS: A detail report produces one or more lines of output for each
record processed. Because it contains one or more lines for each record, a detail
report can be quite lengthy. Consider, for example, a large auto parts business. If the
firm stocks 3,000 parts, then the detail report would include 3,000 detail lines on
approximately 50 printed pages. A user who wants to locate any part in short supply
has to examine 3,000 detail lines to find the critical items. A better alternative might
be an exception report.

EXCEPTION REPORTS: An exception report displays only those records that meet
a specific condition or conditions. Exception reports are useful when the user wants
information only on records that might require action but does not need to know the
details. For example, a credit manager might use an exception report to identify only
those customers with past-due accounts, or a customer service manager might want a
report on all packages that were not delivered within a specified time period.

SUMMARY REPORTS: Upper-level managers often want to see total figures and do
not need supporting details. A sales manager, for example, might want to know total
sales for each sales representative but not want a detail report listing every sale made
by them. In that case, a summary report is appropriate. Similarly, a personnel man-
ager might need to know the total regular and overtime hours worked by employees
in each store but might not be interested in the number of hours worked by each
employee.

CASE IN POINT 8.3: lazy eddie

Lazy Eddie is a furniture chain specializing in recliners. Their management has asked you to
review the large number of printed reports that are distributed to Lazy Eddie’s 35 store
managers. Management is not sure that the managers actually read or use the reports,
even though the store managers say they want them. Store visits have shown many of the
reports end up stacked on top of filing cabinets, seemingly untouched.

To determine if store managers really use the printed reports, management has asked
you to create a procedure that requires users to review and justify their information
needs. You could design a form that asks if the information still is required, and why. You
could try to get users to decide if a report is worth the cost of producing it. How do you
proceed?

8.7 tecHnology IssUes

Unlike early innovations such as the mouse and the inkjet printer, most technology
advances today affect both output and input. In a very real sense, output and input
have become interdependent, as they are in a user interface, and it is difficult to cite
examples of changes in one that would not cause, or at least encourage, changes in
the other. For example, new touch-screen input technology generates output that
must be properly designed and sized for a particular device, which might be a smart-
phone, a tablet, or a 23-inch desktop monitor.

The following sections discuss output and input technology separately, but inter-
face designers should always be alert to the possible opportunities, or potential prob-
lems, of input/output linkage.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

252

Chapter 8 User Interface Design

8.7 Technology Issues

8.7.1 Output Technology
Although business information systems still provide most output as screen displays
and printed matter, technology is having an enormous impact on how people com-
municate and obtain information. This trend is especially important to firms that
use information technology to lower their costs, improve employee productivity, and
communicate effectively with their customers.

In addition to screen output and printed matter, output can be delivered in many
ways. The system requirements document probably identified user output needs.
Now, in the systems design phase, the analyst creates the actual forms, reports, doc-
uments, and other types of output that might be accessed from workstations, note-
books, tablets, smartphones, and other devices. How the information will be used,
stored, and retrieved must also be considered. The following subsections explain vari-
ous output types and technologies.

INTERNET-BASED INFORMATION DELIVERY: Millions of firms use the Internet to
reach new customers and markets around the world. To support the explosive growth
in e-commerce, web designers must provide user-friendly screen interfaces that display
output and accept input from customers. For example, a business can link its inven-
tory system to its website so the output from the inventory system is displayed as an
online catalog. Customers visiting the site can review the items, obtain current prices,
and check product availability.

Another example of web-based output is a system that provides customized
responses to product or technical questions. When a user enters a product inquiry or
requests technical support, the system responds with appropriate information from
an on-site knowledge base. Web-based delivery allows users to download a universe
of files and documents to support their information needs. For example, the web pro-
vides consumers with instant access to brochures, product manuals, and parts lists,
while prospective homebuyers can obtain instant quotes on mortgages, insurance, and
other financial services.

To reach prospective customers and investors, companies also use a live or prere-
corded webcast, which is an audio or video media file distributed over the Internet.
Radio and TV stations also use this technique to broadcast program material to their
audiences.

EMAIL: Email is an essential means of internal and external business communica-
tion. Employees send and receive email on local or wide area networks, including the
Internet. Companies send new product information to customers via email, and finan-
cial services companies use email messages to confirm online stock trades. Employees
use email to exchange documents, data, and schedules and to share business-related
information they need to perform their jobs. In many firms, email has virtually
replaced traditional memos and printed correspondence.

BLOGS: Web-based logs, called blogs, are another form of web-based output.
Because blogs are journals written from a particular point of view, they not only
deliver facts to web readers but also provide opinions. Blogs are useful for posting
news, reviewing current events, and promoting products.

INSTANT MESSAGING: This popular form of communication is another way for
individuals and companies to communicate effectively over the Internet. Although
some users feel that it can be a distraction, others like the constant flow of communi-
cation, especially as a team member in a collaborative situation.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

253

Phase 3 Systems Design

8.7 Technology Issues

WIRELESS DEVICES: Messages and data can be transmitted to a wide array of
mobile devices, including tablet computers, smartphones, and similar wireless prod-
ucts that combine portable computing power, multimedia capability, and Internet
access.

DIGITAL AUDIO, IMAGES, AND VIDEO: Sounds, images, and video clips can be cap-
tured, stored in digital format, and transmitted as output to users who can reproduce
the content.

Audio or video output can be attached to an email message or inserted as a clip in
a Microsoft Word document. Businesses also use automated systems to handle voice
transactions and provide information to customers. For example, using a telephone
keypad, a customer can confirm an airline seat assignment, check a credit card bal-
ance, or determine the current price of a mutual fund.

If a picture is worth a thousand words, then digital images and video clips cer-
tainly are high-value output types that offer a whole new dimension. For example, an
insurance adjuster with a digital camera phone can take a picture, submit the image
via a wireless device, and receive immediate authorization to pay a claim on the spot.
If images are a valuable form of output, video clips are even better in some situations.
For example, video clips provide online virtual tours that allow realtors to show off
the best features of homes they are marketing. The user can zoom in or out and rotate
the image in any direction.

AUTOMATED FAX SYSTEMS: An automated fax or faxback system allows a
customer to request a fax using email, via the company website, or by telephone.
The response is transmitted in a matter of seconds back to the user’s fax machine.
Although most users prefer to download documents from the web, many established
organizations still offer an automated faxback service as another way to provide
immediate response 24 hours a day to a certain set of customers. Certain industries
in particular, such as drug stores and doctor’s offices, insurance companies, and real
estate brokers, still rely on fax machines as a primary way of communication.

PODCASTS: A podcast is a specially formatted digital audio file that can be down-
loaded by Internet users from a variety of content providers. Many firms use podcasts
as sales and marketing tools and to communicate with their own employees. Using
software such as iTunes, users can receive a podcast, launch the file on their computer,
and store it on their portable player. Podcasts can include images, sounds, and video.

COMPUTER OUTPUT TO DIGITAL MEDIA: This process is used when many paper
documents must be scanned, stored in digital format, and retrieved quickly. For exam-
ple, if an insurance company stores thousands of paper application forms, special
software can treat the documents as data and extract information from a particular
column or area on the form. Digital storage media can include magnetic tape, CDs,
DVDs, and high-density laser disks.

SPECIALIZED FORMS OF OUTPUT: An incredibly diverse marketplace requires
many forms of specialized output and devices. For example:

• Portable, web-connected devices that can run multiple apps, handle multimedia
output, and provide powerful, multipurpose communication for users

• Retail point-of-sale terminals that handle computer-based credit card transac-
tions, print receipts, and update inventory records

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

254

Chapter 8 User Interface Design

8.7 Technology Issues

• Automatic teller machines (ATMs) that can process bank transactions and
print deposit and withdrawal slips

• Special-purpose printers that can produce labels, employee ID cards, driver’s
licenses, gasoline pump receipts, and, in some states, lottery tickets

• Plotters that can produce high-quality images such as blueprints, maps, and
electronic circuit diagrams

• Electronic detection of data embedded in credit cards, bank cards, and
employee identification cards

8.7.2 Input Technology
Input technology has changed dramatically in recent years. In addition to traditional
devices and methods, there has been a rapid expansion of new hardware and ways to
capture and enter data into a system, some of which are shown in Figure 8-16. Busi-
nesses are using the new technology to speed up the input process, reduce costs, and
capture data in new forms, such as digital signatures.

INPUT TECHNOLOGY

Traditional Evolving Emerging

Keyboard Body motion detection Brain-computer interface (BCI)

Mouse Advanced voice recognition Neural networks

Pointing devices Biological feedback Artificial intelligence (AI)

Microphone Embedded magnetic data Advanced motion sensors

OCR (optical character
recognition)

RFID Two-way satellite interface

MICR (magnetic ink character
recognition)

Advanced optical recognition Virtual environments

Graphic input devices Physical adaptation devices 3-D technology

FIGURE 8-16 Input devices can be very traditional or based on the latest technology.

Input methods should be cost-efficient, timely, and as simple as possible. Systems
analysts study transactions and business operations to determine how and when data
should enter the system. Usually, the first decision is whether to use batch or online
input methods. Each method has advantages and disadvantages, and the systems ana-
lyst must consider the following factors.

BATCH INPUT: Using batch input, data entry usually is performed on a specified
time schedule, such as daily, weekly, monthly, or longer. For example, batch input
occurs when a payroll department collects time cards at the end of the week and
enters the data as a batch. Another example is a school that enters all grades for the
academic term in a batch.

ONLINE INPUT: Although batch input is used in specific situations, most busi-
ness activity requires online data entry. The online method offers major advantages,
including the immediate validation and availability of data. A popular online input
method is source data automation, which combines online data entry and automated

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

255

Phase 3 Systems Design

8.8 Security and Control Issues

data capture using input devices such as radio frequency identification(RFID) tags,
magnetic data strips, or even smartphones. Source data automation is fast and accu-
rate and minimizes human involvement in the translation process.

Many large companies use a combination of source data automation and a pow-
erful communication network to manage global operations instantly. Some common
examples of source data automation are as follows:

• Businesses that use point-of-sale (POS) terminals equipped with bar code scan-
ners and magnetic swipe scanners to input credit card data

• Automatic teller machines (ATMs) that read data strips on bank cards

• Factory employees who use magnetic ID cards to clock on and off specific jobs
so the company can track production costs accurately

• Hospitals that imprint bar codes on patient identification bracelets and use
portable scanners when gathering data on patient treatment and medication

• Retail stores that use portable bar code scanners to log new shipments and
update inventory data

• Libraries that use handheld scanners to read optical strips on books

TRADE-OFFS: Although online input offers many advantages, it does have some dis-
advantages. For example, unless source data automation is used, manual data entry
is slower and more expensive than batch input because it is performed at the time the
transaction occurs and often done when computer demand is at its highest.

The decision to use batch or online input depends on business requirements. For
example, hotel reservations must be entered and processed immediately, but hotels
can enter their monthly performance figures in a batch. In fact, some input occurs
naturally in batches. A cable TV provider, for example, receives customer payments in
batches when the mail arrives.

8.8 secUrIty anD control IssUes

A company must do everything in its power to protect its data. This includes not only
the firm’s own information but that of its customers, employees, and suppliers. Most
assets have a value, but corporate data is priceless because without safe, secure, and
accurate data, a company cannot function.

The following sections discuss output and input data security and control.

8.8.1 Output Security and Control
Output must be accurate, complete, current, and secure. Companies use various
output control methods to maintain output integrity and security. For example, every
report should include an appropriate title, report number or code, printing date, and
time period covered. Reports should have pages that are numbered consecutively,
identified as Page nn of nn, and the end of the report should be labeled clearly.
Control totals and record counts should be reconciled against input totals and
counts. Reports should be selected at random for a thorough check of correctness and
completeness. All processing errors or interruptions must be logged so they can be
analyzed.

Output security protects privacy rights and shields the organization’s proprietary
data from theft or unauthorized access. To ensure output security, several important

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

256

Chapter 8 User Interface Design

8.8 Security and Control Issues

tasks must be performed. First, limit the number of printed copies and use a tracking
procedure to account for each copy. When printed output is distributed from a central
location, specific procedures should be used to ensure that the output is delivered to
authorized recipients only. That is especially true when reports contain sensitive infor-
mation, such as payroll data. All sensitive reports should be stored in secure areas. All
pages of confidential reports should be labeled appropriately.

As shown in Figure 8-17, it is important to shred sensitive reports, out-of-date
reports, and output from aborted print runs. Blank check forms must be stored in a
secure location and be inventoried regularly to verify that no forms are missing. If sig-
nature stamps are used, they must be stored in a secure location away from the forms
storage location.

FIGURE 8-17 To maintain output security, it is important to shred sensitive
material.
Gang Liu/Shutterstock.com

In most organizations, the IT department is responsible for coordinating output
control and security measures. Systems analysts must be concerned with security
issues as they design, implement, and support information systems. Whenever pos-
sible, security should be designed into the system by using passwords, shielding sen-
sitive data, and controlling user access. Physical security always will be necessary,
especially in the case of printed output that is tangible and can be viewed and han-
dled easily.

Enterprise-wide data access creates a whole new set of security and control issues.
Many firms have responded to those concerns by installing diskless workstations. A
diskless workstation is a network terminal that supports a full-featured user interface
but limits the printing or copying of data, except to certain network resources that
can be monitored and controlled. This concept would typically preclude the use of
portable storage devices, such as USB thumb drives.

8.8.2 Input Security and Control
Input control includes the necessary measures to ensure that input data is correct,
complete, and secure. Input control must be the focus during every phase of input
design, starting with source documents that promote data accuracy and quality. When
a batch input method is used, the computer can produce an input log file that identi-
fies and documents the data entered.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

257

Phase 3 Systems Design

8.9 Emerging Trends

Every piece of information should be traceable back to the input data that
produced it. That means the analyst must provide an audit trail that records the
source of each data item and when it entered the system. In addition to recording
the original source, an audit trail must show how and when data is accessed or
changed, and by whom. All those actions must be logged in an audit trail file and
monitored carefully.

A company must have procedures for handling source documents to ensure that
data is not lost before it enters the system. All source documents that originate from
outside the organization should be logged when they are received. Whenever source
documents pass between departments, the transfer should be recorded.

Data security policies and procedures protect data from loss or damage, which is a
vital goal in every organization. If the safeguards are not 100% effective, data recov-
ery utilities should be able to restore lost or damaged data. Once data is entered, the
company should store source documents in a safe location for some specified length
of time. The company should have a records retention policy that meets all legal
requirements and business needs.

Audit trail files and reports should be stored and saved. Then, if a data file is
damaged, the information can be used to reconstruct the lost data. Data security
also involves protecting data from unauthorized access. System sign-on procedures
should prevent unauthorized individuals from entering the system, and users should
change their passwords regularly. Having several levels of access also is advisable. For
example, a data entry person might be allowed to view a credit limit but not change
it. Sensitive data can be encrypted, or coded, in a process called encryption, so only
users with decoding software can read it.

8.9 emergIng trenDs

The user interface continues to evolve. The widespread use of mobile devices such
as the iPad and other tablets, coupled with the ubiquity of the iPhone and other
smartphones, has greatly influenced user interface design. Indeed, key user experience
lessons from these devices have been reflected back into the user interface for main-
stream operating systems such as Mac OS X and Microsoft Windows.

It is difficult to predict the future, but the introduction of the Apple Watch, Goo-
gle’s Wear OS, Fitbit’s fitness trackers, and other wearable devices promises to further
shake up user interface design principles. Advanced technology will support the evo-
lution, but the real driving force will be user empowerment, which results in customer
satisfaction, increased productivity, and bottom-line savings.

8.9.1 Modular Design
In a modular design, individual components, called modules, are created that connect
to a higher-level program or process. In a structured design, each module represents a
specific process, which is shown on a DFD and documented in a process description.
If an object-oriented design is being used, as described in Chapter 6, code modules
represent classes. Modular design is explained in more detail in Chapter 11, which
describes systems implementation.

Modules should be designed to perform a single function. Independent modules
provide greater flexibility because they can be developed and tested individually and
then combined or reused later in the development process. Modular design is espe-
cially important in designing large-scale systems because separate teams of analysts
and programmers can work on different areas and then integrate the results.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

258

Chapter 8 User Interface Design

8.9 Emerging Trends

8.9.2 Responsive Web Design
Today’s content is viewed by users on multiple devices: computers, tablets, and smart-
phones. Each device has its own form factors that can limit the user experience. For
example, the physical dimensions of a smartphone preclude the use of wide menus—
without forcing the user to scroll horizontally too much.

Responsive web design is an emerging trend that renders web content properly,
independently of the device in use. This means the developer only has to focus on
essential user interface issues; how the GUI artifacts are presented on the device
is handled automatically by the underling framework. Responsive web design
addresses various nonfunctional attributes, including usability, performance, and
maintainability.

Responsive web design relies on a number of underlying technologies, including
CSS3, flexible images, and fluid grids. Page elements are expressed in relative terms
(e.g., percentages), rather than absolute terms (e.g., pixels). This allows the content to
“flow” properly in the user interface, irrespective of the display device.

8.9.3 Prototyping
Prototyping produces an early, rapidly constructed working version of the proposed
information system, called a prototype. Prototyping, which involves a repetitive
sequence of analysis, design, modeling, and testing, is a common technique that can
be used to design anything from a new home to a computer network. For example,
engineers use a prototype to evaluate an aircraft design before production begins, as
shown in the wind tunnel testing in Figure 8-18.

FIGURE 8-18 Wind tunnel testing is a typical example of prototyping.
Courtesy of NASA

User input and feedback is essential at every stage of the systems development
process. Prototyping allows users to examine a model that accurately represents
system outputs, inputs, interfaces, and processes. Users can “test-drive” the model in
a risk-free environment and either approve it or request changes. In some situations,
the prototype evolves into the final version of the information system. In other
cases, the prototype is intended only to validate user requirements and is discarded
afterward.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

259

Phase 3 Systems Design

8.9 Emerging Trends

Perhaps the most intense form of prototyping occurs when agile methods are used.
As described in Chapter 1, agile methods build a system by creating a series of pro-
totypes and constantly adjusting them to user requirements. As the agile process con-
tinues, developers revise, extend, and merge earlier versions into the final product. An
agile approach emphasizes continuous feedback, and each incremental step is affected
by what was learned in the prior steps.

Systems analysts generally use two prototyping methods: system prototyping and
design prototyping.

SYSTEM PROTOTYPING: System prototyping produces a full-featured, working
model of the information system. A system prototype that meets all requirements is
ready for implementation, as shown in Figure 8-19. Because the model is “on track”
for implementation, it is especially important to obtain user feedback and to be sure
that the prototype meets all requirements of users and management.

DESIGN PROTOTYPING: Systems analysts also use prototyping to verify user
requirements, after which the prototype is discarded and implementation continues.
The approach is called design prototyping, or throwaway prototyping. In this case,
the prototyping objectives are more limited but no less important. The end product
of design prototyping is a user-approved model that documents and benchmarks the
features of the finished system. Design prototyping makes it possible to capture user
input and approval while continuing to develop the system within the framework of
the SDLC. Systems analysts typically use design prototyping as they construct out-
puts, inputs, and user interfaces.

TRADE-OFFS: Prototyping offers many benefits, including the following:

• Users and systems developers can avoid misunderstandings.

• System developers can create accurate specifications for the finished system
based on the prototype.

• Managers can evaluate a working model more effectively than a paper
specification.

Implement
the system

Analysis

Planning

System
prototype

Design

FIGURE 8-19 The end product of system prototyping is a working model of
the information system, ready for proper implementation.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

260

Chapter 8 User Interface Design

8.10 Summary

• Systems analysts can use a prototype to develop testing and training procedures
before the finished system is available.

• Prototyping reduces the risk and potential financial exposure that occur when
a finished system fails to support business needs.

Although most systems analysts believe that the advantages of prototyping far out-
weigh any disadvantages, the following potential problems should be considered:

• The rapid pace of development can create quality problems, which are not dis-
covered until the finished system is operational.

• Other system requirements, such as reliability and maintainability, cannot be
tested adequately using a prototype.

• In very complex systems, the prototype can become unwieldy and difficult to
manage.

• A client or user might want to adopt the prototype with few to no changes,
mistakenly thinking that the prototype will meet their needs though it may
need further customization, leading to increased maintenance costs later in the
SDLC.

A QUESTION OF ETHICS

One of the systems analysts on the project team thought that he did a good job of design-
ing the company’s tech support webpage, but his supervisor isn’t so sure. His supervisor is
concerned that the design is very similar to a page used by the company’s major compet-
itor, and she asked him whether he had used any HTML code from that site in his design.
Although the analyst didn’t copy any of the code, he did examine it in his web browser to
see how they handled some design issues.

The supervisor asked the analyst to investigate webpage copyright issues and report
back to her. In his research, the analyst learned that outright copying would be a copyright
violation, but merely viewing other sites to get design ideas would be permissible. What
is not so clear is the gray area in the middle. The analyst asked you, as a friend, for your
opinion on this question: Even if no actual copying is involved, are there ethical constraints
on how far you should go in using the creative work of others? How would you answer?

iStock.com/faberfoto_it

8.10 sUmmary

The chapter began with a discussion of user interface design and HCI concepts. A
GUI uses visual objects and techniques that allow users to communicate effectively
with the system. User-centered design principles include understanding the business,
maximizing graphic effectiveness, thinking like a user, using models and prototypes,
focusing on usability, inviting feedback, and documenting everything.

When designing the user interface, it should be transparent; create an interface
that is easy to learn and use; enhance user productivity; make it easy to obtain help or
correct errors; minimize input data problems; provide feedback; create an attractive
layout and design; and use familiar terms and images. Control features, such as menu

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

261

Phase 3 Systems Design

8.10 Summary

bars, toolbars, drop-down list boxes, dialog boxes, toggle buttons, list boxes, option
buttons, check boxes, and command buttons can also be added. Controls are placed
on a main switchboard, which is like a graphical version of a main menu.

The discussion of input design began with a description of source documents and
the various zones in a document, including the heading zone, the control zone, the
instruction zone, the body zone, the totals zone, and the authorization zone. The dis-
cussion of data entry screen design explained the use of input masks and validation
rules to reduce data errors. Input masks are like templates that only permit certain
combinations of characters, and data validation rules can provide checks to ensure
that inappropriate data is prevented from entering the system. These checks can
include data sequence, existence, range and limit, reasonableness, and validity, among
others.

The chapter described various types of printed reports, including detail, exception,
and summary reports. The features and sections of reports, including control fields,
control breaks, report headers and footers, page headers and footers, and group head-
ers and footers were explained. Other types of output, such as web-based information
delivery, audio output, instant messaging, podcasts, email, and other specialized forms
of output were also discussed.

Batch and online input methods were also described, as were input media and pro-
cedures, and input volume. Input methods include data capture and data entry. Data
capture, which may be automated, involves identifying and recording source data.
Data entry involves converting source data into a computer-readable form and enter-
ing it into the system. New technology offers optical and voice recognition systems,
biological feedback devices, motion sensors, and a variety of graphical input devices.

Security and control were discussed. Output control includes physical protection
of data and reports and control of unauthorized ports or devices that can extract data
from the system. Input controls include audit trails, encryption, password security,
data security, and the creation of access levels to limit persons authorized to view or
use data.

Finally, the emerging trends of modular design, responsive web design, and proto-
typing were discussed.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

262

Chapter 8 User Interface Design

Key Terms

Key Terms

audit trail A record of the source of each data item and when it entered a system. In addition to record-
ing the original source, an audit trail must show how and when data is accessed or changed, and by
whom. All these actions must be logged in an audit trail file and monitored carefully.

authorization zone Part of a form that contains any required signatures.

automated fax A system that allows a customer to request a fax using email, the company website, or
a telephone. The response is transmitted in a matter of seconds back to the user’s fax machine. See
faxback.

batch A group of data, usually inputted into an information system at the same time.

batch control A total used to verify batch input. Batch controls might check data items such as record
counts and numeric field totals. For example, before entering a batch of orders, a user might calcu-
late the total number of orders and the sum of all the order quantities. When the batch of orders is
entered, the order system also calculates the same two totals. If the system totals do not match the
input totals, then a data entry error has occurred.

batch input A process where data entry is performed on a specified time schedule, such as daily, weekly,
monthly, or longer. For example, batch input occurs when a payroll department collects time cards at
the end of the week and enters the data as a batch.

blog An online journal. The term is a contraction of “web log.”

calendar control A calendar control allows the user to select a date that the system will display and store
as a field value.

character-based report A report created using a single mono-spaced character set.

check box Used to select one or more choices from a group. A check mark, or an X, represents selected
options.

combination check A type of data validation check that is performed on two or more fields to ensure
that they are consistent or reasonable when considered together. Even though all the fields involved in
a combination check might pass their individual validation checks, the combination of the field values
might be inconsistent or unreasonable.

command button Onscreen button that initiates an action such as printing a form or requesting Help.

context-sensitive A feature that is sensitive to the current conditions when it is invoked. For example,
context-sensitive help offers assistance for a task in progress.

control break A control break usually causes specific actions to occur, such as printing subtotals for a
group of records.

control break report A detail report that focuses on control breaks.

control field order In a control break report, the records are arranged or sorted in the same order as the
control fields.

data security Protection of data from loss or damage and recovers data when it is lost or damaged.

data type check A type of data validation check that is used to ensure that a data item fits the required
data type. For example, a numeric field must have only numbers or numeric symbols, and an alpha-
betic field can contain only the characters A through Z or the characters a through z.

data validation rule A mechanism to improve input quality by testing the data and rejecting any entry
that fails to meet specified conditions.

default value A value that a system displays automatically.

design prototyping Creating a prototype of user requirements, after which the prototype is discarded
and implementation continues. Also called throwaway prototyping.

detail report A detail report produces one or more lines of output for each record processed.

dialog box Allows a user to enter information about a task that a system will perform.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 263

Phase 3 Systems Design

diskless workstation A network terminal that supports a full-featured user interface but limits the print-
ing or copying of data, except to certain network resources that can be monitored and controlled
more easily.

electronic health record (EHR) An electronic record of a patient’s health information generated as the
patient encounters various health-care providers and shared among multiple facilities and agencies.

encryption A process where data is coded (converted into unreadable characters) so that only those with
the required authorization can access the data (usually via decoding software).

exception report A document displaying only those records that meet a specific condition or conditions.
Exception reports are useful when the user wants information only on records that might require
action but does not need to know the details.

existence check A type of data validation check that is used for mandatory data items. For example, if
an employee record requires a Social Security number, an existence check would not allow the user to
save the record until he or she enters a suitable value in the SSN field.

faxback See automated fax.

form filling A very effective method of online data entry where a blank form that duplicates or resem-
bles the source document is completed on the screen. The user enters the data and then moves to the
next field.

form layout The physical appearance and placement of data on a form. Form layout makes the form
easy to complete and provides enough space, both vertically and horizontally, for users to enter the
data.

garbage in, garbage out (GIGO) The concept that the quality of the output is only as good as the quality
of the input.

graphical user interface (GUI) The use of graphical objects and techniques allowing users to communi-
cate with a system. A well-designed GUI can help users learn a new system rapidly and work with the
system effectively.

hash totals Not meaningful numbers themselves but are useful for comparison purposes. Also known as
batch control totals.

human-computer interaction (HCI) A description of the relationship between computers and the people
who use them to perform business-related tasks. HCI concepts apply to everything from a PC desktop
to the main menu for a global network.

input control The necessary measures to ensure that input data is correct, complete, and secure. A sys-
tems analyst must focus on input control during every phase of input design, starting with source doc-
uments that promote data accuracy and quality.

input mask Template or pattern that makes it easier for users to enter data. Often used in automated
forms to guide an unfamiliar user.

limit check Occurs when a validation check involves a minimum or a maximum value, but not both.
Checking that a payment amount is greater than zero, but not specifying a maximum value, is an
example of a limit check.

list box An output mechanism that displays a list of choices that the user can select.

menu bar A set of user-selectable software application options, usually located across the top of the
screen.

mock-up When designing a report, a sample report is prepared, which is a mock-up, or prototype, for
users to review. The sample should include typical field values and contain enough records to show all
the design features.

modular design A design that can be broken down into logical blocks. Also known as partitioning, or
top-down design.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

264

Chapter 8 User Interface Design

Key Terms

module Related program code organized into small units that are easy to understand and maintain. A
complex program could have hundreds or even thousands of modules.

natural language A software feature that allows users to type commands or requests in normal English
(or other language) phrases.

online data entry A data entry method used for most business activity. The online method offers major
advantages, including the immediate validation and availability of data.

option button Radio buttons that represent groups of options. The user can select only one option at a
time; a selected option contains a black dot. See also radio button.

output control Methods to maintain output integrity and security. For example, every report should
include an appropriate title, report number or code, printing date, and time period covered. Reports
should have pages that are numbered consecutively, identified as Page xx of xx, and the end of the
report should be labeled clearly.

output security Output security protects privacy rights and shields the organization’s proprietary data
from theft or unauthorized access.

page footer Appears at the bottom of the page and is used to display the name of the report and the
page number.

page header Appears at the top of the page and includes the column headings that identify the data.

podcast A web-based broadcast that allows a user to receive audio or multimedia files using music
player software such as iTunes, and listen to them on a PC or download them to a portable MP3
player or smart phone.

prototype An early, rapidly constructed working version of the proposed information system.

prototyping The method by which a prototype is developed. It involves a repetitive sequence of analysis,
design, modeling, and testing. It is a common technique that can be used to design anything from a
new home to a computer network.

radio button Buttons that represent groups of options. The user can select only one option at a time; a
selected option contains a black dot. See also option button.

radio frequency identification (RFID) tag An input device used in source data automation.

range check A type of data validation check that tests data items to verify that they fall between a spec-
ified minimum and maximum value. The daily hours worked by an employee, for example, must fall
within the range of 0 to 24.

reasonableness check A type of data validation check that identifies values that are questionable but not
necessarily wrong. For example, input payment values of $0.05 and $5,000,000.00 both pass a sim-
ple limit check for a payment value greater than zero, and yet both values could be errors.

records retention policy Rules designed to meet all legal requirements and business needs for keeping records.

report footer Appears at the end of the report, can include grand totals for numeric fields and other end-
of-report information.

report header Appears at the beginning of a report and identifies the report as well as the report title,
date, and other necessary information.

scroll bar In user interface design, a scroll bar allows the user to move through the available choices for
an input field.

sequence check A type of data validation check that is used when the data must be in some
predetermined sequence. If the user must enter work orders in numerical sequence, for example,
then an out-of-sequence order number indicates an error. If the user must enter transactions
chronologically, then a transaction with an out-of-sequence date indicates an error.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 265

Phase 3 Systems Design

source data automation A popular online input method that combines online data entry and automated
data capture using input devices such as magnetic data strips or swipe scanners.

source document A form used to request and collect input data, trigger or authorize an input action, and
provide a record of the original transaction. During the input design stage, you develop source docu-
ments that are easy to complete and inexpensive.

storyboard Sketches used during prototyping to show the general screen layout and design.

summary report A report used by individuals at higher levels in the organization that includes less detail
than reports used by lower-level employees.

switchboard The use of command buttons in a user interface to enable users to navigate a system and
select from groups of related tasks.

system prototyping Producing a full-featured, working model of the information system being
developed.

throwaway prototyping See design prototyping.

toggle button A GUI element used to represent on or off status. Clicking the toggle button switches to
the other status.

toolbar A GUI element that contains icons or buttons that represent shortcuts for executing common
commands.

totals zone If a form has data totals, they will appear in this section of the form.

transparent interface A user interface that users don’t really notice—a user-friendly interface that does
not distract the user and calls no attention to itself.

turnaround document Output document that is later entered back into the same or another informa-
tion system. A telephone or utility bill, for example, might be a turnaround document printed by the
company’s billing system. When the bill is returned with payment, it is scanned into the company’s
accounts receivable system to record the payment accurately.

usability In user interface design, includes user satisfaction, support for business functions, and system
effectiveness.

usability metrics Data that interface designers can obtain by using software that can record and measure
user interactions with the system.

user-centered A term that indicates the primary focus is upon the user. In a user-centered system, the dis-
tinction blurs between input, output, and the interface itself.

user interface (UI) The mechanism through which the user interacts with the system. The interface can
be graphical, textual, aural, or a combination of different modes of interaction.

validity check A type of data validation check that is used for data items that must have certain val-
ues. For example, if an inventory system has 20 valid item classes, then any input item that does not
match one of the valid classes will fail the check.

webcast A one-way transmission of information or training materials, such as a Webinar session, avail-
able on demand or for a specific period to online participants.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

266

Chapter 8 User Interface Design

Exercises

Exercises

Questions
1. Explain Apple’s view of user interface design, especially for apps.
2. What is HCI?
3. Why is a transparent interface desirable?
4. What are the seven habits of successful interface designers?
5. How would you rank the 10 guidelines for user interface design in order of importance? Explain your

answer.
6. What are the main principles of source document design?
7. What is the difference between a detail report, a summary report, and an exception report?
8. How has input technology changed in recent years?
9. What is output security?

10. What are three emerging trends in user interface design?

Discussion Topics
1. Some systems analysts argue, “Give users what they ask for. If they want lots of reports and reams

of data, then that is what you should provide. Otherwise, they will feel that you are trying to tell
them how to do their jobs.” Others say, “Systems analysts should let users know what information
can be obtained from the system. If you listen to users, you’ll never get anywhere because they really
don’t know what they want and don’t understand information systems.” What do you think of these
arguments?

2. Some systems analysts maintain that source documents are unnecessary. They say that all input can be
entered directly into the system, without wasting time in an intermediate step. Do you agree? Can you
think of any situations where source documents are essential?

3. Suppose your network support company employs 75 technicians who travel constantly and work at
customer sites. Your task is to design an information system that provides technical data and infor-
mation to the field team. What types of output and information delivery would you suggest for the
system?

4. A user interface can be quite restrictive. For example, the interface design might not allow a user to
exit to a Windows desktop or to log on to the Internet. Should a user interface include such restric-
tions? Why or why not?

5. How is the increased use of smartphones and tablets, with their smaller screen size, affecting user
interface design practices?

Projects
1. Visit the administrative office at your school or a local company. Ask to see examples of input

screens. Analyze the design and appearance of each screen and try to identify at least one possible
improvement.

2. Search the web to find an especially good example of a user interface that includes guidelines in this
chapter. Document your research and discuss it with your class.

3. Review Section 8.2 and the comments about EHR usability. Research the current status of EHR
usability and describe all noteworthy developments.

4. Suggest at least two good examples and two bad examples of source document design.
5. Explore the emerging area of wearable computing, such as the Apple Watch, and comment on the

impact of these devices on user interface design.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 9 Data Design

Data Design

C O N T E N T S
9.1 Data Design Concepts
9.2 DBMS Components
9.3 Web-Based Design
9.4 Data Design Terms
9.5 Entity-Relationship Diagrams
 Case in Point 9.1: TopText Publishing
9.6 Data Normalization
 Case in Point 9.2: CyberToys
9.7 Codes
 Case in Point 9.3: Madera Tools
9.8 Data Storage and Access
9.9 Data Control
 A Question of Ethics
9.10 Summary
 Key Terms
 Exercises

CHAPTER9
Chapter 9 is the second of three chapters in the
 systems design phase of the SDLC. During the systems
analysis phase, a logical model of the system was
 created. Now, it must be decided how data will be
 organized, stored, and managed. These are important
issues that affect data quality and consistency. This
 chapter focuses on the data design skills that are

necessary for a systems analyst to construct the physical
model of the information system.

The chapter includes three “Case in Point”
 discussion questions to help contextualize the concepts
described in the text. The “Question of Ethics” raises
the important and timely issue of sharing customer data
without their explicit consent.

L E A R N I N G O B J E C T I V E S
When you finish this chapter, you should be
able to:

1. Explain basic data design concepts, including
data structures, DBMSs, and the evolution of the
relational database model

2. Explain the main components of a DBMS

3. Define the major characteristics of web-based
design

4. Define data design terminology

5. Draw entity-relationship diagrams

6. Apply data normalization

7. Utilize codes to simplify output, input, and data
formats

8. Explain data storage tools and techniques,
including logical versus physical storage

9. Explain data coding

10. Explain data control measures

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

269

Phase 3 Systems Design

9.1 Data Design Concepts

9.1 Data Design ConCepts

Systems analysts must understand basic data design concepts, including data struc-
tures and the evolution of the relational database model.

9.1.1 Data Structures
A data structure is a framework for organizing, storing, and managing data. Data
structures consist of files or tables that interact in various ways. Each file or table
contains data about people, places, things, or events. For example, one file or table
might contain data about customers, and other files or tables might store data about
products, orders, suppliers, or employees.

Many older legacy systems utilized file processing because it worked well with
mainframe hardware and batch input. Some companies still use this method to handle
large volumes of structured data on a regular basis because can be cost-effective in
certain situations. For example, consider a credit card company that posts thousands
of daily transactions from a TRANSACTIONS file to account balances stored in a
CUSTOMERS file, as shown in Figure 9-1. For that relatively simple process, file
 processing might be an option.

Over time, the modern relational database became a standard model for systems
developers. The following example of an auto service shop will compare the two
concepts.

9.1.2 Mario and Danica: A Data Design Example
Figure 9-2 shows an auto shop mechanic at work. Imagine two shops that are very
similar but use two different information system designs. Let’s call them Mario’s Auto
Shop and Danica’s Auto Shop. Mario uses two file-oriented systems, while Danica
uses a database management system.

FIGURE 9-1 A credit card company that posts thousands of daily transactions might consider a file processing
option.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

270

Chapter 9 Data Design

9.1 Data Design Concepts

MARIO’S AUTO SHOP: Mario relies on two
file-oriented systems, sometimes called file pro-
cessing systems, to manage his business. The two
systems store data in separate files that are not
connected or linked. Figure 9-3 shows Mario’s
file-oriented systems:

• The MECHANIC SYSTEM uses the
MECHANIC file to store data about shop
employees

• The JOB SYSTEM uses the JOB file to store
data about work performed at the shop.

Unfortunately, using two separate systems
means that some data is stored in two different
places, and the data might or might not be con-
sistent. For example, three data items (Mechanic
No, Name, and Pay Rate) are stored in both
files. This redundancy is a major disadvan-

tage of file-oriented systems because it threatens data quality and integrity. In fact,
 Figure 9-3 includes a typical discrepancy: Jim Jones’ pay rate is shown as $18.90 in
the MECHANIC SYSTEM file and $19.80 in the JOB SYSTEM file.

FIGURE 9-2 In the example shown here, data about the
mechanic, the customer, and the brake job might be stored in a
file-oriented system or in a database system.
Lisa F. Young/Shutterstock.com

FIGURE 9-3 Mario’s shop uses two separate systems, so certain data must be entered twice. This
redundancy is inefficient and can produce errors.

MECHANIC SYSTEM

JOB SYSTEM

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

271

Phase 3 Systems Design

9.1 Data Design Concepts

DANICA’S AUTO SHOP: Danica uses a database management system (DBMS)
with two separate tables that are joined, so they act like one large table, as shown in
Figure 9-4. In Danica’s SHOP OPERATIONS SYSTEM, the tables are linked by the
Mechanic No field, which is called a common field because it connects the tables.
Note that except for the common field, no other data items are duplicated. The
DBMS design, also called a relational database or relational model, was introduced
in the 1970s and continues to be the dominant approach for organizing, storing, and
managing business data.

FIGURE 9-4 Danica’s SHOP OPERATIONS SYSTEM uses a database design, which
avoids duplication. The data can be viewed as if it were one large table, regardless of
where the data is physically stored.

SHOP
OPERATIONS
SYSTEM

Mario’s file-oriented systems show two different pay rates for Jim Jones, most
likely because of a data entry error in one of them. That type of error could not occur
in Danica’s relational database, because an employee’s
pay rate is stored in only one place. However, DBMSs are
not immune to data entry problems, which are discussed
in detail later in this chapter.

9.1.3 Database Management Systems
A database provides an overall framework that avoids

data redundancy and supports a real-time, dynamic envi-
ronment. Figure 9-5 shows a company-wide database
that supports four separate information systems.

A database management system (DBMS) is a collec-
tion of tools, features, and interfaces that enables users
to add, update, manage, access, and analyze data. From
a user’s point of view, the main advantage of a DBMS is
that it offers timely, interactive, and flexible data access.
Specific DBMS advantages include the following:

• Scalability. Scalability means that a system can be
expanded, modified, or downsized easily to meet
the rapidly changing needs of a business enterprise. FIGURE 9-5 In this example, a sales database can

support four separate business systems.

Order
System

Accounting
System

Inventory
System

Production
System

SALES
DATABASE

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

272

Chapter 9 Data Design

9.2 DBMS Components

For example, if a company decides to add data about secondary suppliers of
material it uses, a new table can be added to the relational database and linked
with a common field.

• Economy of scale. Database design allows better utilization of hardware. If a
company maintains an enterprise-wide database, processing is less expensive
using powerful servers and communication networks. The inherent efficiency
of high-volume processing on larger computers is called economy of scale.

• Enterprise-wide application. A DBMS is typically managed by a person called
a database administrator (DBA). The DBA assesses overall requirements and
maintains the database for the benefit of the entire organization rather than a
single department or user. Database systems can support enterprise-wide appli-
cations more effectively than file processing systems.

• Stronger standards. Effective database administration helps ensure that stan-
dards for data names, formats, and documentation are followed uniformly
throughout the organization.

• Better security. The DBA can define authorization procedures to ensure that
only legitimate users can access the database and can allow different users to
have different levels of access. Most DBMSs provide sophisticated security
support.

• Data independence. Systems that interact with a DBMS are relatively independent of
how the physical data is maintained. That design provides the DBA flexibility to alter
data structures without modifying information systems that use the data.

Although the trend is toward enterprise-wide database design, many companies
still use a combination of centralized DBMSs and smaller, department-level database
systems. This is because most large businesses view data as a company-wide resource
that must be accessible to users throughout the company. At the same time, other
factors encourage a decentralized design, including network expense; a reluctance to
move away from smaller, more flexible systems; and a realization that enterprise-wide

DBMSs can be highly complex and expensive to
maintain. The compromise, in many cases, is a
client/server design, where processing is shared
among several computers. Client/server systems are
described in detail in Chapter 10. As with many
design decisions, the best solution depends on the
organization’s needs and particular circumstances.

9.2 DBMs CoMponents

A DBMS provides an interface between a database
and users who need to access the data. Although
users are concerned primarily with an easy-to-use
interface and support for their business require-
ments, a systems analyst must understand all of the
components of a DBMS. In addition to interfaces
for users, DBAs, and related systems, a DBMS also
has a data manipulation language, a schema and
subschemas, and a physical data repository, as
shown in Figure 9-6.

Database
Administrators

DATABASE

Data manipulation language
Schema and subschemas
Physical data repository

Users
Related

Information
Systems

FIGURE 9-6 In addition to interfaces for users, database
administrators, and related information systems, a DBMS also has
a data manipulation language, a schema and subschemas, and a
physical data repository.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

273

Phase 3 Systems Design

9.2 DBMS Components

9.2.1 Interfaces for Users, Database Administrators, and Related Systems
When users, DBAs, and related information systems request data and services, the DBMS
processes the request, manipulates the data, and provides a response. A data manipulation
language (DML) controls database operations, including storing, retrieving, updating,
and deleting data. Most commercial DBMSs, such as Oracle and IBM’s DB2, use a DML.
Some database products, such as Microsoft Access, also provide an easy-to-use graphical
environment that enables users to control operations with menu-driven commands.

USERS: Users typically work with predefined queries and switchboard commands
but also use query languages to access stored data. A query language allows a user
to specify a task without specifying how the task will be accomplished. Some query
languages use natural language commands that resemble ordinary English sentences.
With a query by example (QBE) language, the user provides an example of the data
requested. Many database programs also use Structured Query Language (SQL),
which is a language that allows client workstations to communicate with servers and
mainframe computers. Figure 9-7 shows a QBE request for all Lime Squeeze or Blue
Candy 2019 Ford Fusions with a power moonroof. The QBE request generates the
SQL commands shown at the bottom of Figure 9-7.

DATABASE ADMINISTRATORS: A DBA is
responsible for DBMS management and support.
DBAs are concerned with data security and integrity,
preventing unauthorized access, providing backup and
recovery, audit trails, maintaining the database, and
supporting user needs. Most DBMSs provide utility
programs to assist the DBA in creating and updating
data structures, collecting and reporting patterns of
database usage, and detecting and reporting database
irregularities.

RELATED INFORMATION SYSTEMS: A DBMS
can support several related information systems that
provide input to, and require specific data from, the
DBMS. Unlike a user interface, no human intervention is required for two-way
communication between the DBMS and the related systems.

9.2.2 Schema
The complete definition of a database, including descriptions of all fields, tables,
and relationships, is called a schema. One or more subschemas can also be defined.
A subschema is a view of the database used by one or more systems or users. A
 subschema defines only those portions of the database that a particular system or user
needs or is allowed to access. For example, to protect individual privacy, the project
management system should not be permitted to retrieve employee pay rates. In that
case, the project management system subschema would not include the pay rate field.
Database designers also use subschemas to restrict the level of access permitted. For
example, specific users, systems, or locations might be permitted to create, retrieve,
update, or delete data, depending on their needs and the company’s security policies.

9.2.3 Physical Data Repository
Chapter 5 discussed a data dictionary, which describes all data elements included
in the logical design. At this stage of the systems development process, the data

QBE
request

SQL
commands

FIGURE 9-7 Using QBE, a user can display all 2019 Ford
Fusions that have a power moonroof and are either Lime
Squeeze or Blue Candy color.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

274

Chapter 9 Data Design

9.3 Web-Based Design

dictionary is transformed into a physical data repository, which also contains the
schema and subschemas. The physical repository might be centralized, or it might
be distributed at several locations. In addition, the stored data might be managed by
a single DBMS, or several systems. To resolve potential database connectivity and
access problems, companies use ODBC-compliant software that enables communica-
tion among various systems and DBMSs. Open database connectivity (ODBC) is an
industry-standard protocol that makes it possible for software from different vendors
to interact and exchange data. ODBC uses SQL statements that the DBMS under-
stands and can execute, similar to the ones shown in Figure 9-7. Another common
standard is called java database connectivity (JDBC). JDBC enables Java applications
to exchange data with any database that uses SQL statements and is JDBC-compliant.

Physical design issues are described in Chapter 10, which discusses system architecture,
and in Chapter 11, which discusses system implementation and data conversion.

9.3 WeB-BaseD Design

Figure 9-8 lists some major characteristics of web-based design. In a web-based design,
the Internet serves as the front end, or interface, for the DBMS. Internet technology
provides enormous power and flexibility because the related information system is
not tied to any specific combination of hardware and software. Access to the database
requires only a web browser and an Internet connection. Web-based systems are popular
because they offer ease of access, cost-effectiveness, and worldwide connectivity—all of
which are vital to companies that must compete in a global economy.

CHARACTERISTIC EXPLANATION

Global access The Internet enables worldwide access, using existing infrastructure
and standard telecommunications protocols.

Ease of use Web browsers provide a familiar interface that is user-friendly and
easily learned.

Multiple platforms Web-based design is not dependent on a specific combination of
hardware or software. All that is required is a browser and an
Internet connection.

Cost effectiveness Initial investment is relatively low because the Internet serves as the
communication network. Users require only a browser, and web-
based systems do not require powerful workstations. Flexibility is
high because numerous outsourcing options exist for development,
hosting, maintenance, and system support.

Security issues Security is a universal issue, but Internet connectivity raises special
concerns. These can be addressed with a combination of good design,
software that can protect the system and detect intrusion, stringent
rules for passwords and user identification, and vigilant users and
managers.

Adaptability issues The Internet offers many advantages in terms of access, connectivity,
and flexibility. Migrating a traditional database design to the web,
however, can require design modification, additional software, and
some added expense.

FIGURE 9-8 Web-based design characteristics include global access, ease of use, multiple platforms, cost-effectiveness,
security issues, and adaptability issues. In a web-based design, the Internet serves as the front end, or interface, to the
database management system. Access to the database requires only a web browser and an Internet connection.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

275

Phase 3 Systems Design

9.4 Data Design Terms

To access data in a web-based system, the database must be connected to the Internet
or intranet. The database and the Internet speak two different languages, however.
Databases are created and managed by using various languages and commands that
have nothing to do with HTML, which is the language of the web. The objective is to
connect the database to the web and enable data to be viewed and updated.

To bridge the gap, it is necessary to use middleware, which is a software that
 integrates different applications and allows them to exchange data. Middleware can
interpret client requests in HTML form and translate the requests into commands
that the database can execute. When the database responds to the commands,
 middleware translates the results into HTML pages that can be displayed by the
user’s browser, as shown in Figure 9-9. Note that the four steps in the process can
take place using the Internet or a company intranet as the communications channel.
Middleware is discussed in more detail in Chapter 10.

FIGURE 9-9 When a client workstation requests a web page (1), the web server uses middleware to
generate a data query to the database server (2). The database server responds (3), and the middleware
translates the retrieved data into an HTML page that can be sent by the web server and displayed by the
user’s browser (4).

Web-based data must be secure, yet easily accessible to authorized users. To achieve
this goal, well-designed systems provide security at three levels: the database itself, the
web server, and the telecommunication links that connect the components of the system.
Data security is discussed in more detail in Section 9.9 and in Chapter 12.

9.4 Data Design terMs

Using the concepts discussed in the previous sections, a systems analyst can select a
design approach and begin to construct the system. The first step is to understand
data design terminology.

9.4.1 Definitions
Data design terms include entity, table, file, field, record, tuple, and key field. These
terms are explained in the following sections.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

276

Chapter 9 Data Design

9.4 Data Design Terms

ENTITY: An entity is a person, a place, a thing, or an event for which data is
 collected and maintained. For example, an online sales system may include enti-
ties named CUSTOMER, ORDER, PRODUCT, and SUPPLIER. When DFDs were
 prepared during the systems analysis phase, various entities and data stores were
identified. Now the relationships among the entities will be considered.

TABLE OR FILE: Data is organized into tables or files. A table, or file, contains a set
of related records that store data about a specific entity. Tables and files are shown
as two-dimensional structures that consist of vertical columns and horizontal rows.
Each column represents a field, or characteristic of the entity, and each row represents
a record, which is an individual instance, or occurrence of the entity. For example, if
a company has 10,000 customers, the CUSTOMER table will include 10,000 records,
each representing a specific customer.

Although they can have different meanings in a specific context, the terms table
and file often can be used interchangeably.

FIELD: A field, also called an attribute, is a single characteristic or fact about
an entity. For example, a CUSTOMER entity might include the Customer ID,
First Name, Last Name, Address, City, State, Postal Code, and Email Address.

A common field is an attribute that appears in more than one entity. Common
fields can be used to link entities in various types of relationships.

RECORD: A record, also called a tuple (rhymes with couple), is a set of related fields
that describes one instance, or occurrence, of an entity, such as one customer, one
order, or one product. A record might have one or dozens of fields, depending on
what information is needed.

9.4.2 Key Fields
During the systems design phase, key fields are used to organize, access, and maintain
data structures. The four types of keys are primary keys, candidate keys, foreign keys,
and secondary keys.

PRIMARY KEY: A primary key is a field or combination of fields that uniquely and
minimally identifies a particular member of an entity. For example, in a customer
table, the customer number is a unique primary key because no two customers can
have the same customer number. That key also is minimal because it contains no
information beyond what is needed to identify the customer. In a CUSTOMER table,
a Customer ID might be used as a unique primary key. Customer ID is an example of
a primary key based on a single field.

A primary key also can be composed of two or more fields. For example, if a
 student registers for three courses, his or her student number will appear in three
records in the registration system. If one of those courses has 20 students, 20 separate
records will exist for that course number—one record for each student who registered.

In the registration file, neither the student number nor the course ID is unique, so
neither field can be a primary key. To identify a specific student in a specific course,
the primary key must be a combination of student number and course ID. In that
case, the primary key is called a combination key. A combination key also can be
called a composite key, concatenated key, or multivalued key.

Figure 9-10 shows four different tables: STUDENT, ADVISOR, COURSE, and
GRADE. Three of these tables have single-field primary keys. Note that in the

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

277

Phase 3 Systems Design

9.4 Data Design Terms

GRADE table, however, the primary key is a combination of two fields: STUDENT
NUMBER and COURSE NUMBER.

FIGURE 9-10 Examples of common fields, primary keys, candidate keys, foreign keys, and secondary keys.

primary key
symbol

foreign key
symbol

combination
primary key

secondary
keys

common fields

candidate key

+

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

278

Chapter 9 Data Design

9.4 Data Design Terms

CANDIDATE KEY: Sometimes there is a choice of fields or field combinations to use
as the primary key. Any field that can serve as a primary key is called a candidate key.
For example, if every employee has a unique employee number, then it could be used
as a primary key. Note that an employee’s Social Security number would not be a
good choice for a candidate key: Contrary to popular belief, Social Security numbers
are not unique. Because only one field can be designated as a primary key, the field
that contains the least amount of data and is the easiest to use should be selected. Any
field that is not a primary key or a candidate key is called a nonkey field.

The primary keys shown in Figure 9-10 also are candidate keys. Another candi-
date key is the COURSE DESCRIPTION field in the COURSE table. What about the
OFFICE field in the ADVISOR table? It could not be a candidate key because more
than one advisor might share the same office.

FOREIGN KEY: Recall that a common field exists in more than one table and
can be used to form a relationship, or link, between the tables. For example, in
 Figure 9-10, the ADVISOR NUMBER field appears in both the STUDENT table and
the ADVISOR table and joins the tables together. Note that ADVISOR NUMBER is
a primary key in the ADVISOR table, where it uniquely identifies each advisor, and
is a foreign key in the STUDENT table. A foreign key is a field in one table that must
match a primary key value in another table in order to establish the relationship
between the two tables.

Unlike a primary key, a foreign key need not be unique. For example, Carlton
Smith has advisor number 49. The value 49 must be a unique value in the ADVISOR
table because it is the primary key, but 49 can appear any number of times in the
STUDENT table, where the advisor number serves as a foreign key.

Figure 9-10 also shows how two foreign keys can serve as a composite primary
key in another table. Consider the GRADE table at the bottom of the figure. The two
fields that form the primary key for the GRADE table are both foreign keys: the STU-
DENT NUMBER field, which must match a student number in the STUDENT table,
and the COURSE NUMBER field, which must match one of the course IDs in the
COURSE table.

How can these two foreign keys serve as a primary key in the GRADE table? Note
that student numbers and course IDs can appear any number of times in the table, but
the combination of a specific student and a specific course occurs only once. For exam-
ple, student 1035 appears four times and course CSC151 appears three times—but
there is only one combined instance of student 1035 and course CSC151. Because the
combination of the specific student (1035) and the specific course (CSC151) is unique,
it ensures that the grade (B) will be assigned to the proper student in the proper course.

SECONDARY KEY: A secondary key is a field or combination of fields that can be
used to access or retrieve records. Secondary key values are not unique. For example,
to access records for only those customers in a specific postal code, the postal code
field would be used as a secondary key. Secondary keys also can be used to sort or
display records in a certain order. For example, the GPA field in a STUDENT file
could be used to display records for all students in grade point order.

The need for a secondary key arises because a table can have only one primary
key. In a CUSTOMER file, the CUSTOMER NUMBER is the primary key, so it must
be unique. The customer’s name might be known, but not the customer’s number. For
example, to access a customer named James Morgan without knowing his customer
number, the table is searched using the CUSTOMER NAME field as a secondary key.
The records for all customers named James Morgan are retrieved and then the correct
record is selected.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

279

Phase 3 Systems Design

9.4 Data Design Terms

In Figure 9-10, student name and advisor names are identified as secondary keys,
but other fields also could be used. For example, to find all students who have a par-
ticular advisor, the ADVISOR NUMBER field in the STUDENT table could be used
as a secondary key.

9.4.3 Referential Integrity
Validity checks can help avoid data input errors. One type of validity check, called
 referential integrity, is a set of rules that avoids data inconsistency and quality problems.
In a relational database, referential integrity means that a foreign key value cannot be
entered in one table unless it matches an existing primary key in another table. For
example, referential integrity would prevent a customer order from being entered in an
order table unless that customer already exists in the customer table. Without referential
integrity, there might be an order called an orphan, because it had no related customer.

In the example shown in Figure 9-10, referential integrity will not allow a user
to enter an advisor number (foreign key value) in the STUDENT table unless a valid
advisor number (primary key value) already exists in the ADVISOR table.

Referential integrity can also prevent the deletion of a record if the record has a
primary key that matches foreign keys in another table. For example, suppose that an
advisor resigns to accept a position at another school. The advisor cannot be deleted
from the ADVISOR table while records in the STUDENT table still refer to that
advisor number. Otherwise, the STUDENT records would be orphans. To avoid the
problem, students must be reassigned to other advisors by changing the value in the
ADVISOR NUMBER field; then the advisor record can be deleted.

When creating a relational database, referential integrity can be built into the
design. Figure 9-11 shows a Microsoft Access screen that identifies a common field
and allows the user to enforce referential integrity rules.

FIGURE 9-11 Microsoft Access allows a user to specify that referential integrity rules will be
enforced in a relational database design.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

280

Chapter 9 Data Design

9.5 Entity-Relationship Diagrams

9.5 entity-relationship DiagraMs

Recall that an entity is a person, a place, a thing, or an event for which data is
 collected and maintained. For example, entities might be customers, sales regions,
products, or orders. An information system must recognize the relationships among
entities. For example, a CUSTOMER entity can have several instances of an ORDER
entity, and an EMPLOYEE entity can have one instance, or none, of a SPOUSE entity.

An entity-relationship diagram (ERD) is a model that shows the logical relation-
ships and interaction among system entities. An ERD provides an overall view of the
system and a blueprint for creating the physical data structures.

9.5.1 Drawing an ERD
The first step is to list the entities that were identified during the sys-
tems analysis phase and to consider the nature of the relationships that
link them. At this stage, a simplified method can be used to show the
relationships between entities.

Although there are different ways to draw ERDs, a popular method
is to represent entities as rectangles and relationships as diamond
shapes. The entity rectangles are labeled with singular nouns, and
the relationship diamonds are labeled with verbs, usually in a top-to-
bottom and left-to-right fashion. For example, in Figure 9-12, a DOC-
TOR entity treats a PATIENT entity. Unlike data flow diagrams, ERDs
depict relationships, not data or information flows.

9.5.2 Types of Relationships
Three types of relationships can exist between entities: one-to-one,
 one-to-many, and many-to-many.

A one-to-one relationship, abbreviated 1:1, exists when exactly
one of the second entity occurs for each instance of the first entity.
Figure 9-13 shows examples of several 1:1 relationships. A number
1 is placed alongside each of the two connecting lines to indicate the
1:1 relationship.

A one-to-many relationship,
 abbreviated 1:M, exists when one occur-
rence of the first entity can relate to many
instances of the second entity, but each
instance of the second entity can associate
with only one instance of the first entity.
For example, the relationship between
DEPARTMENT and EMPLOYEE is
 one-to-many: One department can have
many employees, but each employee
works in only one department at a time.
Figure 9-14 shows several 1:M rela-
tionships. The line connecting the many
entity is labeled with the letter M, and
the number 1 labels the other connect-
ing line. How many is many? The first
1:M relationship shown in Figure 9-14
shows the entities INDIVIDUAL and

FIGURE 9-12 In an entity-relationship
diagram, entities are labeled with singular
nouns and relationships are labeled with
verbs. The relationship is interpreted as
a simple English sentence.

TREATS

HEADSOFFICE
MANAGER OFFICE

ASSIGNED
TO

VEHICLE ID
NUMBER VEHICLE

ASSIGNED
TO

SOCIAL
SECURITY PERSON

CHAIRSDEPARTMENT
HEAD DEPARTMENT

1 1

1 1

1 1

1 1

FIGURE 9-13 Examples of one-to-one (1:1) relationships.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

281

Phase 3 Systems Design

9.5 Entity-Relationship Diagrams

AUTOMOBILE. One individual might
own five automobiles, or one, or none.
Thus, many can mean any number,
including zero.

A many-to-many relationship, abbrevi-
ated M:N, exists when one instance of the
first entity can relate to many instances
of the second entity, and one instance
of the second entity can relate to many
instances of the first entity. The relation-
ship between STUDENT and CLASS, for
example, is many-to-many—one student
can take many classes, and one class can
have many students enrolled. Figure 9-15
shows several M:N entity relationships.
One of the connecting lines is labeled
with the letter M, and the letter N labels
the other connection.

PLACESCUSTOMER ORDER

ADVISESFACULTY
ADVISOR STUDENT

1 M

1 M

OWNSINDIVIDUAL AUTOMOBILE
1 M

EMPLOYSDEPARTMENT EMPLOYEE
1 M

FIGURE 9-14 Examples of one-to-many (1:M) relationships.

FIGURE 9-15 Examples of many-to-many (M:N) relationships. Notice that the event or transaction that links the
two entities is an associative entry with its own set of attributes and characteristics.

ENROLLS
IN

STUDENT CLASS

RESERVES
SEAT ON

PASSENGER FLIGHT

LISTSORDER PRODUCT

M N

M N

M N

REGISTRATION

RESERVATION

ORDER LINE

associative entity

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

282

Chapter 9 Data Design

9.5 Entity-Relationship Diagrams

Note that an M:N relationship is different from 1:1 or 1:M relationships because
the event or transaction that links the two entities is actually a third entity, called an
associative entity, that has its own characteristics. In the first example in Figure 9-15,
the ENROLLS IN symbol represents a REGISTRATION entity that records each
instance of a specific student enrolling in a specific course. Similarly, the RESERVES
SEAT ON symbol represents a RESERVATION entity that records each instance of a
specific passenger reserving a seat on a specific flight. In the third example, the LISTS
symbol represents an ORDER LINE entity that records each instance of a specific
product listed in a specific customer order.

Figure 9-16 shows an ERD for a sales system. Note the various entities and rela-
tionships shown in the figure, including the associative entity named ORDER LINE.
The detailed nature of these relationships is called cardinality. An analyst must
 understand cardinality in order to create a data design that accurately reflects all
 relationships among system entities.

FIGURE 9-16 An entity-relationship diagram for SALES REP, CUSTOMER, ORDER, PRODUCT, and
WAREHOUSE. Notice that the ORDER and PRODUCT entities are joined by an associative entity named
ORDER LINE.

SERVES

SALES REP

PLACESCUSTOMER ORDER

ORDER LINE

WAREHOUSE

LISTS STORES

PRODUCT

1 M

M

1M

M

1

Nassociative
entity

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

283

Phase 3 Systems Design

9.5 Entity-Relationship Diagrams

9.5.3 Cardinality
After an analyst draws an initial ERD,
he or she must define the relationships
in more detail by using a technique
called cardinality. Cardinality describes
the numeric relationship between two
entities and shows how instances of one
entity relate to instances of another entity.
For example, consider the relationship
between two entities: CUSTOMER and
ORDER. One customer can have one
order, many orders, or none, but each
order must have one and only one cus-
tomer. An analyst can model this inter-
action by adding cardinality notation,
which uses special symbols to represent
the relationship.

A common method of cardinality
notation is called crow’s foot notation
because of the shapes, which include
circles, bars, and symbols that indicate
various possibilities. A single bar indicates
one, a double bar indicates one and only
one, a circle indicates zero, and a crow’s
foot indicates many. Figure 9-17 shows
various cardinality symbols, their mean-
ings, and the UML representations of the
relationships. As described in Chapter 4,
the Unified Modeling Language (UML) is
a widely used method of visualizing and
documenting software systems design.

In Figure 9-18, four examples of car-
dinality notation are shown. In the first
example, one and only one CUSTOMER
can place anywhere from zero to many
of the ORDER entity. In the second
example, one and only one ORDER can
include one ITEM ORDERED or many.
In the third example, one and only one
EMPLOYEE can have one SPOUSE
or none. In the fourth example, one
EMPLOYEE, or many employees, or
none, can be assigned to one PROJECT,
or many projects, or none.

Most CASE products support the
drawing of ERDs from entities in the
data repository. Figure 9-19 shows part
of a library system ERD drawn using
the Visible Analyst CASE tool. Note that
crow’s foot notation is used to show the
nature of the relationships, which are
described in both directions.

FIGURE 9-17 Crow’s foot notation is a common method of indicating
cardinality. The four examples show how various symbols can be used to
describe the relationships between entities.

One and only one

One or many

Zero, or one,
or many

Zero, or one

1

1..*

0..*

0..1

 UML
SYMBOL MEANING REPRESENTATION

FIGURE 9-18 In the first example of cardinality notation, one and only one
CUSTOMER can place anywhere from zero to many of the ORDER entity. In the
second example, one and only one ORDER can include one ITEM ORDERED or
many. In the third example, one and only one EMPLOYEE can have one SPOUSE
or none. In the fourth example, one EMPLOYEE, or many employees, or none,
can be assigned to one PROJECT, or many projects, or none.

PLACES

INCLUDESORDER

PROJECT

One and only one CUSTOMER can place anywhere from zero to many of the
ORDER entity.

One and only one ORDER can include one ITEM ORDERED or many.

One and only one EMPLOYEE can have one SPOUSE or NONE.

One EMPLOYEE, or many employees, or none, can be assigned to one
PROJECT, or many projects, or none.

EMPLOYEE HAS SPOUSE

ITEM
ORDERED

ORDERCUSTOMER

EXAMPLES OF CARDINALITY NOTATION

EMPLOYEE ASSIGNED
TO

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

284

Chapter 9 Data Design

9.6 Data Normalization

FIGURE 9-19 An ERD for a library system drawn with Visible Analyst. Notice that crow’s foot
notation has been used and relationships are described in both directions.

CASE IN POINT 9.1: TopTexT publishing

TopText Publishing is a textbook publishing company with a headquarters location, a ware-
house, and three sales offices that each has a sales manager and sales reps. TopText sells to
schools, colleges, and individual customers. Many authors write more than one book for
TopText, and more than one author writes some books. TopText maintains an active list of
more than 100 books, each identified by a universal code called an ISBN. How would you
draw an ERD for the TopText information system, including cardinality notation?

9.6 Data norMalization

Normalization is the process of creating table designs by assigning specific fields
or attributes to each table in the database. A table design specifies the fields and
 identifies the primary key in a particular table or file. Working with a set of initial
table designs, normalization is used to develop an overall database design that is
simple, flexible, and free of data redundancy. Normalization involves applying a
set of rules that can help identify and correct inherent problems and complexities
in table designs. The concept of normalization is based on the work of Edgar Codd,
a British computer scientist, who formulated the basic principles of relational
 database design.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

285

Phase 3 Systems Design

9.6 Data Normalization

The normalization process typically involves four stages: unnormalized design,
first normal form, second normal form, and third normal form. The three nor-
mal forms constitute a progression in which third normal form represents the best
design. Most business-related databases must be designed in third normal form. Note
that normal forms beyond 3NF exist, but they rarely are used in business-oriented
systems.

9.6.1 Standard Notation Format
Designing tables is easier if a standard notation format is used to show a table’s struc-
ture, fields, and primary key. The standard notation format in the following examples
of an ORDER system starts with the name of the table, followed by a parenthetical
expression that contains the field names separated by commas. The primary key
field(s) is/are underlined, like this:

NAME (FIELD 1, FIELD 2, FIELD 3)

During data design, the analyst must be able to recognize a repeating group of
fields. A repeating group is a set of one or more fields that can occur any number of
times in a single record, with each occurrence having different values.

A typical example of a repeating group is shown in Figure 9-20. If a company
used written source documents to record orders, they might look like this. As
 Figure 9-20 shows, two orders contain multiple items, which constitute repeating
groups within the same order number. Note that in addition to the order number
and date, the records with multiple products contain repetitions of the product
number, description, number ordered, supplier number, supplier name, and ISO
 status. A repeating group can be thought of as a set of child (subsidiary) records
contained within the parent (main) record.

FIGURE 9-20 In the ORDER table design, two orders have repeating groups that contain several products.
ORDER is the primary key for the ORDER table, and PRODUCT NUMBER serves as a primary key for the
repeating group. Because it contains repeating groups, the ORDER table is unnormalized.

primary key
for ORDER

these two
orders have
repeating
groups

primary key for
repeating group

A table design that contains a repeating group is called unnormalized. The
 standard notation method for representing an unnormalized design is to enclose
the repeating group of fields within a second set of parentheses. An example of an
 unnormalized table looks like this:

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

286

Chapter 9 Data Design

9.6 Data Normalization

 NAME (FIELD 1, FIELD 2, FIELD 3, (REPEATING FIELD 1, REPEATING
FIELD 2))

Now review the unnormalized ORDER table design shown in Figure 9-20.
 Following the notation guidelines, the design can be described as follows:

 ORDER (ORDER, DATE, (PRODUCT NUMBER, DESCRIPTION, NUMBER
ORDERED, SUPPLIER NUMBER, SUPPLIER NAME, ISO))

The notation indicates that the ORDER table design contains eight fields, which
are listed within the outer parentheses. The ORDER field is underlined to show
that it is the primary key. The PRODUCT NUMBER, DESCRIPTION, NUMBER
ORDERED, SUPPLIER NUMBER, SUPPLIER NAME, and ISO and NUMBER
ORDERED fields are enclosed within an inner set of parentheses to indicate that
they are fields within a repeating group. Note that PRODUCT NUMBER also is
 underlined because it acts as the primary key of the repeating group. If a customer
orders three different products in one order, then six fields must be repeated for each
product, as shown in Figure 9-20.

9.6.2 First Normal Form
A table is in first normal form (1NF) if it does not contain a repeating group. To
 convert an unnormalized design to 1NF, the table’s primary key must be expanded to
include the primary key of the repeating group.

For example, in the ORDER table shown in Figure 9-20, the repeating group
 consists of six fields: PRODUCT NUMBER, DESCRIPTION, NUMBER ORDERED,
SUPPLIER NUMBER, SUPPLIER NAME, and ISO. Of the three fields, only
 PRODUCT NUMBER can be a primary key because it uniquely identifies each
instance of the repeating group. The DESCRIPTION cannot be a primary key because
it might or might not be unique. For example, a company might sell a large number
of parts with the same descriptive name, such as washer, relying on a coded part
number to identify uniquely each washer size.

When the primary key of the ORDER table is expanded to include PRODUCT
NUMBER, the repeating group is eliminated, and the ORDER table is now in 1NF,
as shown:

 ORDER (ORDER, DATE, PRODUCT NUMBER, DESCRIPTION, NUMBER
ORDERED, SUPPLIER NUMBER, SUPPLIER NAME, ISO)

Figure 9-21 shows the ORDER table in 1NF. Note that when the repeating group
is eliminated, additional records emerge—one for each combination of a specific
order and a specific product. The result is more records but a greatly simplified
design. In the new version, the repeating group for order number 86223 has become
three separate records, and the repeating group for order number 86390 has become
two separate records. Therefore, when a table is in 1NF, each record stores data about
a single instance of a specific order and a specific product.

Also note that the 1NF design shown in Figure 9-21 has a combination primary
key. The primary key of the 1NF design cannot be the ORDER field alone, because
the order number does not uniquely identify each product in a multiple-item order.
Similarly, PRODUCT NUMBER cannot be the primary key, because it appears more
than once if several orders include the same product. Because each record must reflect
a specific product in a specific order, both fields are needed, ORDER and PRODUCT
NUMBER, to identify a single record uniquely. Therefore, the primary key is the
 combination of two fields: ORDER and PRODUCT NUMBER.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

287

Phase 3 Systems Design

9.6 Data Normalization

9.6.3 Second Normal Form
To understand second normal form (2NF), the concept of functional dependence must
be understood. For example, Field A is functionally dependent on Field B if the value
of Field A depends on Field B. For example, in Figure 9-21, the DATE value is func-
tionally dependent on the ORDER, because for a specific order number, there can be
only one date. In contrast, a product description is not dependent on the order num-
ber. For a particular order number, there might be several product descriptions—one
for each item ordered.

A table design is in second normal form (2NF) if it is in 1NF and if all fields that
are not part of the primary key are functionally dependent on the entire primary key.
If any field in a 1NF table depends on only one of the fields in a combination primary
key, then the table is not in 2NF.

Note that if a 1NF design has a primary key that consists of only one field, the prob-
lem of partial dependence does not arise—because the entire primary key is a single
field. Therefore, a 1NF table with a single-field primary key is automatically in 2NF.

Now reexamine the 1NF design for the ORDER table shown in Figure 9-21:

 ORDER (ORDER, DATE, PRODUCT NUMBER, DESCRIPTION, NUMBER
ORDERED, SUPPLIER NUMBER, SUPPLIER NAME, ISO)

Recall that the primary key is the combination of the order number and the
product number. The NUMBER ORDERED field depends on the entire primary key
because NUMBER ORDERED refers to a specific product number and a specific
order number. In contrast, the DATE field depends on the order number, which is only

in 1NF
• There are no repeating groups
• The primary key is a unique combination of two foreign key values:
 ORDER and PRODUCT NUMBER
• All fields depend on the primary key, but some fields do not depend on
 the whole key — only part of it

in 1NF, the primary key is a unique
combination of a specific ORDER
and a specific PRODUCT NUMBER

+

FIGURE 9-21 The ORDER table as it appears in 1NF. The repeating groups have been eliminated. Notice that
the repeating group for order 86223 has become three separate records, and the repeating group for order
86390 has become two separate records. The 1NF primary key is a combination of ORDER and PRODUCT
NUMBER, which uniquely identifies each record.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

288

Chapter 9 Data Design

9.6 Data Normalization

a part of the primary key. Similarly, the DESCRIPTION field depends on the prod-
uct number, which also is only a part of the primary key. Because some fields are not
dependent on the entire primary key, the design is not in 2NF.

A standard process exists for converting a table from 1NF to 2NF. The objective is
to break the original table into two or more new tables and reassign the fields so that
each nonkey field will depend on the entire primary key in its table. To accomplish
this, the following steps should be followed:

1. Create and name a separate table for each field in the existing primary key.
For example, in Figure 9-21, the ORDER table’s primary key has two fields,
ORDER and PRODUCT NUMBER, so two tables must be created. The ellipsis
(. . .) indicates that fields will be assigned later. The result is:

ORDER (ORDER, . . .)
PRODUCT (PRODUCT NUMBER, . . .)

2. Create a new table for each possible combination of the original primary key
fields. In the Figure 9-21 example, a new table would be created with a combi-
nation primary key of ORDER and PRODUCT NUMBER. This table describes
individual lines in an order, so it is named ORDER LINE, as shown:

ORDER LINE (ORDER, PRODUCT NUMBER)

3. Study the three tables and place each field with its appropriate primary key,
which is the minimal key on which it functionally depends. When all the fields
have been placed, remove any table that did not have any additional fields
assigned to it. The remaining tables are the 2NF version of the original table.
The three tables can be shown as:

ORDER (ORDER, DATE)
PRODUCT (PRODUCT NUMBER, DESCRIPTION, SUPPLIER
NUMBER, SUPPLIER NAME, ISO)
ORDER LINE (ORDER, PRODUCT NUMBER)

Figure 9-22 shows the 2NF table designs. By following the steps, the original 1NF
table has been converted into three 2NF tables.

Why is it important to move from 1NF to 2NF? Four kinds of problems are found
with 1NF designs that do not exist in 2NF:

1. Consider the work necessary to change a particular product’s description. Sup-
pose 500 current orders exist for product number 304. Changing the product
description involves modifying 500 records for product number 304. Updating
all 500 records would be cumbersome and expensive.

2. 1NF tables can contain inconsistent data. Because someone must enter the
product description in each record, nothing prevents product number 304 from
having different product descriptions in different records. In fact, if product
number 304 appears in a large number of order records, some of the match-
ing product descriptions might be inaccurate or improperly spelled. Even the
presence or absence of a hyphen in the orders for all-purpose gadget would
create consistency problems. If a data entry person must enter a term such
as IO1Queue Controller numerous times, it certainly is possible that some
 inconsistency will result.

3. Adding a new product is a problem. Because the primary key must include an
order number and a product number, values are needed for both fields in order
to add a record. What value should be used for the order number when no

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

289

Phase 3 Systems Design

9.6 Data Normalization

customer has ordered the product? A dummy order number could be used and
later replaced with a real order number when the product is ordered to solve
the problem, but that solution also creates difficulties.

4. Deleting a product is a problem. If all the related records are deleted once an
order is filled and paid for, what happens if the only record that contains prod-
uct number 633 is deleted? The information about that product number and its
description is lost.

Has the 2NF design eliminated all potential problems? To change a product
description, now just one PRODUCT record needs to be changed. Multiple, inconsis-
tent values for the product description are impossible because the description appears
in only one location. To add a new product, a new PRODUCT record is created,
instead of creating a dummy order record. When the last ORDER LINE record for a
particular product number is removed, that product number and its description is not
lost because the PRODUCT record still exists. The four potential problems are elimi-
nated, and the three 2NF designs are superior to both the original unnormalized table
and the 1NF design.

FIGURE 9-22 ORDER, PRODUCT, and ORDER LINE tables in 2NF. All fields are functionally dependent on
the primary key.

in 2NF, the primary key of ORDER LINE is a
unique combination of two foreign keys

+

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

290

Chapter 9 Data Design

9.6 Data Normalization

9.6.4 Third Normal Form
A popular rule of thumb is that a design is in 3NF if every nonkey field depends on
the key, the whole key, and nothing but the key. A 3NF design avoids redundancy
and data integrity problems that still can exist in 2NF designs.

Continuing the ORDER example, now review the PRODUCT table design in
 Figure 9-23:

 PRODUCT (PRODUCT NUMBER, DESCRIPTION, SUPPLIER NUMBER,
 SUPPLIER NAME, ISO)

FIGURE 9-23 When the PRODUCT table is transformed from 2NF to 3NF, the result is two separate
tables: PRODUCT and SUPPLIER. Note that in 3NF, all fields depend on the key alone.

The PRODUCT table is in 1NF because it has no repeating groups. The table also
is in 2NF because the primary key is a single field. But the table still has four poten-
tial problems:

1. To change a supplier name, every record in which that name appears must be
changed. With hundreds, or even thousands of records, the process would be
slow, expensive, and subject to input errors.

2. The 2NF design allows a supplier to have a different name or ISO status in
 different records.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

291

Phase 3 Systems Design

9.6 Data Normalization

3. Because the supplier name is included in the ORDER table, a dummy ORDER
record must be created to add a new supplier who has not yet been received
any orders.

4. If all the orders for a supplier are deleted, that supplier’s number and name will
be lost.

Those potential problems are caused because the design is not in 3NF. A table
design is in third normal form (3NF) if it is in 2NF and if no nonkey field is depen-
dent on another nonkey field. Remember that a nonkey field is a field that is not a
candidate key for the primary key.

The PRODUCT table at the top of Figure 9-23 is not in 3NF because two nonkey
fields, SUPPLIER NAME and ISO, both depend on another nonkey field, SUPPLIER
NUMBER.

To convert the table to 3NF, all fields from the 2NF table that depend on another
nonkey field must be removed and placed in a new table that uses the nonkey field as a
primary key. In the PRODUCT example, SUPPLIER NAME and ISO must be removed
and placed into a new table that uses SUPPLIER NUMBER as the primary key. As
shown in Figure 9-23, 3NF divides the 2NF version into two separate 3NF tables:

PRODUCT (PRODUCT NUMBER, DESCRIPTION, SUPPLIER NUMBER)
SUPPLIER (SUPPLIER NUMBER, SUPPLIER NAME, ISO)

CASE IN POINT 9.2: CyberToys

You handle administrative support for CyberToys, a small chain that sells computer hardware and
software and specializes in personal service. The company has four stores located at malls and is
planning more. Each store has a manager, a technician, and between one and four sales reps.

The owners want to create a personnel records database, and they asked you to
review a table that they had designed. They suggested fields for store number, location,
store telephone, manager name, and manager home telephone. They also want fields for
technician name and technician home telephone and fields for up to four sales rep names
and sales rep home telephones.

Draw their suggested design and analyze it using the normalization concepts you
learned in the chapter. What do you think of their design and why? What would you
propose?

9.6.5 Two Real-World Examples
A good way to learn about normalization is to apply the
rules to a representative situation. This section presents
two different scenarios: first a school and then a technical
service company. If a step-by-step process is followed, data
designs can be created that are efficient, maintainable, and
error-resistant.

EXAMPLE 1: Crossroads College: Consider the familiar
situation in Figure 9-24, which depicts several entities
in the Crossroads College advising system: ADVISOR,
COURSE, and STUDENT. The relationships among the
three entities are shown in the ERD in Figure 9-25. The
following sections discuss normalization rules for these
three entities.

FIGURE 9-24 A faculty advisor, who represents an
entity, can advise many students, each of whom can
register for one or many courses.
Monkey Business Images/Shutterstock.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

292

Chapter 9 Data Design

9.6 Data Normalization

Before the normalization process is
started, it is noted that the STUDENT
table contains fields that relate to the
ADVISOR and COURSE entities, so a
decision is made to begin with the initial
design for the STUDENT table, which
is shown in Figure 9-26. Note that the
table design includes the student number,
student name, total credits taken, grade
point average (GPA), advisor number,
advisor name, and, for every course the
student has taken, the course number,
course description, number of credits, and
grade received.

The STUDENT table in Figure 9-26 is
 unnormalized because it has a repeating
group. The STUDENT table design can be
written as:

 STUDENT (STUDENT NUMBER, STUDENT NAME, TOTAL CREDITS,
GPA, ADVISOR NUMBER, ADVISOR NAME, OFFICE, (COURSE NUMBER,
CREDIT HOURS, GRADE))

To convert the STUDENT record to 1NF, the primary key must be expanded to
include the key of the repeating group, producing:

 STUDENT (STUDENT NUMBER, STUDENT NAME, TOTAL CREDITS, GPA,
ADVISOR NUMBER, ADVISOR NAME, OFFICE, COURSE NUMBER, CREDIT
HOURS, GRADE)

FIGURE 9-25 An initial entity-relationship diagram for ADVISOR, STUDENT,
and COURSE.

ADVISESADVISOR STUDENT

TAKES

COURSE

1 M

M

N

FIGURE 9-26 The STUDENT table is unnormalized because it contains a repeating group that represents the
course each student has taken.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

293

Phase 3 Systems Design

9.6 Data Normalization

Figure 9-27 shows the 1NF version of the sample STUDENT data. Do any of the
fields in the 1NF STUDENT table depend on only a portion of the primary key? The
student name, total credits, GPA, advisor number, and advisor name all relate only
to the student number and have no relationship to the course number. The course
description depends on the course number but not on the student number. Only the
GRADE field depends on the entire primary key.

FIGURE 9-27 The student table in 1NF. Notice that the primary key has been expanded to include STUDENT
NUMBER and COURSE NUMBER.

in 1NF, the primary key is a unique combination of a specific
STUDENT NUMBER and a specific COURSE NUMBER

in 1NF
• There are no repeating groups
• The primary key is a unique combination of two foreign key values: STUDENT NUMBER
 and COURSE NUMBER
• All fields depend on the primary key, but some fields do not depend on the whole key — only
 part of it

+

Following the 1NF–2NF conversion process described earlier, a new table would
be created for each field and combination of fields in the primary key, and the other
fields would be placed with their appropriate key. The result is:

 STUDENT (STUDENT NUMBER, STUDENT NAME, TOTAL CREDITS, GPA,
ADVISOR NUMBER, ADVISOR NAME, OFFICE)
COURSE (COURSE NUMBER, CREDIT HOURS)
GRADE (STUDENT NUMBER, COURSE NUMBER, GRADE)

The original 1NF STUDENT table has now been converted into three tables, all in
2NF. In each table, every nonkey field depends on the entire primary key.

Figure 9-28 shows the 2NF STUDENT, COURSE, and GRADE designs and
 sample data. Are all three tables STUDENT in 3NF? The COURSE and GRADE

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

294

Chapter 9 Data Design

9.6 Data Normalization

Figure 9-29 shows the 3NF versions of the sample data for STUDENT, ADVISOR,
COURSE, and GRADE. The final 3NF design is:

 STUDENT (STUDENT NUMBER, STUDENT NAME, TOTAL CREDITS, GPA,
ADVISOR NUMBER)

tables are in 3NF. STUDENT is not in 3NF, however, because the ADVISOR NAME
and OFFICE fields depend on the ADVISOR NUMBER field, which is not part of the
STUDENT primary key. To convert STUDENT to 3NF, the ADVISOR NAME and
OFFICE fields are removed from the STUDENT table and placed into a table with
ADVISOR NUMBER as the primary key.

FIGURE 9-28 The STUDENT, COURSE, and GRADE tables in 2NF. Notice that all fields are functionally
dependent on the entire primary key of their respective tables.

+

in 2NF
• All fields now depend
 on the whole primary
 key, but some fields
 also might depend on
 other fields that are not
 part of the primary key
• The primary key of
 GRADE is a unique
 combination of two
 foreign key values,
 STUDENT NUMBER
 and COURSE NUMBER

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

295

Phase 3 Systems Design

9.6 Data Normalization

FIGURE 9-29 STUDENT, ADVISOR, COURSE, and GRADE tables in 3NF. When the STUDENT table is
transformed from 2NF to 3NF, the result is two tables: STUDENT and ADVISOR.

ADVISOR (ADVISOR NUMBER, ADVISOR NAME, OFFICE)
COURSE (COURSE NUMBER, CREDIT HOURS)
GRADE (STUDENT NUMBER, COURSE NUMBER, GRADE)

Figure 9-30 shows
the complete ERD after
 normalization. Now there
are four entities: STUDENT,
ADVISOR, COURSE,
and GRADE (which is
an associative entity).
Note how Figure 9-25,
which was drawn before
GRADE was identified as
an entity, shows that the
M:N relationship between
STUDENT and COURSE
has been converted into
two 1:M relationships:
one relationship between
STUDENT and GRADE
and the other relationship
between COURSE and
GRADE.

FIGURE 9-30 The entity-relationship diagram for STUDENT, ADVISOR, and COURSE after
normalization. The GRADE entry was identified during the normalization process. GRADE is an
associative entity that links the STUDENT and COURSE tables.

ADVISESADVISOR STUDENT

RECEIVES

SHOWSCOURSE GRADE

1 M

1

M

1 M associative
entity

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

296

Chapter 9 Data Design

9.6 Data Normalization

To create 3NF designs, the nature of first, second, and
third normal forms must be understood. A systems ana-
lyst will encounter designs that are much more complex
than the examples in this chapter.

EXAMPLE 2: Magic Maintenance: Magic Maintenance
provides on-site service for electronic equipment. Figure 9-31
shows the overall database design that such a firm might use.
The figure contains examples of many concepts described
earlier. The database consists of seven separate tables, all
joined by common fields, so they form an integral data
structure.

Figure 9-32 shows even more detail, including sample
data, primary keys, and common fields. Note that the
entities include customers, technicians, service calls,

FIGURE 9-31 A relational database design for a
computer service company uses common fields to link
the tables and form an overall data structure. Notice the
one-to-many notation symbols and the primary keys,
which are indicated with gold-colored key symbols.

FIGURE 9-32 Sample data, primary keys, and common fields for the database shown in Figure 9-31.
The design is in 3NF. Notice that all nonkey fields functionally depend on a primary key alone.

Primary Keys

Common fields

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

297

Phase 3 Systems Design

9.7 Codes

and parts. Other tables store data about labor and parts that are used on specific
service calls. Also note that all tables use a single field as a primary key, except the
 SERVICE-LABOR-DETAIL and SERVICE-PARTS-DETAIL tables, where the primary
key requires a combination of two fields to uniquely identify each record.

9.7 CoDes

A code is a set of letters or numbers that represents a data item. Codes can be used to
simplify output, input, and data formats.

9.7.1 Overview of Codes
Because codes can represent data, they are encountered constantly in everyday life.
Student numbers, for example, are unique codes to identify students in a school
 registration system. Three students with the name John Turner might be enrolled at
the same school, but only one is student number 268960.

A postal code is another common example. A nine-digit postal code contains a lot
of information. For example, the first digit identifies 1 of 10 main geographical areas
in the United States. The combination of the next three digits identifies a major city
or major distribution point. The fifth digit identifies an individual post office, an area
within a city, or a specific delivery unit. The last four digits identify a post office box
or a specific street address.

For example, consider the zip code 32901-6975 shown in Figure 9-33. This is
called the “5+4” zip code format. The first digit, 3, indicates a broad geographical
area in the southeastern United States. The next two digits, 29, indicate the area
east of Orlando in Florida. The next two digits, 01, represent the city of Melbourne,
 Florida. The last four digits represent the specific location of the Florida institute of
Technology: 150 W. University Blvd.

Codes can be used in many ways. Because codes are shorter than the data they
represent, they save storage space and costs, reduce data transmission time, and
decrease data entry time. Codes also can be used to reveal or conceal information.
The last two digits of a seven-digit part number, for example, might represent the
 supplier number or the maximum discount that a salesperson can offer.

Finally, codes can reduce data input errors in situations when the coded data is
easier to remember and enter than the original source data, when only certain valid
codes are allowed, and when something within the code itself can provide immediate
verification that the entry is correct.

FIGURE 9-33 A zip code is an example of a significant digit code that
uses groups and subgroups to store data. This example is for the zip code
32901-6975, which is the location of the Florida Institute of Technology in
Melbourne, Florida.

Broad geographical
location in

southeastern US

3 29 01 6975

FL
Orlando

East

Melbourne Florida Tech
150 W. University Blvd.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

298

Chapter 9 Data Design

9.7 Codes

9.7.2 Types of Codes
Companies use many different coding methods. Because information system users

must work with coded data, the codes should be easy to learn and apply. If it is planned
to create new codes or change existing ones, comments and feedback from users should
be obtained. The following section describes seven common coding methods.

1. Sequence codes are numbers or letters assigned in a specific order. Sequence
codes contain no additional information other than an indication of order of
entry into the system. For example, a human resource system issues consecutive
employee numbers to identify employees. Because the codes are assigned in the
order in which employees are hired, the code can be used to see that employee
number 584 was hired after employee number 433. The code, however, does
not indicate the starting date of either person’s employment.

2. Block sequence codes use blocks of numbers for different classifications. Col-
lege course numbers usually are assigned using a block sequence code. 100-level
courses, such as Chemistry 110 and Mathematics 125, are freshman-level
courses, whereas course numbers in the 200s indicate sophomore-level courses.
Within a particular block, the sequence of numbers can have some additional
meaning, such as when English 151 is the prerequisite for English 152.

3. Alphabetic codes use alphabet letters to distinguish one item from another
based on a category, an abbreviation, or an easy-to-remember value, called a
mnemonic code. Many classification codes fit more than one of the following
definitions:

a. Category codes identify a group of related items. For example, a local
department store uses a two-character category code to identify the

FIGURE 9-34 Abbreviations for some of the world’s busiest airports.
BLANKartist/Shutterstock.com

 department in which a product is
sold: GN for gardening supplies,
HW for hardware, and EL for
electronics.

b. Abbreviation codes are alphabetic
abbreviations. For example, standard
state codes include NY for New York,
ME for Maine, and MN for Minne-
sota. Some abbreviation codes are
called mnemonic codes because they
use a specific combination of letters
that are easy to remember. Many
three-character airport codes such
as those pictured in Figure 9-34 are
 mnemonic codes, such as ATL for
 Atlanta and MIA for Miami. However,
some airport codes are not mnemonic,
such as ORD (Chicago O’Hare) or
MCO (Orlando).

4. Significant digit codes distinguish items by using a series of subgroups of digits.
Postal codes, for example, are significant digit codes. Other such codes include
inventory location codes that consist of a two-digit warehouse code, followed
by a one-digit floor number code, a two-digit section code, a one-digit aisle
number, and a two-digit bin number code. Figure 9-35 illustrates the inventory
location code 11205327. What looks like a large eight-digit number is actually
five separate numbers, each of which has significance.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

299

Phase 3 Systems Design

9.7 Codes

5. Derivation codes combine data from different
item attributes, or characteristics. Most mag-
azine subscription codes are derivation codes.
For example, one popular magazine uses a
subscriber’s five-digit postal code, followed by
the first, third, and fourth letters of the sub-
scriber’s last name, the last two digits of the
subscriber’s house number, and the first, third,
and fourth letters of the subscriber’s street
name. A sample is shown in Figure 9-36.

6. Cipher codes use a keyword to encode a number. A retail store, for example,
might use a 10-letter word, such as CAMPGROUND, to code wholesale prices,
where the letter C represents 1, A represents 2, and so on. Thus, the code,
GRAND, indicates that the store paid $562.90 for the item.

7. Action codes indicate what action is to be taken with an associated item.
For example, a student records program might prompt a user to enter or click
an action code such as D (to display a record), A (to add a record), and X (to
exit the program).

9.7.3 Designing Codes
Here are some code design suggestions:

• Keep codes concise. Do not create codes that are longer than necessary. For example,
if a code is needed to identify each of 250 customers, a six-digit code is not needed.

• Allow for expansion. A coding scheme must allow for reasonable growth
in the number of assigned codes. For example, if the company currently has
eight warehouses, do not use a one-digit code for the warehouse number. If
two more warehouses are added, the code must be increased to two digits
or changed to a character code in order to identify each location. The rule
also applies to using a single letter as a character code because more than 26
data items might be needed in the future. Of course, more characters can be
added, which is just what the airline industry has done. Most airlines now use
six-character codes that allow millions of combinations.

• Keep codes stable. Changes in codes can cause consistency problems and
require data updates. During the changeover period, all the stored occurrences
of a particular code and all documents containing the old code will have to
change as users switch to the new code. Usually, both the old and new codes
are used for an interim period, and special procedures are required to handle
the two codes. For example, when telephone area codes change, either area
code (old or new) can be used for a certain time period.

FIGURE 9-35 Sample of a code that uses significant digits to pinpoint the location of an inventory item.

FIGURE 9-36 A magazine subscriber code is derived from
various parts of the name and address.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

300

Chapter 9 Data Design

9.7 Codes

• Make codes unique. Codes used for identification purposes must be unique to
have meaning. If the code HW can indicate hardware or houseware, the code is
not very useful.

• Use sortable codes. If products with three-digit codes in the 100s or the 300s
are of one type, while products with codes in the 200s are a different type, a
simple sort will not group all the products of one type together. In addition,
be careful that single-digit character codes will sort properly with double-digit
codes—in some cases a leading zero must be added (01, 02, 03, etc.) to ensure
that codes sort correctly.

• Use a simple structure. Do not code some part numbers with two letters, a
hyphen, and one digit, and others with one letter, a hyphen, and two digits.
Avoid allowing both letters and numbers to occupy the same positions within a
code because some of those are easily confused. This situation might be a good
place to use an input mask to assure that the correct data type is entered.

• Avoid confusion. It is easy to confuse the number zero (0) and the uppercase
letter O, or the number one (1) with the lowercase letter L (l) or uppercase
letter I. For example, the five-character code 5Z081 easily can be misread as
5ZO8I, or 52081.

• Make codes meaningful. Codes should be easy to remember, user-friendly,
convenient, and easy to interpret. Using SW as a code for the southwest sales
region, for example, has far more meaning than the code 14. Using ENG as the
code for the English department is easier to interpret and remember than either
XVA or 132.

• Use a code for a single purpose. Do not use a code to classify unrelated attri-
butes. For example, if a single code is used to identify the combination of an
employee’s department and the employee’s insurance plan type, users will have
difficulty identifying all the subscribers of a particular plan, or all the workers
in a particular department, or both. A separate code for each separate charac-
teristic makes much more sense.

• Keep codes consistent. For example, if the payroll system already is using two-
digit codes for departments, do not create a new, different coding scheme for
the personnel system. If the two systems already are using different coding
schemes, try to establish a consistent coding scheme.

CASE IN POINT 9.3: MADERA TOOLS

Madera Tools operates a small business that specializes in hard-to-find woodworking
tools. The firm advertises in various woodworking magazines and currently accepts mail
and telephone orders. Madera is planning a website that will be the firm’s primary sales
channel. The site will feature an online catalog, powerful search capabilities, and links to
 woodworking information and resources.

Madera has asked you, an IT consultant, whether a set of codes would be
 advantageous. What codes would you suggest? Provide at least two choices for a
 customer code and at least two choices for a product code. Be sure to describe your
choices and provide some specific examples. Also include an explanation of why you
selected these particular codes and what advantages they might offer.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

301

Phase 3 Systems Design

9.8 Data Storage and Access

9.8 Data storage anD aCCess

Data storage and access involve strategic business tools, such as data warehousing
and data mining software, as well as logical and physical storage issues, selection of
data storage formats, and special considerations regarding storage of date fields.

9.8.1 Tools and Techniques
Companies use data warehousing and data mining as strategic tools to help manage
the huge quantities of data they need for business operations and decisions. A large
number of software vendors compete for business in this fast-growing IT sector.

DATA WAREHOUSING: Large firms maintain many databases, which might or
might not be linked together into an overall structure. To provide rapid access to this
information, companies use software packages that organize and store data in special
configurations called data warehouses. A data warehouse is an integrated collection
of data that can include seemingly unrelated information, no matter where it is stored
in the company. Because it can link various information systems and databases, a data
warehouse provides an enterprise-wide view to support management analysis and
decision making.

A data warehouse allows users to specify certain dimensions, or characteristics. By
selecting values for each characteristic, a user can obtain multidimensional informa-
tion from the stored data. For example, in a typical company, most data is generated
by transaction-based systems, such as order processing systems, inventory systems,
and payroll systems. If a user wants to identify the customer on sales order 34071, he
or she can retrieve the data easily
from the order processing system
by entering an order number.

On the other hand, suppose that
a user wants to see June 2019 sales
results for the sales rep assigned
to Jo-Mar Industries. The data is
stored in two different systems
with different databases: the sales
information system and the human
resources information system, as
shown in Figure 9-37. Without a
data warehouse, it would be diffi-
cult for a user to extract data that
spans several information systems
and time frames. Rather than
accessing separate systems, a data
warehouse stores transaction data
in a format that allows users to
retrieve and analyze the data easily.

While a data warehouse typ-
ically spans the entire enterprise,
many firms prefer to use a data mart, which is designed to serve the needs of a spe-
cific department, such as sales, marketing, or finance. Each data mart includes only
the data that users in that department require to perform their jobs. There are pros
and cons to both approaches, and the best solution usually depends on the specific
situation.

FIGURE 9-37 A data warehouse stores data from several systems. By selecting data
dimensions, a user can retrieve specific information without having to know how or
where the data is stored.

Results

Sales representative 121
sold $375,784 to Jo-Mar
Industries during June 2019

DATA WAREHOUSE

Dimensions

Time Period

Customer
Sales

Representative

Sales
Information

System

Input data Input data

Human
Resources
Information

System

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

302

Chapter 9 Data Design

9.8 Data Storage and Access

Regardless of the overall approach, storing large quantities of data is like building
a house—it doesn’t just happen. A well-constructed data warehouse needs an archi-
tecture that includes detailed planning and specifications.

DATA MINING: Data mining software looks for meaningful data patterns and rela-
tionships. For example, data mining software could help a consumer products firm
identify potential customers based on their prior purchases. Information about cus-
tomer behavior is valuable, but data mining also raises serious ethical and privacy
issues, such as the example in the Question of Ethics feature in this chapter.

The enormous growth in e-commerce has focused attention on data mining as a
marketing tool. In an article called “Data Mining on the Web” that appeared in the
January 2000 issue of New Architect, a web-based magazine, Dan R. Greening noted
that web hosts typically possess a lot of information about visitors, but most of it is
of little value. His article mentions that smart marketers and business analysts are
using data mining techniques, which he describes as “machine learning algorithms
that find buried patterns in databases, and report or act on those findings.” He con-
cludes by saying that “the great advantage of web marketing is that you can measure
visitor interactions more effectively than in brick-and-mortar stores or direct mail.
Data mining works best when you have clear, measurable goals.” Some of the goals he
suggests are as follows:

• Increase the number of pages viewed per session.

• Increase the number of referred customers.

• Reduce clicks to close, which means average page views to accomplish a pur-
chase or obtain desired information.

• Increase checkouts per visit.

• Increase average profit per checkout.

This type of data gathering is sometimes called clickstream storage. Armed with
this information, a skillful web designer could build a profile of typical new customers,
returning customers, and customers who browse but do not buy. Although this informa-
tion would be very valuable to the retailer, clickstream storage could raise serious legal
and privacy issues if an unscrupulous firm sought to link a customer’s web behavior to
a specific name or email address and then sell or otherwise misuse the information.

Because it can detect patterns and trends in large amounts of data, data mining is
a valuable tool for managers. There is a well-known story about a chain of supermar-
kets that performed a detailed affinity analysis of purchases and found that beer and
diapers were often purchased together. It is unclear whether or not this story is true,
but without attempting to explain this correlation, the obvious tactic for a retailer
would be to display these items in the same area of the store. This data mining tech-
nique relies on association rule learning and is often called market basket analysis.

9.8.2 Logical Versus Physical Storage
It is important to understand the difference between logical storage and physical
storage. Logical storage refers to data that a user can view, understand, and access,
regardless of how or where that information actually is organized or stored. In con-
trast, physical storage is strictly hardware related because it involves the process of
reading and writing binary data to physical media such as a hard drive, CD/DVD, or
network-based storage device. For example, portions of a document might be stored
in different physical locations on a hard drive, but the user sees the document as a
single logical entity on the computer screen.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

303

Phase 3 Systems Design

9.8 Data Storage and Access

Logical storage consists of alphabetic and numeric characters, such as the letter A
or the number 9. As described earlier in this chapter, a set of related characters forms
a field, which describes a single characteristic, or attribute, of a person, a place, a
thing, or an event. A field also is called a data element or a data item.

When designing fields, space should be provided for the largest values that can be
anticipated, without allocating unnecessarily large storage capacities that will not be
used. For example, suppose a customer order entry system is being designed for a firm
with 800 customers. It would be a mistake to limit the customer number field to three
or even four characters. Instead, a five-character field with leading zeros that could
store customer numbers from 00001 to 99999 should be considered.

A mix of alphabetic and numeric characters can also be considered, which many
people find easier to view and use. Alphabetic characters expand the storage capacity
because there are 26 possible values for each character position. Most airlines now
use six alphabetic characters as a record locator, which has over 300 million possible
values.

A logical record is a set of field values that describes a single person, place, thing,
or event. For example, a logical customer record contains specific field values for a
single customer, including the customer number, name, address, telephone number,
credit limit, and so on. Application programs see a logical record as a group of related
fields, regardless of how or where the data is stored physically.

The term record usually refers to a logical record. Whenever an application pro-
gram issues a read or write command, the operating system supplies one logical
record to the program or accepts one logical record from the program. The physical
data might be stored on one or more servers, in the same building or thousands of
miles away, but all the application program sees is the logical record—the physical
storage location is irrelevant.

9.8.3 Data Coding
Computers represent data as bits (short for binary digits) that have only two possible
values: 1 and 0. A computer understands a group of bits as a digital code that can
be transmitted, received, and stored. Computers use various data coding and storage
schemes, such as EBCDIC, ASCII, and binary. A more recent coding standard called
Unicode also is popular. Also, the storage of dates raises some design issues that must
be considered.

EBCDIC, ASCII, AND BINARY: EBCDIC (pronounced EB-see-dik), which stands
for Extended Binary Coded Decimal Interchange Code, is a coding method used on
mainframe computers and high-capacity servers. ASCII (pronounced ASK-ee), which
stands for American Standard Code for Information Interchange, is a coding method
used on most personal computers. EBCDIC and ASCII both require eight bits, or one
byte, for each character. For example, the name Ann requires 3 bytes of storage, the
number 12,345 requires 5 bytes of storage, and the number 1,234,567,890 requires
10 bytes of storage.

Compared with character-based formats, a binary storage format offers a more
efficient storage method because it represents numbers as actual binary values, rather
than as coded numeric digits. For example, an integer format uses only 16 bits, or
two bytes, to represent the number 12,345 in binary form. A long integer format uses
32 bits, or four bytes, to represent the number 1,234,567,890 in binary form.

UNICODE: Unicode is a more recent coding standard that uses two bytes per
 character, rather than one. This expanded scheme enables Unicode to represent more

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

304

Chapter 9 Data Design

9.8 Data Storage and Access

than 65,000 unique, multilingual characters. Why is this important? Consider the
challenge of running a multinational information system or developing a program
that will be sold in Asia, Europe, and North America. Because it supports virtually all
languages, Unicode has become a global standard.

Traditionally, domestic software firms developed a product in English and then
translated the program into one or more languages. This process was expensive,
slow, and error-prone. In contrast, Unicode creates translatable content right from
the start. Today, most popular operating systems support Unicode, and the Unicode
 Consortium maintains standards and support, as shown in Figure 9-38.

FIGURE 9-38 Unicode is an international coding format that represents characters as integers, using 16 bits (two bytes)
per character. The Unicode Consortium maintains standards and support for Unicode.
Source: Unicode Consortium

STORING DATES: What is the best way to store dates? The answer depends on how
the dates will be displayed and whether they will be used in calculations.

At the beginning of the twenty-first century, many firms that used only two digits
to represent the year were faced with a major problem called the Y2K issue. Based
on that experience, most date formats now are based on the model established by the
 International Organization for Standardization (ISO), which requires a format of four
digits for the year, two for the month, and two for the day (YYYYMMDD). A date
stored in that format can be sorted easily and used in comparisons. If a date in ISO
form is larger than another date in the same form, then the first date is later. For exam-
ple, 20150504 (May 4, 2015) is later than 20130927 (September 27, 2013).

But what if dates must be used in calculations? For
example, if a manufacturing order placed on June 23 takes
three weeks to complete, when will the order be ready? If a
payment due on August 13 is not paid until April 27 of the
following year, exactly how late is the payment and how
much interest is owed? In these situations, it is easier to use
absolute dates.

An absolute date is the total number of days from some
specific base date. To calculate the number of days between
two absolute dates, one date is subtracted from the other.
For example, if the base date is January 1, 1900, then May
4, 2015, has an absolute date of 42128. Similarly, September
27, 2013, has an absolute date value of 41544. If the earlier
date value is subtracted from the later one, the result is 584
days. A spreadsheet can be used to determine and display
absolute dates easily, as shown in Figure 9-39.

FIGURE 9-39 Microsoft Excel uses absolute dates in
calculations. In this example, May 4, 2019, is displayed as
43589, and September 27, 2015, is displayed as 42274.
The difference between the dates is 1315 days.
Scott Tilley

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

305

Phase 3 Systems Design

9.9 Data Control

A well-designed DBMS must provide built-in control and security features, includ-
ing subschemas, passwords, encryption, audit trail files, and backup and recovery
procedures to maintain data. The analyst’s main responsibility is to ensure that the
DBMS features are used properly.

Earlier in this chapter, it was explained that a subschema can be used to provide a
limited view of the database to a specific user or level of users. Limiting access to files
and databases is the most common way of protecting stored data. Users must furnish
a proper user ID and password to access a file or database. Different privileges, also
called permissions, can be associated with different users, so some employees can be
limited to read-only access, while other users might be allowed to update or delete
data. For highly sensitive data, additional access codes can be established that restrict
specific records or fields within records. Stored data also can be encrypted to pre-
vent unauthorized access. Encryption is the process of converting readable data into
unreadable characters to prevent unauthorized access to the data.

All system files and databases must be backed up regularly and a series of
backup copies must be retained for a specified period of time. In the event of a file
catastrophe, recovery procedures can be used to restore the file or database to its
current state at the time of the last backup. Audit log files, which record details
of all accesses and changes to the file or database, can be used to recover changes
made since the last backup. Audit fields, which are special fields within data
records to provide additional control or security information, can also be included.
Typical audit fields include the date the record was created or modified, the name
of the user who performed the action, and the number of times the record has been
accessed.

9.9 Data Control

Just as it is important to secure the physical part of the system, as shown in
 Figure 9-40, file and database control must include all measures necessary to ensure
that data storage is correct, complete, and secure. File and database control is also
related to input and output techniques discussed earlier.

FIGURE 9-40 In addition to network monitoring, system security includes access codes, data
encryption, passwords, and audit trails.
Gorodenkoff/Shutterstock.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

306

Chapter 9 Data Design

9.10 Summary

iStock.com/faberfoto_it

A QUESTION OF ETHICS

Tip Top Toys is a relatively small division of Worldwide Enterprises. Worldwide has nine
other divisions, which include insurance, health-care products, and financial planning
 services, to name a few.

The corporate marketing director for Worldwide has requested Tip Top’s customer
shopping data to target people who might be likely to purchase items or services from
other Worldwide divisions. The database manager is not totally comfortable with this and
pointed out Tip Top’s web privacy policy, which states “Tip Top Toys, a division of World-
wide Enterprises, will not share personal data with other companies without a customer’s
consent.”

The marketing director replied that the statement only applies to outside companies—
not other Worldwide divisions. He said he checked with the corporate legal department,
and they agreed. The database manager replied, “Even if it is legally OK, it’s not the right
thing to do. Many people take our statement to mean that their data does not leave Tip
Top. At the very least, we should give customers a choice, and share the data only with
their consent.”

Do you agree with the marketing director? Why or why not?

9.10 suMMary

This chapter continued the study of the systems design phase of the SDLC. It was
explained that files and tables contain data about people, places, things, or events that
affect the information system. File-oriented systems, also called file processing sys-
tems, manage data stored in separate.

A database consists of linked tables that form an overall data structure. A DBMS
is a collection of tools, features, and interfaces that enable users to add, update, man-
age, access, and analyze data in a database.

DBMS designs are more powerful and flexible than traditional file-oriented sys-
tems. A database environment offers scalability, support for organization-wide access,
economy of scale, data sharing among user groups, balancing of conflicting user
requirements, enforcement of standards, controlled redundancy, effective security,
flexibility, better programmer productivity, and data independence. Large-scale data-
bases are complex and require extensive security and backup/recovery features.

DBMS components include interfaces for users, DBAs, and related systems; a
DML; a schema; and a physical data repository. Other data management techniques
include data warehousing, which stores data in an easily accessible form for user
access, and data mining, which looks for meaningful patterns and relationships
among data. Data mining also includes clickstream storage, which records how users
interact with a site, and market basket analysis, which can identify product relation-
ships and consumer buying patterns.

In a web-based design, the Internet serves as the front end, or interface, for the
DBMS. Access to the database requires only a web browser client and an Internet
connection. Middleware can interpret client requests in HTML form and translate

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

307

Phase 3 Systems Design

9.10 Summary

the requests into commands that the database can execute. Web-based data must be
secure, yet easily accessible to authorized users. To achieve this goal, well-designed
systems provide security at three levels: the database itself, the web server, and the
telecommunication links that connect the components of the system

In an information system, an entity is a person, a place, a thing, or an event for
which data is collected and maintained. A field, or attribute, is a single characteristic
of an entity. A record, or tuple, is a set of related fields that describes one instance of
an entity. Data is stored in files (in a file-oriented system) and tables (in a database
environment).

A primary key is the field or field combination that uniquely and minimally identi-
fies a specific record; a candidate key is any field that could serve as a primary key. A
foreign key is a field or field combination that must match the primary key of another
file or table. A secondary key is a field or field combination used as the basis for sort-
ing or retrieving records.

An ERD is a graphic representation of all system entities and the relationships
among them. The ERD is based on entities and data stores in DFDs prepared during
the systems analysis phase. The three basic relationships represented in an ERD are
one-to-one (1:1), one-to-many (1:M), and many-to-many (M:N). In a M:N relation-
ship, the two entities are linked by an associative entity.

The relationship between two entities also is referred to as cardinality. A common
form of cardinality notation is called crow’s foot notation, which uses various sym-
bols to describe the characteristics of the relationship.

Normalization is a process for avoiding problems in data design. A 1NF record
has no repeating groups. A record is in 2NF if it is in 1NF and all nonkey fields
depend on the entire primary key. A record is in 3NF if it is in 2NF and if no field
depends on a nonkey field.

Data design tasks include creating an initial ERD; assigning data elements to an
entity; normalizing all table designs; and completing the data dictionary entries for
files, records, and data elements.

A code is a set of letters or numbers used to represent data in a system. Using
codes can speed up data entry, reduce data storage space, and reduce transmission
time. Codes also can be used to reveal or to conceal information. The main types
of codes are sequence codes, block sequence codes, classification codes, alphabetic
codes (e.g., category codes, abbreviation codes, and mnemonic codes), significant digit
codes, derivation codes, cipher codes, and action codes.

Logical storage is information seen through a user’s eyes, regardless of how or
where that information actually is organized or stored. Physical storage is hardware
related and involves reading and writing binary data to physical media. A logical
record is a related set of field values that describes a single person, place, thing, or
event. Data storage formats include EBCDIC, ASCII, binary, and Unicode. Dates can
be stored in several formats, including ISO and absolute format.

File and database control measures include limiting access to the data, data
encryption, backup/recovery procedures, audit trail files, and internal audit fields.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

308

Chapter 9 Data Design

Key Terms

1:1 A type of entity relationship. A one-to-one relationship, abbreviated 1:1, exists when exactly one of
the second entity occurs for each instance of the first entity.

1:M A type of entity relationship. A one-to-many relationship, abbreviated 1:M, exists when one occur-
rence of the first entity can be related to many occurrences of the second entity, but each occurrence
of the second entity can be associated with only one occurrence of the first entity.

abbreviation code Alphabetic abbreviation. For example, standard state codes include NY for New
York, ME for Maine, and MN for Minnesota.

absolute date The total number of days from some specific base date. To calculate the number of days
between two absolute dates, subtract one date from the other. For example, using a base date of Janu-
ary 1, 1900, September 27, 2012, has an absolute date value of 41179 and July 13, 2011, has an abso-
lute date of 40737. If the earlier date value is subtracted from the later one, the result is 442 days.

action code Indicates what action is to be taken with an associated item. For example, a student records
program might prompt a user to enter or click an action code such as D (to display the student’s
record), A (to add a record), and X (to exit the program).

alphabetic code Uses alphabet letters to distinguish one item from another based on a category, an
abbreviation, or an easy-to-remember value, called a mnemonic code.

ASCII Stands for American Standard Code for Information Interchange, a data storage coding method
used on most personal computers and workstations.

associative entity An entity that has its own set of attributes and characteristics. Associative entities are
used to link between many-to-many (M:N) relationships.

attribute A single characteristic or fact about an entity. An attribute, or field, is the smallest piece of data
that has meaning within an information system. For example, a Social Security number or company
name could be examples of an attribute. In object-oriented analysis, an attribute is part of a class dia-
gram that describes the characteristics of objects in the class. Also known as a data element.

audit fields Special fields within data records to provide additional control or security information.
Typical audit fields include the date the record was created or modified, the name of the user who
performed the action, and the number of times the record has been accessed.

audit log files Record details of all accesses and changes to a file or database and can be used to recover
changes made since the last backup.

backup The process of saving a series of file or data copies to be retained for a specified period of time.
Data can be backed up continuously, or at prescribed intervals.

binary storage format A format that offers efficient storage of numeric data. For example, when numeric
data types are specified using Microsoft Access, there are a variety of storage formats choices, includ-
ing integer and long integer, among others.

bit The smallest unit of data is one binary digit.

block sequence code Cipher that uses blocks of numbers for different classifications.

byte A group of eight bits is called a byte, or a character. A set of bytes forms a field, which is an individ-
ual fact about a person, a place, a thing, or an event.

candidate key Sometimes it is possible to have a choice of fields or field combinations to use as the pri-
mary key. Any field that could serve as a primary key is called a candidate key.

cardinality A concept that describes how instances of one entity relate to instances of another entity.
Described in ERDs by notation that indicates combinations that include zero or one-to-many, one-to-
one, and many-to-many.

cardinality notation Code that shows relationships between entities.

category codes Ciphers that identify a group of related items. For example, a local department store may
use a two-character category code to identify the department in which a product is sold.

Key Terms

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 309

Phase 3 Systems Design

character A group of eight bits is called a character, or a byte. A set of bytes forms a field, which is an
individual fact about a person, a place, a thing, or an event.

cipher codes Use of a keyword to encode a number. A retail store, for example, may use a 10-letter
word, such as CAMPGROUND, to code wholesale prices, where the letter C represents 1, A rep-
resents 2, and so on. Thus, the code, GRAND, would indicate that the store paid $562.90 for the
item.

clicks to close The average number of page views to accomplish a purchase or obtain desired
information.

clickstream storage Recording web visitor behavior and traffic trends for later data mining. use.

code A set of letters or numbers that represents a data item. Codes can be used to simplify output, input,
and data formats.

combination key A type of data validation check that is performed on two or more fields to ensure that
they are consistent or reasonable when considered together. Even though all the fields involved in a
combination check might pass their individual validation checks, the combination of the field values
might be inconsistent or unreasonable.

common field An attribute that appears in more than one entity. Common fields can be used to link
entities in various types of relationships.

composite key Sometimes it is necessary for a primary key to consist of a combination of fields. In that
case, the primary key is called a combination key, composite key, concatenated key, or multivalued key.

concatenated key See composite key.

crow’s foot notation A type of cardinality notation. It is called crow’s foot notation because of the shapes,
which include circles, bars, and symbols, that indicate various possibilities. A single bar indicates one, a
double bar indicates one and only one, a circle indicates zero, and a crow’s foot indicates many.

data element A single characteristic or fact about an entity. A data element, field, or attribute is the
smallest piece of data that has meaning within an information system. For example, a Social Security
number or company name could be examples of a data element. The term data item is also used.

data item See data element.

data manipulation language (DML) A DML controls database operations, including storing, retrieving,
updating, and deleting data. Most commercial DBMSs, such as Oracle and IBM’s DB2, use a DML.

data mart A specialized database designed to serve the needs of a specific department, such as sales,
marketing, or finance. Each data mart includes only the data that users in that department require to
perform their jobs.

data mining Looking for meaningful patterns and relationships among data. For example, data min-
ing software could help a consumer products firm identify potential customers based on their prior
purchases.

data structure A meaningful combination of related data elements that is included in a data flow or
retained in a data store. A framework for organizing and storing data.

data warehouse An integrated collection of data that can support management analysis and decision
making.

database administrator (DBA) Someone who manages a DBMS. The DBA assesses overall requirements
and maintains the database for the benefit of the entire organization rather than a single department
or user.

database management system (DBMS) A collection of tools, features, and interfaces that enables users to
add, update, manage, access, and analyze data in a database.

derivation code Combining data from different item attributes, or characteristics, to build the code.
Most magazine subscription codes are derivation codes.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

310

Chapter 9 Data Design

Key Terms

EBCDIC Stands for Extended Binary Coded Decimal Interchange Code, a coding method used on main-
frame computers and some high-capacity servers.

economy of scale The inherent efficiency of high-volume processing on larger computers. Database
design allows better utilization of hardware. If a company maintains an enterprise-wide database, pro-
cessing is less expensive using a powerful mainframe server instead of using several smaller computers.

encryption A process where data is coded (converted into unreadable characters) so that only those with
the required authorization can access the data (usually via decoding software)

entity A person, a place, a thing, or an event for which data is collected and maintained. For example, an
online sales system may include entities named CUSTOMER, ORDER, PRODUCT, and SUPPLIER.

entity-relationship diagram (ERD) A graphical model of the information system that depicts the rela-
tionships among system entities.

field A single characteristic or fact about an entity. A field, or attribute, is the smallest piece of data that
has meaning within an information system. For example, a Social Security number or company name
could be examples of a field. The terms data element, data item, and field are used interchangeably.

file Each file or table contains data about people, places, things, or events that interact with the informa-
tion system.

file-oriented system A file-oriented system, also called a file processing system, stores and manages data
in one or more separate files.

first normal form (1NF) A record is said to be in 1NF if it does not contain a repeating group (a set of
data items that can occur any number of times in a single record).

foreign key A field in one table that must match a primary key value in another table in order to estab-
lish the relationship between the two tables.

functionally dependent Functional dependence is an important concept for understanding the 2NF. The
field X is said to be functionally dependent on the field Y if the value of X depends on the value of Y.
For example, an order date is dependent on an order number; for a particular order number, there is
only one value for the order date. In contrast, the product description is not dependent on the order
number. For a particular order number, there might be several product descriptions, one for each item
ordered.

International Organization for Standardization (ISO) A network of national standards institutes from
over a hundred countries working in partnership with international organizations, governments,
industries, and business and consumer representatives. The ISO acts as a bridge between public and
private sectors.

java database connectivity (JDBC) A standard that enables Java applications to exchange data with any
database that uses SQL statements and is ODBC-compliant.

key fields Used during the systems design phase to organize, access, and maintain data structures. The
four types of key fields are primary keys, candidate keys, foreign keys, and secondary keys.

logical record A logical record contains field values that describe a single person, place, thing, or event.
Application programs see a logical record as a set of fields, regardless of how or where the data is
stored physically.

logical storage Refers to information as seen through a user’s eyes, regardless of how or where that
information is organized or stored.

M:N A type of entity relationship. A many-to-many relationship, abbreviated M:N, exists when one
instance of the first entity can be related to many instances of the second entity, and one instance of
the second entity can be related to many instances of the first entity.

many-to-many relationship See M:N.

market basket analysis A type of analysis that can detect patterns and trends in large amounts of data.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 311

Phase 3 Systems Design

middleware Software that connects dissimilar applications and enables them to communicate and
exchange data. For example, middleware can link a departmental database to a web server that can
be accessed by client computers via the Internet or a company intranet.

mnemonic code Ciphers using a specific combination of letters that are easy to remember. Many
three-character airport codes are mnemonic codes. For example, LAX represents Los Angeles.

multivalued key Sometimes it is necessary for a primary key to consist of a combination of fields. In that
case, the primary key is called a combination key, composite key, concatenated key, or multivalued key.

nonkey field Any field that is not a primary key or a candidate key is called a nonkey field.

normalization A process by which analysts identify and correct inherent problems and complexities in
their record designs.

one-to-many relationship See 1:M.

one-to-one relationship See 1:1.

open database connectivity (ODBC) An industry-standard protocol that makes it possible for software
from different vendors to interact and exchange data.

orphan An unassociated or unrelated record or field. An orphan could be created if a customer order
was entered in an order table where that customer did not already exist in the customer table. Refer-
ential integrity would prevent the creation of this orphan.

permissions User-specific privileges that determine the type of access a user has to a database, file, or
directory. Also called user rights.

physical storage Information storage mechanism that is strictly hardware related, because it involves the
process of reading and writing binary data to physical media, such as a hard drive, flash drive, or DVD.

primary key A field or combination of fields that uniquely and minimally identifies a particular member
of an entity. For example, in a customer table the customer number is a unique primary key because
no two customers can have the same customer number. That key also is minimal because it contains
no information beyond what is needed to identify the customer.

query by example (QBE) A language allows the user to provide an example of the data requested.

query language Allows a user to specify a task without specifying how the task will be accomplished.
Some query languages use natural language commands that resemble ordinary English sentences

record A set of related fields that describes one instance, or member of an entity, such as one customer,
one order, or one product. A record might have one or dozens of fields, depending on what informa-
tion is needed. Also called a tuple.

recovery procedure Process for restoring data and restarting a system after an interruption. Recovery
procedures can be used to restore a file or database to its current state at the time of the last backup.

referential integrity A type of validity check. Referential integrity is a set of rules that avoids data incon-
sistency and quality problems.

relational database A database in which tables are related by common fields, creating a unified data
structure that provides improved data quality and access.

relational model A model used in relational databases. The relational model was introduced during the
1970s and became popular because it was flexible and powerful.

repeating group A set of one or more fields that can occur any number of times in a single record, with
each occurrence having different values.

scalability A characteristic implying the system can be expanded, modified, or downsized easily to meet
the rapidly changing needs of a business enterprise.

schema The complete definition of a database, including descriptions of all fields, records, and
relationships.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

312

Chapter 9 Data Design

Key Terms

second normal form (2NF) A record design is in 2NF if it is in 1NF and if all fields that are not part of
the primary key are dependent on the entire primary key. If any field in a 1NF record depends on only
one of the fields in a combination primary key, then the record is not in 2NF. A 1NF record with a
primary key that is a single field is automatically in 2NF.

secondary key A field or combination of fields that can be used to access or retrieve records. Secondary
key values are not unique. For example, to access records for only those customers in a specific postal
code, the postal code field could be used as a secondary key.

sequence code Numbers or letters assigned in a specific order. Sequence codes contain no additional
information other than an indication of order of entry into a system.

significant digit code Cipher that distinguishes items by using a series of subgroups of digits. U.S. Postal
Service zip codes, for example, are significant digit codes.

standard notation format A representation that makes designing tables easier as it clearly shows a table’s
structure, fields, and primary key.

Structured Query Language (SQL) A query language that allows PC users to communicate with servers
and mainframe computers.

subschema A view of the database used by one or more systems or users. A subschema defines only
those portions of the database that a particular system or user needs or is allowed to access.

table Each file or table contains data about people, places, things, or events that interact with the infor-
mation system.

table design Specifies the fields and identifies the primary key in a particular table or file.

third normal form (3NF) A record design is in 3NF if it is in 2NF and if no nonkey field is dependent on
another nonkey field. A nonkey field is a field that is not a candidate key for the primary key.

tuple A tuple (rhymes with couple), or record, is a set of related fields that describes one instance, or
member of an entity, such as one customer, one order, or one product. A tuple might have one or doz-
ens of fields, depending on what information is needed.

Unicode A relatively recent coding method that represents characters as integers. Unlike EBCDIC and
ASCII, which use eight bits for each character, Unicode requires 16 bits per character, which allows it
to represent more than 65,000 unique characters.

Unified Modeling Language (UML) A widely used method of visualizing and documenting software
 systems design. UML uses object-oriented design concepts, but it is independent of any specific
 programming language and can be used to describe business processes and requirements generally.

unnormalized A record that contains a repeating group, which means that a single record has multiple
occurrences of a particular field, with each occurrence having different values.

Y2K issue A problem faced by many firms in the year 2000 because their computer systems used only
two digits to represent the year; most dates now use a four-digit format for the year (YYYYMMDD).

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

313

Phase 3 Systems Design

Exercises

Exercises

Questions
1. What is a data structure?
2. Briefly describe the components of a DBMS.
3. List the major characteristics of web-based design.
4. Explain primary key, candidate key, secondary key, and foreign key.
5. What are ERDs and how are they used?
6. How do you convert an unnormalized design to 1NF? In your answer, refer to specific pages and

 figures in this chapter.
7. How are codes used in data design?
8. What is data warehousing and data mining?
9. How would a specific date, such as March 15, 2019, be represented as an absolute date?

10. How are permissions used to control access to data?

Discussion Topics
1. In the auto shop examples in Section 9.1.2, what are some problems that might arise in Mario’s

 system? Why won’t Danica run into the same problems? Provide specific examples in your answer.
2. Many large organizations have had their database system hacked and customer data stolen. How

should the security for the database be different than security for the rest of the system? Does it make
a difference for web-based data designs? If so, how?

3. Suggest three typical business situations where referential integrity avoids data problems.
4. We use lots of codes in our personal and business lives. How many can you name?
5. Are there ethical issues to consider when planning a database? For example, should sensitive personal

data (such as medical information) be stored in the same DBMS that manages employee salary and
benefits data? Why or why not?

Projects
1. Consider an automobile dealership with three locations. Data fields exist for stock number, vehicle

identification number, make, model, year, color, and invoice cost. Identify the possible candidate keys,
the likely primary key, a probable foreign key, and potential secondary keys.

2. Visit the bookstore at your school or in your area. Interview the manager or store employees to learn
more about the business and the entities that are involved in bookstore operations. Remember that
an entity is a person, a place, a thing, or an event that affects an information system. Draw an ERD,
including cardinality, which describes the bookstore’s operations.

3. Cludadwy Chairs sells a patented seat that spectators can take to youth soccer games. The seat folds
so it is small enough to fit in the glove box of most vehicles. The company operates a factory in Kan-
sas and also contracts its manufacturing projects to small firms in Canada and Mexico.

 An unusual problem has occurred for this small multinational company: People are getting con-
fused about dates in internal memos, purchase orders, and email. When the company’s database was
originally designed, the designer was not aware that the format for dates in Canada and Mexico
was different from the format used in the United States. For example, in Canada and Mexico, the
notation 7/1/19 indicates January 7, 2019, whereas in the United States the same notation indicates
July 1, 2019. Although it seems like a small point, the date confusion has resulted in several order
cancellations.

 Cludadwy Chairs has asked for your advice. You could suggest writing a simple program to convert
the dates automatically or design a switchboard command that would allow users to select a date

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

314

Chapter 9 Data Design

Exercises

format as data is entered. You realize, however, that Cludadwy Chairs might want to do business in
other countries in the future. What would be the best course of action? Should the company adapt to
the standard of each country, or should it maintain a single international format? What are the argu-
ments for each option?

4. Use Microsoft Access or similar database software to create a DBMS for the imaginary company
called TopText Publishing, which is described in Case in Point 9.1. Add several sample records to each
table and report to the class on your progress.

5. Search the Internet to find information about date formats. Determine whether the date format used
in the United States is the most common format.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 10 System Architecture

System
Architecture

C O N T E N T S
10.1 Architecture Checklist
 Case in Point 10.1: ABC Systems
10.2 The Evolution of System Architecture
10.3 Client/Server Architecture
10.4 The Impact of the Internet
10.5 E-Commerce Architecture
 Case in Point 10.2: Small Potatoes
10.6 Processing Methods
10.7 Network Models
10.8 Wireless Networks
 Case in Point 10.3: Spider IT Services
10.9 Systems Design Completion
 A Question of Ethics
10.10 Summary
 Key Terms
 Exercises

CHAPTER10
Chapter 10 is the final chapter in the systems design
phase of the SDLC. This chapter describes system
architecture, which translates the logical design of an
information system into a physical blueprint. Designing
the system architecture requires consideration of servers,
clients, processing methods, networks, and related issues.

The chapter includes three “Case in Point”
discussion questions to help contextualize the concepts
described in the text. The “Question of Ethics” explores
the trade-offs between the potential benefits of installing
tracking software on users’ computers to improve the
system’s response to common usage patterns versus the
ethical issues related to invasion of privacy by constant
monitoring of employees’ online activity.

L E A R N I N G O B J E C T I V E S
When you finish this chapter, you should be able
to:

1. Provide a checklist of issues to consider when
selecting a system architecture

2. Trace the evolution of system architecture from
mainframes to current designs

3. Explain client/server architecture

4. Describe the impact of the Internet on system
architecture

5. Compare in-house e-commerce development
with packaged solutions and service providers

6. Explain online and batch processing

7. Describe network models, including hierarchical,
bus, ring, star, and mesh topologies

8. Explain network devices, including routers, gate-
ways, and proxy servers

9. Describe wireless networking, including wireless
standards, topologies, and trends

10. Explain the final activities in the systems design
phase

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

317

Phase 3 Systems Design

10.1 Architecture Checklist

10.1 Architecture checklist

At this point in the SDLC, the objective is to determine an overall architecture to
implement the information system. System architecture translates the logical design
of an information system into a physical structure that includes hardware, software,
network support, processing methods, and security. The end product of the systems
design phase is the system design specification. If this document is approved, the next
step is systems implementation.

Just as an architect begins a project with a list of the owner’s requirements, a sys-
tems analyst must consider several issues that will affect the architecture choice. This
is done with an overall architecture checklist:

• Corporate organization and culture

• Enterprise resource planning (ERP)

• Initial and total cost of ownership (TCO)

• Scalability

• Web integration

• Legacy system interface requirements

• Processing options

• Security issues

• Corporate portals

10.1.1 Corporate Organization and Culture
To be successful, an information system must perform well in a company’s
organization and culture. For example, consider two large bicycle brands, Green Bikes
and Blue Bikes. Each firm has three operating divisions: an Asian subsidiary that
manufactures the bicycles, a factory in Los Angeles that produces bike accessories and
clothing, and a plant in Canada that makes bike carriers, racks, and custom trailers.

On the surface, the two firms are similar, but they have very different
organizations and corporate cultures. Green Bikes is highly centralized and oversees
day-to-day operations from its Los Angeles office. Blue Bikes also has a Los Angeles
executive office but allows its three business units to operate separately, with minimal
corporate oversight. Both firms are successful, and it is unlikely that their managerial
styles will change anytime soon.

Suppose both firms asked a consultant to suggest an IT architecture that would
boost productivity and reduce costs. How might corporate organization and
culture issues affect the consultant’s recommendation? There is no easy answer to
that question. The best approach probably would be to study day-to-day business
functions, talk to users at all levels, and focus on operational feasibility issues, just as
was done earlier in the development process.

10.1.2 Enterprise Resource Planning (ERP)
Many companies use enterprise resource planning (ERP) software to establish a
company-wide strategy for using IT that includes a specific architecture, standards
for data, processing, network, and user interface design. A main advantage of ERP is
that it describes a specific hardware and software environment, also called a platform,
which ensures connectivity and easy integration of future systems, including in-house
software and commercial packages.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

318

Chapter 10 System Architecture

10.1 Architecture Checklist

Many companies are extending internal ERP systems to their suppliers and cus-
tomers, using a concept called supply chain management (SCM). For example, in a
totally integrated supply chain system, a customer order could cause a manufacturing
system to schedule a work order, which in turn triggers a call for more parts from one
or more suppliers. In a dynamic, highly competitive economy, SCM can help compa-
nies achieve faster response, better customer service, and lower operating costs.

Oracle is an example of a company offering ERP solutions. As shown in Figure 10-1,
Oracle’s ERP products are cloud-based services that support employee collaboration,
provide access to information from mobile devices, and deliver data analytics capabili-
ties to gain insight into business processes.

FIGURE 10-1 Oracle offers ERP solutions as a cloud-based service.
Source: Oracle Corporation

10.1.3 Initial Cost and TCO
The importance of considering economic feasibility and TCO during systems plan-
ning and analysis was discussed earlier. TCO includes tangible purchases, fees, and
contracts called hard costs. However, additional soft costs of management, support,
training, and downtime are just as important but more difficult to measure.

A TCO analysis should address the following questions:

• If in-house development was selected as the best alternative initially, is it still
the best choice? Is the necessary technical expertise available, and does the
original cost estimate appear realistic?

• If a specific package was chosen initially, is it still the best choice? Are newer
versions or competitive products available? Have any changes occurred in pric-
ing or support?

• Have any new types of outsourcing become available?

• Have any economic, governmental, or regulatory events occurred that could
affect the proposed project?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

319

Phase 3 Systems Design

10.1 Architecture Checklist

• Have any significant technical developments occurred that could affect the pro-
posed project?

• Have any major assumptions changed since the company made the build versus
buy decision?

• Are there any merger or acquisition issues to consider, whereby the company
might require compatibility with a specific environment?

• Have any new trends occurred in the marketplace? Are new products or tech-
nologies on the verge of being introduced?

• Have the original TCO estimates been updated? If so, are there any significant
differences?

The answers to these questions might affect the initial cost and TCO for the proposed
system. The system requirements and alternatives should be reviewed now, before
proceeding to design the system architecture.

10.1.4 Scalability
A network is composed of individual nodes. A node represents a physical device,
wired or wireless, that can send, receive, or manage network data. For example,
nodes can be servers, computers, shared printers, mass storage devices, wireless access
points, or tablets.

Scalability, sometimes also called extensibility, refers to a system’s ability to
expand, change, or downsize to meet the changing needs of a business enterprise.
Scalability is especially important in implementing systems that are volume related,
such as transaction processing systems. A scalable system is necessary to support a
dynamic, growing business. For example, a scalable network could handle anywhere
from a few dozen nodes to thousands of nodes, and a scalable DBMS could support
the acquisition of an entire new sales division. When investing large amounts of
money in a project, management is especially concerned about scalability issues that
could affect the system’s life expectancy.

10.1.5 Web Integration
An information system includes applications, which are programs that handle the
input, manage the processing logic, and provide the required output. The systems
analyst must know if a new application will be part of an e-commerce strategy and
the degree of integration with other web-based components. As mentioned earlier, a
web-centric architecture follows Internet design protocols and enables a company to
integrate the new application into its e-commerce strategy. Even where e-commerce is
not involved, a web-centric application can run on the Internet or a company intranet
or extranet. A web-based application avoids many of the connectivity and compatibil-
ity problems that typically arise when different hardware environments are involved.
In a web-based environment, a firm’s external business partners can use standard web
browsers to import and export data.

10.1.6 Legacy Systems
A new system might have to interface with one or more legacy systems, which are
older systems that use outdated technology but still are functional. For example, a
new marketing information system might need to report sales data to a server-based
accounting system and obtain product cost data from a legacy manufacturing system.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

320

Chapter 10 System Architecture

10.1 Architecture Checklist

Interfacing a new system with a legacy system involves analysis of data formats
and compatibility. In some cases, a company will need to convert legacy file data,
which can be an expensive and time-consuming process. Middleware, which is
discussed later in this chapter, might be needed to pass data between new systems
and legacy systems. Finally, to select the best architecture, the analyst must know
if the new application eventually will replace the legacy system or will coexist
with it.

10.1.7 Processing Options
In planning the architecture, designers also must consider how the system will process
data: online or in batches. For example, a high-capacity transaction processing sys-
tem, such as an order entry system, requires more network, processing, and data stor-
age resources than a monthly billing system that handles data in batches. Also, if the
system must operate online, 24 hours a day and seven days a week (24/7), provision
must be made for backup and speedy recovery in the event of system failure.

The characteristics of online and batch processing methods are described later in
this chapter, with examples of each type.

10.1.8 Security Issues
From the simple password protection shown in Figure 10-2 to complex intrusion
detection systems, security threats and defenses are a major concern to a systems ana-
lyst. As the physical design is translated into specific hardware and software, the ana-

lyst must consider security issues and determine
how the company will address them. Security is
especially important when data or processing is
performed at remote locations, rather than at a
centralized facility. In mission-critical systems,
security issues will have a major impact on sys-
tem architecture and design.
Web-based systems introduce additional security
concerns, as critical data must be protected in the
Internet environment. Also, firms that use e-com-
merce applications must assure customers that
their personal data is safe and secure. The lamen-
table number of high-profile security breaches in
large corporations in recent years suggests that
security issues should play an even larger role in
system architecture considerations. System secu-
rity concepts and strategies are discussed in detail
in Chapter 12.

10.1.9 Corporate Portals
Depending on the system, the planned architecture might include a corporate
portal. A portal is an entrance to a multifunction website. After entering a portal, a
user can navigate to a destination using various tools and features provided by the
portal designer. A corporate portal can provide access for customers, employees,
suppliers, and the public. A well-designed portal can integrate with various other
systems and provide a consistent look and feel across multiple organizational
divisions.

FIGURE 10-2 User IDs and passwords are traditional elements of
system security.
JMiks/Shutterstock.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

321

Phase 3 Systems Design

10.2 The Evolution of System Architecture

10.2 the evolution of system Architecture

Every business information system must carry out three main functions:

• Manage applications that perform the processing logic

• Handle data storage and access

• Provide an interface that allows users to interact with the system

Depending on the architecture, the three functions are performed on a server, on a
client, or are divided between the server and the client. During system design, the ana-
lyst must determine where the functions will be carried out and ascertain the advan-
tages and disadvantages of each design approach.

10.2.1 Mainframe Architecture
A server is a computer that supplies data, processing services, or other support to
one or more computers, called clients. The earliest servers were mainframe comput-
ers, and a system design where the server performs all the processing sometimes is
described as mainframe architecture. Although the actual server does not have to be a
mainframe, the term mainframe architecture typically describes a multiuser environ-
ment where the server is significantly more powerful than the clients. A systems ana-
lyst should know the history of mainframe architecture to understand the server’s role
in modern system design.

In the 1960s, mainframe architecture was the only choice. In addition to central-
ized data processing, the earliest systems performed all data input and output at a
central location, often called a data processing center. Physical data was delivered or
transmitted in some manner to the data processing center, where it was entered into
the system. Users in the organization had no input or output capability, except for
printed reports that were distributed by a corporate IT department.

As network technology advanced, companies installed terminals at remote loca-
tions, so that users could enter and access data from anywhere in the organization,
regardless of where the centralized computer was located. A terminal included a
keyboard and display screen to handle input and output but lacked independent pro-
cessing capability. In a centralized design, as shown in Figure 10-3, the remote user’s
keystrokes are transmitted from his or her terminal to the mainframe, which responds
by sending screen output back to the user’s screen.

CASE IN POINT 10.1: ABC SyStemS

You are a systems analyst at ABC Systems, a fast-growing IT consulting firm, that provides a wide
range of services to companies that want to establish e-commerce operations. During the past
18 months, ABC acquired two smaller firms and set up a new division that specializes in SCM.
Aligning ABC’s internal systems was quite a challenge, and top management was not especially
happy with the integration cost or the timetable. To avoid future problems, you have decided
to suggest an ERP strategy, and you plan to present your views at the staff meeting tomorrow.
ABC’s management team is very informal and prefers a loose, flexible style of management.
How will you persuade them that ERP is the way to go?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

322

Chapter 10 System Architecture

10.2 The Evolution of System Architecture

Today, mainframe architecture still is used in industries
that require large amounts of processing that can be done
at a central location. For example, a bank might use main-
frame servers to update customer balances each night. In a
blend of old and new technology, many organizations are
moving some of their data processing off their mainframes
and into the cloud. Indeed, a mainframe can be used to
implement part of a cloud computing infrastructure.

10.2.2 Impact of the Personal Computer
When PC technology exploded in the 1990s, powerful
microcomputers quickly appeared on corporate desktops.
Users found that they could run their own word pro-
cessing, spreadsheet, and database applications, without

assistance from the IT group, in a mode called stand-alone computing. Before long,
companies linked the stand-alone computers into networks that enabled the user cli-
ents to exchange data and perform local processing.

When an individual user works in stand-alone mode, the workstation performs
all the functions of a server by storing, accessing, and processing data, as well as
providing a user interface. Although stand-alone PCs improved employee productivity
and allowed users to perform tasks that previously required IT department assistance,
stand-alone computing could be inefficient and expensive. Even worse, maintaining
data on individual workstations raised major concerns about data security, integrity,
and consistency. Without a central storage location, it was impossible to protect and
back up valuable business data, and companies were exposed to enormous risks. In

some cases, users who were frustrated by a lack
of support and services from the IT department
created and managed their own databases. In
addition to security concerns, this led to data
inconsistency and unreliability.

10.2.3 Network Evolution
As technology became available, companies
resolved the problems of stand-alone computing
by joining clients into a local area network
(LAN) that allows sharing of data and hardware
resources, as shown in Figure 10-4 . One or
more LANs, in turn, can connect to a centralized
server. Further advances in technology made it
possible to create powerful networks that could
use satellite links, high-speed fiber-optic lines, or
the Internet to share data.

A wide area network (WAN) spans long
distances and can connect LANs that are con-
tinents apart, as shown in Figure 10-5 . When

a user accesses data on a LAN or WAN, the network is transparent because users see
the data as if it were stored on their own workstation. Company-wide systems that
connect one or more LANs or WANs are called distributed systems. The capabilities
of a distributed system depend on the power and capacity of the underlying data

Mainframe

Terminals

FIGURE 10-3 In a centralized design, the remote user’s
keystrokes are transmitted to the mainframe, which
responds by sending screen output back to the user’s
screen.

FIGURE 10-4 A LAN allows sharing of data and hardware, such as
printers and scanners.

Server

Client
Client

Client

Printer Scanner

LAN

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

323

Phase 3 Systems Design

10.3 Client/Server Architecture

communication network. Compared to mainframe architecture, distributed systems
increase concerns about data security and integrity because many individual clients
require access to perform processing.

FIGURE 10-5 A WAN can connect many LANs and link
users who are continents apart.

LAN
Tokyo

LAN
Brisbane

LAN
Johannesburg

LAN
London

LAN
Toronto

LAN
Los Angeles

WAN

10.3 client/server Architecture

Today’s interconnected world requires an information architecture that spans the
entire enterprise. Whether it’s a departmental network or a multinational corporation,
a systems analyst works with a distributed computing strategy called client/server
architecture.

The term client/server generally refers to systems that divide processing between
one or more networked clients and a central server. In a typical client/server system,
the client handles the entire user interface, including data entry, data query, and screen
presentation logic. The server stores the data and provides data access and database
management functions. Application logic is divided in some manner between the
server and the clients.

In a client/server interaction, the client submits a request for information from
the server, which carries out the operation and responds to the client. As shown in
Figure 10-6, the data file is not transferred from the server to the client—only the
request and the result are transmitted across the network. To fulfill a request from a
client, the server might contact other servers for data or processing support, but that
process is transparent to the client.

FIGURE 10-6 In a client/server design, data is stored and usually processed on the server.

Server

Client

Client

Client submits data
query to server

Server transmits only the
results of the client query

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

324

Chapter 10 System Architecture

10.3 Client/Server Architecture

Figure 10-7 lists some major differences between client/server and traditional main-
frame systems. Many early client/server systems did not produce expected savings
because few clear standards existed, and development costs often were higher than
anticipated. Implementation was expensive because clients needed powerful hardware
and software to handle shared processing tasks. In addition, many companies had an
installed base of data, called legacy data, which was difficult to access and transport
to a client/server environment.

FIGURE 10-7 Comparison of the characteristics of client/server and
mainframe systems.

Comparison of Client/Server and Mainframe Systems

Characteristics Client/Server Mainframe

Extensive and
programmable

As large-scale networks grew more powerful, client/server systems became more
cost-effective. Many companies invested in client/server systems to achieve a unique
combination of computing power, flexibility, and support for changing business operations.
Today, client/server architecture remains a popular form of systems design, using
Internet protocols and network models such as the ones described later in this chapter.
As businesses form new alliances with customers and suppliers, the client/server concept
continues to expand to include clients and servers outside the organization. Service-
oriented architecture (SOA) is an example of a networked system where a service can be a
client and a server simultaneously, and it can exist outside of corporate boundaries.

Cloud computing is seen by some observers as an entirely new concept. Others see
it as the ultimate form of client/server architecture, where Internet-based computing
becomes the server part of client/server and handles processing tasks, while the Inter-
net itself becomes the platform that replaces traditional networks. The bottom line is
that it doesn’t matter whether cloud computing is part of a client/server evolution or
a whole new way of thinking about computing. Either way, successful systems must
support business requirements, and system architecture is an important step in the
systems development process.

10.3.1 The Client’s Role
The client/server relationship must specify how the processing will be divided between
the client and the server. A fat client, also called a thick client, design locates all or

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

325

Phase 3 Systems Design

10.3 Client/Server Architecture

most of the application processing logic at the client. A thin client design locates all or
most of the processing logic at the server.

In the late 1990s, Sun Microsystems (now part of Oracle) was a strong advocate
of thin-client computing, which was also referred to as net-centric computing. The
thin client was a Java-powered terminal, which communicated using standard
Internet protocols with powerful servers. Thin clients were expected to provide lower
TCO, since maintenance was centralized. However, many users rebelled at the limited
functionality provided by thin clients (e.g., no Microsoft Office) and the latency
problems inherent in network access to remote applications and data. In the end, fat
clients (e.g., regular PCs) remained popular, even with all their management issues
and higher TCO.

Today’s laptop computers, tablets, and smartphones are so powerful that the allure
of thin clients has mostly passed, with the exception of access to the cloud for large
datasets and specialized processing needs. The app ecosystem has also changed the
TCO equation in favor of powerful computing for clients at the edge of the system
architecture.

10.3.2 Client/Server Tiers
Early client/server designs were called two-tier designs. In a two-tier design, the user
interface resides on the client, all data resides on the server, and the application logic
can run either on the server or on the client or be divided between the client and the
server.

Another form of client/server design, called a three-tier design, has become more
popular. In a three-tier design, the user interface runs on the client and the data is
stored on the server, just as with a two-tier design. A three-tier design also has a
middle layer between the client and server that processes the client requests and
translates them into data access commands that can be understood and carried
out by the server, as shown in Figure 10-8 . The middle layer can be considered an
application server, because it provides the application logic, or business logic, required
by the system. Three-tier designs also are called n-tier designs, to indicate that some
designs use more than one intermediate layer.

FIGURE 10-8 Characteristics of two-tier versus three-tier client/server design.

Application logicData User interface

Server

(Shared) (Shared)

Data server

Two-tier

Three-tier
Application

server

Client

Client

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

326

Chapter 10 System Architecture

10.3 Client/Server Architecture

The advantage of the application logic layer is that a three-tier design may enhance
overall performance by reducing the data server’s workload. The separate application
logic layer also relieves clients of complex processing tasks. Because it can run on a
server that is much more powerful than the typical client workstations, the middle
layer is more efficient and cost-effective in large-scale systems. Figure 10-9 shows
where the data, the application logic, and the user interface are located on various
architectures. In a client/server system, the tiers communicate using software called
middleware, as described in the following section.

FIGURE 10-9 The location of the data, the application logic, and the user interface
depend on the type of architecture.

Central data
processing center

Central server with
remote terminals

Stand-alone
client

Two-tier
client/server

Three-tier
client/server

Client

Client

Client

Client

Client

X X X

X X X

X X

X X

X

X

X

X X

X

Architecture Data
Application

Logic
User

Interface

Data server

Application server

Server

Server

Server

Server

10.3.3 Middleware
In a multitier system, special software called middleware enables the tiers to communicate
and pass data back and forth. Middleware is sometimes called glueware because it is
used to connect two or more software components in a federated system architecture.
Middleware plays an important role in integrating legacy systems and web-based and/
or cloud-based applications. Middleware can also be seen as representing the slash in the
term client/server.

10.3.4 Cost-Benefit Issues
To support business requirements, information systems need to be scalable, powerful,
and flexible. For most companies, client/server systems offer the best combination of
features to meet those needs. Whether a business is expanding or downsizing, client/
server systems enable the firm to scale the system in a rapidly changing environment.
As the size of the business changes, it is easier to adjust the number of clients and
the processing functions they perform than it is to alter the capability of a large-scale
central server.

Client/server computing also allows companies to transfer applications from
expensive mainframes to less-expensive client platforms, sometimes moving heavy-
weight processing needs to the cloud. In addition, using common languages such as
SQL, clients and servers can communicate across multiple platforms. That difference
is important because many businesses have substantial investments in a variety of
hardware and software environments.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

327

Phase 3 Systems Design

10.4 The Impact of the Internet

Finally, client/server systems can influence network load and improve response
times. For example, consider a user at a company headquarters who wants informa-
tion about total sales figures. In a client/server system, the server locates the data, per-
forms the necessary processing, and responds immediately to the client’s request. The
data retrieval and processing functions are transparent to the client because they are
done on the server, not the client.

10.3.5 Performance Issues
While it provides many advantages, client/server architecture does involve perfor-
mance issues that relate to the separation of server-based data and networked clients
that must access the data.

Consider the difference between client/server design and a centralized environment,
where a server-based program issues a command that is executed by the server’s own
CPU. Processing speed is enhanced because program instructions and data both travel
on an internal system bus, which moves data more efficiently than an external network.

In contrast to the centralized system, a client/server design separates applications
and data. Networked clients submit data requests to the server, which responds by
sending data back to the clients. When the number of clients and the demand for
services increases beyond a certain level, network capacity becomes a constraint and
system performance declines dramatically.

According to IBM, the performance characteristics of a client/server system are
not the same as a centralized processing environment. Client/server response times
increase gradually as more requests are made, but then rise dramatically when the
system nears its capacity. This point is called the knee of the curve, because it marks a
sharp decline in the system’s speed and efficiency. To deliver and maintain acceptable
performance, system developers must anticipate the number of users, network traffic,
server size and location, and design a client/server architecture that can support cur-
rent and future business needs.

To enhance performance, client/server systems must be designed so the client con-
tacts the server only when necessary and makes as few trips as possible. This is one of
the goals of the HTTP/2 protocol used between a server and a web browser.

Another issue that affects client/server performance is data storage. Just as process-
ing can be done at various places, data can be stored in more than one location using
a distributed database management system (DDBMS). Using a DDBMS offers several
advantages: Data stored closer to users can reduce network traffic; the system is scal-
able, so new data sites can be added without reworking the system design; and with
data stored in various locations, the system is less likely to experience a catastrophic
failure. A potential disadvantage of distributed data storage involves data security: It
can be more difficult to maintain controls and standards when data is stored in vari-
ous locations. In addition, the architecture of a DDBMS is more complex and difficult
to manage. From a system design standpoint, the challenge is that companies often
want it both ways—they want the control that comes with centralization and the
flexibility associated with decentralization.

10.4 the impAct of the internet

The Internet has had an enormous impact on system architecture. The Internet has
become more than a communication channel—many IT observers see it as a funda-
mentally different environment for system development.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

328

Chapter 10 System Architecture

10.4 The Impact of the Internet

10.4.1 Internet-Based Architecture
Recall that in a traditional client/server system, the client handles the user interface,
as shown in Figure 10-9 , and the server (or servers in a multitier system) handles
the data and application logic. In a sense, part of the system runs on the client, part
on the server. In contrast, in an Internet-based architecture, in addition to data and
application logic, the entire user interface is provided by the web server in the form
of HTML documents that are displayed by the client’s browser. Shifting the respon-
sibility for the interface from the client to the server simplifies data transmission and
results in lower hardware cost and complexity.

The advantages of Internet-based architecture have changed fundamental ideas
about how computer systems should be designed, and we are moving rapidly to a
total online environment. At the same time, millions of people are using web-based
collaboration and social networking applications to accomplish tasks that used to be
done in person, over the phone, or by more traditional Internet channels.

10.4.2 Cloud Computing
Cloud computing refers to the cloud symbol that often is used to represent the Inter-
net. The cloud computing concept envisions a cloud of remote computers that pro-
vide a total online software and data environment that is hosted by third parties. For
example, a user’s computer does not perform all the processing or computing tasks—
the cloud does some or all of it. This concept is in contrast to today’s computing
model, which is based on networks that strategically distribute processing and data
across the enterprise. In a sense, the cloud of computers acts as one giant computer
that performs tasks for users.

Figure 10-10 shows users connected to the cloud, which performs the computing
work. Instead of requiring specific hardware and software on the user’s computer,
cloud computing spreads the workload to powerful remote systems that are part of

the cloud. The user appears to
be working on a local system,
but all computing is actually
performed in the cloud. No
software updates or system
maintenance are required of the
user.
Cloud computing effectively
eliminates compatibility issues,
because the Internet itself is the
platform. This architecture also
provides scaling on demand,
which matches resources to
needs at any given time. For
example, during peak loads,
additional cloud servers might
come online automatically to
support the workload.

Cloud computing is an ideal
platform for powerful Software
as a Service (SaaS) applications.
As described in Chapter 7,
SaaS is a popular deployment

Web server

Cloud

FIGURE 10-10 Cloud computing.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

329

Phase 3 Systems Design

10.5 E-Commerce Architecture

method where software is not purchased but is paid for as a service, much like one
pays for electricity or cable TV each month. In this architecture, service providers can
easily make updates and changes to services without involving the users.

Even though cloud computing has tremendous advantages, some concerns exist.
First, cloud computing may require more bandwidth (the amount of data that can
be transferred in a fixed time period) than traditional client/server networks. Second,
because cloud computing is Internet-based, if a user’s Internet connection becomes
unavailable, the user will be unable to access any cloud-based services. In addition,
there are security concerns associated with sending large amounts of data over the
Internet, as well as concerns about storing it securely. Finally, there is the issue of
control. Because a service provider hosts the resources and manages data storage
and access, the provider has complete control of the system. Many firms are wary of
handing over control of mission-critical data and systems to a third-party provider.
This is particularly true when the cloud provider’s servers are physically located in
another jurisdiction or country.

Future technology advances will make cloud computing even more feasible, desir-
able, and secure. As the IT industry moves toward a web-based architecture, cloud
computing is being marketed aggressively and growing rapidly. It has become a cor-
nerstone of enterprise system architecture and will continue to be for the foreseeable
future.

10.4.3 Web 2.0
The shift to Internet-based collaboration has been so powerful and compelling that it
has been named Web 2.0. Web 2.0 is not a reference to a more technically advanced
version of the current web. Rather, Web 2.0 envisions a second generation of the web
that will enable people to collaborate, interact, and share information more dynam-
ically. Some view Web 2.0 as a stepping stone toward the semantic web, called Web
3.0 by some, where the documents shared on the Internet have semantics (meaning)
and not just syntax (HTML markup).

Social networking sites, such as Facebook, Twitter, and LinkedIn, are seeing explo-
sive growth in the Web 2.0 environment. Another form of social collaboration is
called a wiki. A wiki is a web-based repository of information that anyone can access,
contribute to, or modify. In a sense, a wiki represents the collective knowledge of a
group of people. One of the best-known wikis is Wikipedia.org, but smaller-scale
wikis are growing rapidly at businesses, schools, and other organizations that want to
compile and share information.

One of the goals of Web 2.0 is to enhance creativity, interaction, and shared ideas.
In this regard, the Web 2.0 concept resembles the agile development process and
the open-source software movement. Web 2.0 communities and services are based
on a body of data created by users. As users collaborate, new layers of information
are added in an overall environment known as the Internet operating system. These
layers can contain text, audio, images, and video clips that are shared with the user
community.

10.5 e-commerce Architecture

The huge expansion of online commerce is reshaping the IT landscape. Internet busi-
ness solutions must be efficient, reliable, and cost-effective. When planning an e-com-
merce architecture, analysts can examine in-house development, packaged solutions,
and service providers. The following sections discuss these options.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

330

Chapter 10 System Architecture

10.5 E-Commerce Architecture

10.5.1 In-House Solutions
Chapter 7 described how to analyze advantages and disadvantages of in-house devel-
opment versus purchasing a software package. The same basic principles apply to
system design.

If a decision is made to proceed with an in-house solution, there must be an
overall plan to help achieve the project’s goals. Figure 10-11 offers guidelines for
companies developing e-commerce strategies. An in-house solution usually requires a
greater initial investment but provides more flexibility for a company that must adapt
quickly in a dynamic e-commerce environment. By working in-house, a company
has more freedom to integrate with customers and suppliers and is less dependent on
vendor-specific solutions.

FIGURE 10-11 Guidelines for companies developing e-commerce strategies.

Guidelines for In-house E-commerce Site Development

Analyze the company’s business needs and develop a clear statement of
your goals. Consider the experience of other companies with similar
projects.

Obtain input from users who understand the business and technology
issues involved in the project. Plan for future growth, but aim for ease of
use.

Determine whether the IT staff has the necessary skills and experience to
implement the project. Consider training, additional resources, and the
use of consultants if necessary.

Consider integration requirements for existing legacy systems or
enterprise resource planning. Select a physical infrastructure carefully, so
it will support the application, now and later.

Develop the project in modular form so users can test and approve the
functional elements as you go along.

Connect the application to existing in-house systems and verify
interactivity.

Test every aspect of the site exhaustively. Consider a preliminary rollout to
a pilot group to obtain feedback before a full launch.

For smaller companies, the decision about in-house web development is even more
critical, because this approach will require financial resources and management atten-
tion that many small companies might be unable or unwilling to commit. An in-house
strategy, however, can provide valuable benefits, including the following:

• A unique website, with a look and feel consistent with the company’s other
marketing efforts

• Complete control over the organization of the site, the number of pages, and
the size of the files

• A scalable structure to handle increases in sales and product offerings in the
future

• More flexibility to modify and manage the site as the company changes

• The opportunity to integrate the firm’s web-based business systems with its
other information systems, creating the potential for more savings and better
customer service

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

331

Phase 3 Systems Design

10.5 E-Commerce Architecture

Whether a firm uses an in-house or a packaged design, the decision about web host-
ing is a separate issue. Although internal hosting has some advantages, such as greater
control and security, the expense would be much greater, especially for a small- to
medium-sized firm.

10.5.2 Packaged Solutions
If a small company is reluctant to take on the challenge and complexity of developing
an Internet commerce site in-house, an alternative can be a packaged solution. This
is true even for medium- to large-sized firms. Many vendors, including IBM and
Microsoft, offer turnkey systems for companies that want to get an e-business up
and running quickly, as shown in Figure 10-12 . For large-scale systems that must
integrate with existing applications, packaged solutions might be less attractive.

FIGURE 10-12 IBM WebSphere Commerce offers software solutions for companies that want to get an e-business up and
running quickly.
Source: IBM Corporation

10.5.3 Service Providers
Another alternative is to use an application service provider (ASP). As explained in
Chapter 7, an ASP provides applications, or access to applications, by charging a
usage or subscription fee. Today, many ASPs offer full-scale Internet business services
for companies that decide to outsource those functions.

A systems analyst confronts a bewildering array of products and strategies when
implementing Internet-based systems. A good starting point might be to consider the
experience of other companies in the same industry. Many firms offer the names of
clients and customers, along with their success stories. Although this information may
not be reliable, it can provide valuable knowledge regarding a vendor’s products and
services.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

332

Chapter 10 System Architecture

10.6 Processing Methods

10.6 processing methods

In selecting an architecture, the systems analyst must determine which transactions
will be handled online, and what functions, if any, can be carried out using a batch
processing method.

10.6.1 Online Processing
Early computer systems were designed to handle data records as a group, or batch.
Fewer systems use that model today. However, even the most advanced online systems
must perform maintenance, post large quantities of data during off-hours when
network traffic is low, and carry out housekeeping tasks just as their legacy computer
ancestors did. This section discusses the online processing capability that is at the core
of powerful, modern systems, and the following section describes the evolution of
batch processing.

An online system handles transactions when and where they occur and provides
output directly to users. Because it is interactive, online processing avoids delays and
allows a constant dialog between the user and the system.

An airline reservations system is a familiar example of online processing. When
online customers visit the airline’s website, they can enter their origin, destination,
travel dates, and travel times. The system searches a database and responds by
displaying available flights, times, and prices. The customer can make a reserva-
tion, enter a name, address, credit card information, and other required data, and
the system creates the reservation, assigns a seat, and updates the flight database
immediately.

Online processing also can be used with file-oriented systems. Figure 10-13
shows what happens when a customer uses an ATM to inquire about an account
balance. After the ATM verifies the customer’s card and password, the customer
enters the request (Step 1). Then, the system accesses the account master file using
the account number as the primary key and retrieves the customer’s record (Step 2).
The system verifies the account number and displays the balance (Step 3). Data is
retrieved and the system transmits the current balance to the ATM, which prints it
for the customer.

CASE IN POINT 10.2: SmAll PotAtoeS

Small Potatoes is a family-operated seed business that has grown rapidly. It specializes in supply-
ing home gardeners with the finest seeds and gardening supplies. Until now, the firm has done all
its business by placing ads in gardening and health magazines and taking orders using a toll-free
telephone number.

Now, the family has decided to establish a website and sell online, but there is some
disagreement about the best way to proceed. Some say it would be better to develop the
site on their own, and one of the employees, who is a recent computer science graduate,
believes she can handle the task. Others feel it would be better to outsource the site and
focus on the business itself. Suppose the family asked for your opinion. What would you
say? What additional questions would you ask?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

333

Phase 3 Systems Design

10.6 Processing Methods

Online processing systems have four typical
characteristics:

1. The system processes transactions com-
pletely when and where they occur.

2. Users interact directly with the informa-
tion system.

3. Users can access data randomly.

4. The information system must be available
whenever necessary to support business
functions.

10.6.2 Batch Processing
Batch processing means that data is managed in
groups or batches. That was an acceptable choice
in the 1960s, and for most firms, it was the only
choice. Today, all businesses need real-time infor-
mation to operate, and batch processing is not
always desirable. However, batch methods can
be efficient and convenient in some situations.

For example, batch processing can be used
for large amounts of data that must be pro-
cessed on a routine schedule, such as weekly
paychecks, daily credit card transaction updates,
or closing stock data that must be calculated and published in the following day’s
news media. The advantages of batch methods include the following:

• Tasks can be planned and run on a predetermined schedule, without user
involvement.

• Batch programs that require major network resources can run at times when
costs, and impact on other traffic, will be lowest.

• A batch method is well suited to address security, audit, and privacy concerns,
because it runs in a relatively controlled environment.

10.6.3 Example
The diagram in Figure 10-14 shows how a point-of-sale (POS) terminal, such as that
used in a supermarket, might trigger a series of online and batch processing events.
Note that the system uses online processing to handle data entry and inventory
updates, while reports and accounting entries are performed in a batch. A company
would choose a mix of online and batch processing when it makes good business
sense. Consider the following scenario in a typical retail store:

• During business hours, a salesperson enters a sale on a POS terminal, which is
part of an online system that handles daily sales transactions and maintains an
up-to-date inventory file.

• When the salesperson enters the transaction, online processing occurs. The
system performs calculations, updates the inventory file, and produces output
on the POS terminal in the form of a screen display and a printed receipt. At the
same time, each sales transaction creates input data for day-end batch processing.

1 3

2

ATM QUERY PROCESS

Step 1:

Step 2:

Step 3:

ONLINE
PROCESSING

SYSTEM

CUSTOMER
 FILE

FIGURE 10-13 When a customer requests a balance, the ATM
system verifies the account number, submits the query, retrieves the
current balance, and displays the balance on the ATM screen.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

334

Chapter 10 System Architecture

10.7 Network Models

• When the store closes, the system uses the sales transactions to produce the
daily sales report, perform the related accounting entries, and analyze the data
to identify slow- or fast-moving items, sales trends, and related issues—such as
store discounts for the next day.

Inventory
Accounting

Files

POS
Program
(Online)

Sales
Transaction

File

Daily Sales
Program
(Batch)

Daily
Sales
Report

POINT-OF-SALE (POS) PROCESSING

POS
Terminal

FIGURE 10-14 Many retailers use a combination of online and batch processing. When a salesperson enters the sale
on the POS terminal, the online system retrieves data from the item file, updates the quantity in stock, and produces a
sales transaction record. At the end of the day, a batch processing program produces a daily sales report and updates the
accounting system.

Online or batch processing are totally different but can work well together. In this
scenario, an online system handles POS processing, which must be done as it occurs,
while a batch method provides routine, overnight processing and marketing analysis.
Online processing allows the data to be entered and validated immediately, so the
information always is up to date. However, a heavy volume of online transactions can
be expensive for smaller firms, and data backup and recovery also add to IT costs. In
contrast, when used properly, batch processing can be cost-effective and less vulnera-
ble to system disruption.

10.7 network models

A network allows the sharing of hardware, software, and data resources in order
to reduce expenses and provide more capability to users. When planning a network
design, the systems analyst must consider network terms and concepts, including the
OSI model, network modeling tools, network topology, network protocols, and wire-
less networks, which are covered in this section. Other important issues, such as net-
work performance and security, are covered in Chapter 12.

10.7.1 The OSI Model
The discussion of system architecture earlier in this chapter already introduced basic
network terms such as client, server, LAN, WAN, client/server architecture, tiers, mid-
dleware, and cloud computing. To fully understand how networks are configured, the
Open Systems Interconnection (OSI) model should also be understood. The OSI model
describes how data moves from an application on one computer to an application on
another networked computer. The OSI model consists of seven layers, and each layer
performs a specific function. The OSI model provides physical design standards that
assure seamless network connectivity, regardless of the specific hardware environment.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

335

Phase 3 Systems Design

10.7 Network Models

10.7.2 Network Topology
The way a network is configured is called the network topology. Topology can
refer to a physical or a logical view of the network. For example, physical topology
describes the actual network cabling and connections, while logical topology
describes the way the components interact. It is important to understand the
distinction, because a specific physical topology might be able to support more than
one logical topology. For example, it is not uncommon to run cabling in a certain
pattern because of physical installation and cost issues but to use a different pattern
for the logical topology.

Computers may be physically arranged in a circular shape, but that might or might
not reflect the network topology. The examples shown in Figures 10-15 to 10-19
represent a logical topology, as seen by network users, who may not know or care
about the physical cabling pattern.

LAN and WAN networks typically are arranged in four patterns: hierarchical, bus,
ring, and star. The concepts are the same regardless of the size of the network, but the
physical implementation is different for a large-scale WAN that spans an entire busi-
ness enterprise compared with a small LAN in a single department. These four com-
mon topologies are described in the following sections.

HIERARCHICAL NETWORK: In a hierarchical network, as shown in Figure 10-15,
one or more powerful servers control the entire network. Departmental servers con-
trol lower levels of processing and network devices. An example of a hierarchical net-
work might be a retail clothing chain, with a central computer that stores data about
sales activity and inventory levels and local computers that handle store-level opera-
tions. The stores transmit data to the central computer, which analyzes sales trends,
determines optimum stock levels, and coordinates a SCM system. In this situation, a
hierarchical network might be used, because it mirrors the actual operational flow in
the organization.

Network server

TerminalPC

PC PC PC PC

Terminal

Departmental

Terminal

Terminal Terminal Terminal Terminal

server
Departmental

server

FIGURE 10-15 A hierarchical network with a single server that controls the network.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

336

Chapter 10 System Architecture

10.7 Network Models

One disadvantage of a hierarchical network is that if
a business adds additional processing levels, the net-
work becomes more complex and expensive to oper-
ate and maintain. Hierarchical networks were often
used in traditional mainframe-based systems but are
less common today.

BUS NETWORK: In a bus network, as shown in
Figure 10-16 , a single communication path connects
the central server, departmental servers, workstations,
and peripheral devices. Information is transmitted
in either direction between networked devices, and
all messages travel over the same central bus. Bus
networks require less cabling than other topologies,
because only a single cable is used. Devices can also be
attached or detached from the network at any point
without disturbing the rest of the network. In addition,
a failure in one workstation on the network does not
necessarily affect other workstations on the network.

One major disadvantage of a bus network is that
if the central bus becomes damaged or defective, the
entire network shuts down. Another disadvantage is
that overall performance declines as more users and
devices are added, because all message traffic must
flow along the central bus. This does not occur in the
treelike structure of a hierarchical network or the hub-
and-spoke design of a star network, where network
paths are more isolated and independent.

The bus network is one of the oldest LAN topol-
ogies and is a simple way to connect multiple work-
stations. Before the proliferation of star networks,
bus networks were very common. They share char-
acteristics of hardware bus networks. Today, the bus
design is less popular, but some firms have retained
bus networks to avoid the expense of new wiring and
hardware.

RING NETWORK: Although ring networks are
still around, they are somewhat outdated. IBM
was a leader in ring network technology when they
introduced their token ring LAN, and large companies
who use IBM mainframe equipment still deploy the
ring network design. A ring network, as shown in
Figure 10-17 , resembles a circle where the data flows
in only one direction from one device to the next. In
function, a ring network can be thought of as a bus
network with the ends connected. One disadvantage
of a ring network is that if a network device (e.g.,

a PC or a server) fails, the devices downstream from the failed device cannot
communicate with the network.

PC

B

U

S

Terminals

Printer

Terminals

Departmental server

PC

PC

PC

FIGURE 10-16 A bus network with all the devices
connected to a single communication path.

Printer

Departmental server

Scanner

PCPC

FIGURE 10-17 A ring network with a set of computers that
sends and receives data flowing in one direction.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

337

Phase 3 Systems Design

10.7 Network Models

STAR NETWORK: Because of its speed and versa-
tility, the star network is a popular LAN topology.
A star network has a central networking device
called a switch, which manages the network and
acts as a communications conduit for all network
traffic. In the past, a device known as a hub was
used to connect star networks, but a switch offers
advanced technology and much better perfor-
mance. A hub or switch functions like a familiar
multisocket power strip but with network devices
such as servers, workstations, and printers plugged
in rather than electrical appliances. The hub broad-
casts network traffic, called data frames, to all
connected devices. In contrast, a switch enhances
network performance by sending traffic only to
specific network devices that need to receive the
data.

A star configuration, as shown in Figure 10-18,
provides a high degree of network control, because
all traffic flows into and out of the switch. An inher-
ent disadvantage of the star design is that the entire
network is dependent on the switch. However, in most large star networks, backup
switches are available immediately in case of hardware failure.

MESH NETWORK: In the mesh network shown
in Figure 10-19 , each node connects to every other
node. While this design is extremely reliable, it also
is very expensive to install and maintain. A mesh
network resembles the Internet in that a message
can travel on more than one path. Originally
developed for military applications, the primary
advantage of a mesh network is redundancy,
because multiple paths provide backup if
communication problems arise or some nodes
become inoperable.

10.7.3 Network Devices
Networks such as LANs or WANs can be intercon-
nected using devices called routers. A router is a
device that connects network segments, determines
the most efficient data path, and guides the flow of
data.

Using a router, any network topology can connect to a larger, dissimilar network,
such as the Internet. This connection is called a gateway. The example in Figure 10-20
shows a star topology, where a switch connects nodes in the LAN and the router links
the network to the Internet. A device called a proxy server provides Internet connec-
tivity for internal LAN users. The vast majority of business networks use routers to
integrate the overall network architecture.

Switch

Printers

Scanner

Terminals

Terminals

Departmental
server

PCPC

FIGURE 10-18 A star network with a switch, departmental server,
and connected computers and devices.

Switch

Terminal

Printer

Server

PC

FIGURE 10-19 A mesh network is used in situations where a
high degree of redundancy is needed, such as military applications.
The redundant design provides alternate data paths but is
expensive to install and maintain.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

338

Chapter 10 System Architecture

10.8 Wireless Networks

10.8 wireless networks

Although a wired LAN provides enormous flexibility, the cabling cost can be substan-
tial, as well as the inevitable wiring changes that occur in a dynamic organization.
Many companies find wireless technology to be an attractive alternative. A wireless
local area network (WLAN) is relatively inexpensive to install and is well suited to
workgroups and users who are not anchored to a specific desk or location. Most
notebook computers and other mobile devices are equipped with built-in wireless
capability, and it is relatively simple to add this feature to existing desktop computers
and workstations in order to set up a wireless network.

Like their wired counterparts, wireless networks have certain standards and topol-
ogies, which are discussed in the following sections.

10.8.1 Standards
Wireless networks are based on various standards and protocols that still are evolving.
The most popular of these is called IEEE 802.11, which is a family of standards developed
by the Institute of Electrical and Electronics Engineers (IEEE) for wireless LANs.

Current wireless networks are based on variations of the original 802.11 standard.
Several versions, or amendments, were intended to improve bandwidth, range, and
security. The IEEE 802.11 set of standards changes very rapidly, in large part due to
pressure from consumer groups and industry leaders moving toward ever-faster wire-
less networks. Wireless network speed is measured in megabits per second (Mbps) or
gigabits per second (Gbps).

For example, when the 802.11b standard was introduced in 1999, the average
speed was 11 Mbps. Later versions, such as 802.11g and 802.11n, increased band-
width to 54 Mbps and 450 Mbps, respectively, and were widely accepted by the

Switch

Printers

Scanner

Terminals

Terminals

Departmental
server

Proxy server
Internet

Router

PCPC

FIGURE 10-20 Routers can be used to create gateways between different network topologies and large, dissimilar networks such as the
Internet.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

339

Phase 3 Systems Design

10.8 Wireless Networks

IT industry. Current standards, such as 802.11ac, can theoretically reach speeds of
nearly 7 Gbps. The increased speed is accomplished using multiple input/multiple
output (MIMO) technology to boost performance. MIMO relies on multiple data
paths, also called multipath design, to increase bandwidth and range.

If wireless capacity continues to expand and security issues can be overcome,
WLANs could replace wired networks in many situations. Wireless security is dis-
cussed in detail in Chapter 12.

10.8.2 Topologies
Like wired networks, wireless networks also can be arranged in different topologies.
The two most common network topologies available for IEEE 802.11 WLANs are
the Basic Service Set and the Extended Service Set. Figure 10-21 shows simplified
models of these topologies.

The Basic Service Set (BSS), also called the infrastructure mode, is shown at the
top of Figure 10-21. In this configuration, a central wireless device, called an access
point or wireless access point (WAP), is used to serve all wireless clients. The access
point is similar to a hub in the LAN star topology, except it provides network services
to wireless clients instead of wired clients. Because access points use a single commu-
nications medium, the air, they broadcast all traffic to all clients, just as a hub would
do in a wired network. Typically, the access point itself is connected to a wired net-
work, so wireless clients can access the wired network.

The second wireless topology is the Extended Service Set (ESS), as shown at the
bottom of Figure 10-21. An ESS is made up of two or more BSS networks. Thus,
using an ESS topology, wireless access can be expanded over a larger area. Each access
point provides wireless services over a limited range. As a client moves away from one
access point and closer to another, a process called roaming automatically allows the
client to associate with the stronger access point, allowing for undisrupted service.

10.8.3 Trends
Wireless technology has brought explosive change to the IT industry and will con-
tinue to affect businesses, individuals, and society. Even in the ever-changing world of
IT, it would be difficult to find a more dynamic area than wireless technology.

With the growing popularity of 802.11, many firms offer networking products,
services, and information. One of the most significant groups is the Wi-Fi Alliance,
which maintains a website at www.wi-fi.org. According to the site, the Alliance is a
nonprofit international association formed in 1999 to certify interoperability of wire-
less network products based on IEEE 802.11 specifications. Products that meet the
requirements are certified as wireless fidelity (Wi-Fi) compatible. The stated goal of
the Wi-Fi Alliance is to enhance the user experience through product interoperability.

Even though they have many advantages, wireless networks also have limitations
and disadvantages. For example, devices that use the 2.4 GHz band can pick up inter-
ference from appliances such as microwave ovens and cordless telephones that use the
same band. More important, wireless networks pose major security concerns because
wireless transmissions are much more susceptible to interception and intrusion than
wired networks. These issues are discussed in detail in Chapter 12.

In addition to Wi-Fi, another form of wireless transmission called Bluetooth is very
popular for short-distance wireless communication that does not require high power.
Examples of Bluetooth devices include wireless keyboards, mice, printers, cell phone
headsets, and digital cameras, among others. People with Bluetooth-equipped phones
or tablets can even beam information to each other and exchange digital notes.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

340

Chapter 10 System Architecture

10.8 Wireless Networks

Basic Service Set

Extended Service Set

FIGURE 10-21 The user in the upper screen has moved out of the BSS
coverage area and cannot communicate. In the lower screen, the user roams into
another ESS coverage area and the transition is seamless.

CASE IN POINT 10.3: SPider it ServiCeS

Spider IT Services specializes in custom network design and installation. Firms hire Spider to
do an overall analysis of their network needs, including a detailed cost-benefit study. Recently,
a problem arose. One of Spider’s clients complained that the relatively new network was too
slow and lacked sufficient capacity. Reviewing the case, Spider’s top management realized that
the rapidly growing client had simply outgrown the network much earlier than anticipated. How
could this problem have been avoided?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

341

Phase 3 Systems Design

10.9 Systems Design Completion

10.9 systems design completion

System architecture marks the end of the systems design phase of the SDLC. Recall
that in the systems analysis phase, all functional primitives were identified and doc-
umented with process descriptions. The objective then was to identify the system’s
functions and determine what each logical module would do, without attempting to
determine how that function would be carried out. Moving from analysis to design
tasks, the development process continued with consideration of output and user
interface design, data design, and system architecture issues. Now, based on a clear
definition of system requirements and design, software applications can be developed,
documented, and tested as part of the systems implementation phase of the SDLC,
which is described in Chapter 11.

Developers must also consider system management and support tools that can
monitor system performance, deal with fault management, handle backup, and pro-
vide for disaster recovery. These topics are covered in detail in Chapter 12.

The final activities in the systems design phase are preparing a system design speci-
fication, obtaining user approval, and delivering a presentation to management.

10.9.1 System Design Specification
The system design specification is a document that presents the complete design for
the new information system, along with detailed costs, staffing, and scheduling for
completing the next SDLC phase—systems implementation.

The system design specification is the baseline against which the operational sys-
tem will be measured. Unlike the system requirements document, which is written for
users to understand, the system design specification is oriented toward the program-
mers who will use it to create the necessary programs. Some sections of the system
requirements document are repeated in the system design specification, such as pro-
cess descriptions, data dictionary entries, and data flow diagrams.

The system design specification varies in length, so it should be organized care-
fully. One typically includes a cover page, a detailed table of contents, and an index.
The contents of the system design specification depend on company standards and
the complexity of the system. A typical system design specification includes the fol-
lowing sections.

1. Management summary. This is a brief overview of the project for company
managers and executives. It outlines the development efforts to date, provides a
current status report, summarizes project costs, reviews the benefits of the new
system, presents the systems implementation schedule, and highlights any issues
that management will need to address.

2. System components. This section contains the complete design for the new
system, including the user interface, outputs, inputs, files, databases, and network
specifications. Source documents, report and screen layouts, DFDs, and all other
relevant documentation should be included. In addition, the requirements for all
support processing, such as backup and recovery, start-up processing, and file
retention should be included. If the purchase of a software package is part of the
strategy, include any interface information required between the package and the
system being developed. If a CASE design tool is used, design diagrams and most
other documentation can be produced directly from the tool.

3. System environment. This section describes the constraints, or conditions,
affecting the system, including any requirements that involve operations, hard-
ware, systems software, or security. Examples of operational constraints include

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

342

Chapter 10 System Architecture

10.9 Systems Design Completion

transaction volumes that must be supported, data storage requirements, pro-
cessing schedules, reporting deadlines, and online response times.

4. Implementation requirements. In this section, start-up processing, initial data
entry or acquisition, user training requirements, and software test plans are
specified.

5. Time and cost estimates. This section provides detailed schedules, cost esti-
mates, and staffing requirements for the systems development phase and
revised projections for the remainder of the SDLC. Total costs-to-date for the
project and a comparison of those costs with prior estimates are also presented.

6. Additional material. Other material can be included at the end of the system
design specification. In this section, documents from earlier phases can be
inserted if they would be helpful to readers.

10.9.2 User Approval
Users must review and approve the interface design, report and menu designs, data
entry screens, source documents, and other areas of the system that affect them. The
review and approval process continues throughout the systems design phase. When
the design for a report is complete, the systems analyst should meet with users to
review the prototype, adjust the design if necessary, and obtain written approval.
Chapter 8 contains guidelines and suggestions about report design.

Securing approvals from users throughout the design phase is very important.
That approach ensures that a major task of obtaining approvals is not left to the end,
it keeps the users involved with the system’s development, and it provides feedback
about whether or not the project is on target. Some sections of the system design
specification might not interest users, but anything that does affect them should be
approved as early as possible.

Other IT department members also need to review the system design specification.
IT management will be concerned with staffing, costs, hardware and systems software
requirements, network impact, and the effect on the operating environment when
the new system is added. The programming team will want to get ready for its role,
and the operations group will be interested in processing support, report distribution,
network loads, integration with other systems, and any hardware or software issues
for which they need to prepare. As always, a systems analyst must be a good com-
municator to keep people up to date, obtain their input and suggestions, and obtain
necessary approvals.

When the system design specification is complete, the document is distributed to a
target group of users, IT department personnel, and company management. It should
be distributed at least one week before a presentation to allow the recipients enough
time to review the material.

10.9.3 Presentations
Usually, the systems analyst will give several presentations at the end of the systems
design phase. The presentations offer an opportunity to explain the system, answer
questions, consider comments, and secure final approval.

The first presentation is to the other systems analysts, programmers, and techni-
cal support staff members who will be involved in future project phases or opera-
tional support for the system. Because of the audience, the presentation is technically
oriented.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

343

Phase 3 Systems Design

10.10 Summary

The next presentation is to department managers and users from departments
affected by the system. As in the first presentation, the primary objective is to obtain
support and approval for the systems design. This is not a technical presentation; it
is aimed at user interaction with the system and management’s interest in budgets,
schedules, staffing, and impact on the production environment.

The final presentation is delivered to management. By the time this presentation
is delivered, all necessary approvals should have been obtained from prior presenta-
tions, and the users and IT department should be onboard. Just like the management
presentation at the end of the systems analysis phase, this presentation has a key
objective: to obtain management’s approval and support for the next development
step—systems implementation—including a solid commitment for financial and other
resources needed.

Based on the presentation and the data submitted, management might reach one of
three decisions: proceed with systems development, perform additional work on the
systems design phase, or terminate the project.

A QUESTION OF ETHICS

The new accounting system is operational, but feedback from users has been negative.
The most common complaint is that the system is not user-friendly. Some people in the
IT department think that more user training would solve the problem. However, the IT
manager is opposed to a fresh round of training. “Let’s just set up the network to monitor
the users’ keystrokes and mouse clicks, and see what the patterns are,” he suggested. “We
can analyze the data and come up with tips and suggestions that would make the system
easier to use.”

Your initial reaction is that the IT manager is wrong for two reasons. First, you believe
that monitoring would not be an effective method to learn what users really want. In your
view, that should have been done in the system requirements phase. Second, you are both-
ered by an ethical question: Even though the proposed monitoring would involve company
business, the company network, and company time, you feel that many users would resent
the unannounced monitoring and might feel that their performance or other computing
activities were being appraised without their knowledge.

The IT manager has asked to you to write up a recommendation. What will you say
about the ethical question that troubles you?

iStock.com/faberfoto_it

10.10 summAry

An information system combines hardware, software, data, procedures, and
people into a system architecture. The architecture translates the system’s logical
design into a physical structure that includes hardware, software, and processing
methods. The software consists of application programs, also called applications,
which handle the input, manage the processing logic, and provide the required
output.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

344

Chapter 10 System Architecture

10.10 Summary

Before selecting a system architecture, the analyst must consider ERP, initial cost
and TCO, scalability, web integration, legacy interface requirements, processing
options, security issues, and corporate portals.

ERP establishes an enterprise-wide strategy for IT resources and specific
standards for data, processing, network, and user interface design. Companies can
extend ERP systems to suppliers and customers in a process called SCM. A systems
analyst must assess initial cost and TCO and ensure that the design is scalable.
Scalability means that a system can be expanded, modified, or downsized easily
to meet business needs. The analyst also must consider if the system will be web-
centric and follow Internet design protocols and if it must interface with existing
systems, called legacy systems. System security is an important concern throughout
the design process, especially for e-commerce applications that involve credit card
and personal data. Processing options affect system design and resources required.
The planned architecture can include a corporate portal that is an entrance to
a multifunction website. Corporate portals can provide access for customers,
employees, suppliers, and others.

A system architecture requires servers and clients. Servers are computers that
supply data, processing services, or other support to one or more computers called
clients. In mainframe architecture, the server performs all processing, and terminals
communicate with the centralized system. Clients can be connected in distributed sys-
tems to form LANs or WANs.

Client/server architecture divides processing between one or more clients and a
central server. In a typical client/server system, the client handles the entire user inter-
face, including data entry, data query, and screen presentation logic. The server stores
the data and provides data access and database management functions. Application
logic is divided in some manner between the server and the clients. In a typical client/
server interaction, the client submits a request for information from the server, which
carries out the operation and responds to the client. Compared to file server designs,
client/server systems are more scalable and flexible.

A fat, or thick, client design places all or most of the application processing
logic at the client. A thin client design places all or most of the processing logic at
the server. Compared with maintaining a central server, TCO for fat clients can be
higher than for thin clients because of initial hardware and software requirements
and the ongoing expense of maintaining and updating remote client computers.
However, the fat client design may be simpler to develop, because the architecture
resembles traditional file server designs where all processing is performed at the
client.

Client/server designs can be two-tier or three-tier (also called n-tier). In a two-
tier design, the user interface resides on the client, all data resides on the server,
and the application logic can run either on the server or on the client or be divided
between the client and the server. In a three-tier design, the user interface runs on the
client and the data is stored on the server, just as with a two-tier design. A three-tier
design also has a middle layer between the client and server that processes the client
requests and translates them into data access commands that can be understood and
carried out by the server. The middle layer is called an application server, because
it provides the application logic or business logic. Middleware is software that
connects dissimilar applications and enables them to communicate and pass data.
In planning the system design, a systems analyst also must consider cost-benefit and
performance issues.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

345

Phase 3 Systems Design

10.10 Summary

The Internet has had an enormous impact on system architecture. In implement-
ing a design, an analyst should consider e-commerce architecture, the availability of
packaged solutions, and service providers. The analyst also should understand the
concepts of cloud computing and Web 2.0, which are shaping the future of Inter-
net computing. Cloud computing uses a cloud symbol to represent the Internet. The
cloud, which is transparent to users, provides a hardware-independent environment
where remote servers handle all processing and computing functions, and the Internet
itself replaces traditional networks. Web 2.0 refers to a new generation of the web
that encourages people to collaborate, interact, and share information more dynam-
ically. Web 2.0 is fueling the explosive growth of social networking and group-based
communications.

The most prevalent processing method today is online processing. Users interact
directly with online systems that continuously process their transactions when and
where they occur and continuously update files and databases. In contrast, batch sys-
tems process transactions in groups and execute them on a predetermined schedule.
Many online systems also use batch processing to perform routine tasks, such as han-
dling reports and accounting entries.

Networks allow the sharing of hardware, software, and data resources in order to
reduce expenses and provide more capability to users. The network is represented by
a seven-layer model called the OSI model.

The way a network is configured is called the network topology. Networks typ-
ically are arranged in five patterns: hierarchical, bus, ring, star, and mesh. A single
mainframe computer usually controls a hierarchical network, a bus network connects
workstations in a single-line communication path, a ring network connects worksta-
tions in a circular communication path, a star network connects workstations to a
central computer or networking device called a switch, and a mesh network connects
every network node to every other node. Wireless networks, or WLANs, based on
IEEE 802.11 standards, have seen explosive growth, especially in situations where
the flexibility of wireless is important. The IEEE 802.11ac standard uses MIMO, or
multipath technology, which has increased wireless network speed and range. WLANs
have two major topologies: BSS and ESS. Although wireless networks are very popu-
lar, they do have some limitations and disadvantages, including interference and secu-
rity concerns.

The system design specification presents the complete systems design for an infor-
mation system and is the basis for the presentations that complete the systems design
phase. Following the presentations, the project either progresses to the systems devel-
opment phase, requires additional systems design work, or is terminated.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

346

Chapter 10 System Architecture

Key Terms

Key Terms

802.11 A family of wireless network specifications developed by the IEEE.

802.11ac An IEEE wireless network specification, approved in 2014, that uses expanded MIMO technol-
ogy to achieve theoretical speeds of nearly 7 Gbps while increasing the wireless range and is backward
compatible with 802.11a, b, g, and n.

802.11b An IEEE wireless network specification introduced in 1999 based on a frequency of 2.4 GHz
and maximum bandwidth of 11 Mbps. Replaced by 802.11g.

802.11g An IEEE wireless network specification introduced in 2003 based on a frequency of 2.4 GHz
and maximum bandwidth of 54 Mbps; compatible with and replaced 802.11b, and has been super-
seded by the 802.11n standard.

802.11n An IEEE wireless network specification adopted in 2009 that uses MIMO technology to achieve
speeds of 200+ Mbps while increasing the wireless range and is backward compatible with 802.11a, b,
and g.

access point A central wireless device that provides network services to wireless clients.

application Part of the information system, an application handles the input, manages the processing
logic, and provides the required output.

application logic The underlying business rules or logic for an application.

application server A computer acting as “middlemen” between customers and an organization’s data-
bases and applications. Often used to facilitate complex business transactions.

bandwidth The amount of data that the system can handle in a fixed time period. Bandwidth require-
ments are expressed in bits per second (bps).

Basic Service Set (BSS) A wireless network configuration in which a central wireless device called an
access point is used to serve all wireless clients; also called infrastructure mode.

Bluetooth A form of wireless transmission very popular for short-distance wireless communication that
does not require high power.

bus network A computer network where a single communication path connects the mainframe computer,
server, workstations, and peripheral devices. Information is transmitted in either direction from any
workstation to another workstation, and any message can be directed to a specific device.

business logic Rules reflecting the operational requirements of the business that determine how a system
handles data and produces useful information. Examples include adding the proper amount of sales
tax to invoices, calculating customer balances and finance charges, and determining whether a cus-
tomer is eligible for a volume-based discount.

client Workstation that users interact within a client/server design. These workstations, or computers, are
supplied data, processing services, or other support from other computers, called servers.

client/server architecture Generally refers to systems that divide processing between one or more net-
worked clients and a central server. In a typical client/ server system, the client handles the entire user
interface, including data entry, data query, and screen presentation logic. The server stores the data
and provides data access and database management functions. Application logic is divided in some
manner between the server and the clients.

corporate portal A website that provides various tools and features for an organization’s customers,
employees, suppliers, and the public.

data frames Traffic on a computer network.

data processing center A central location where physical data was delivered or transmitted in some man-
ner and entered into the system. Users in the organization had no input or output capability, except
for printed reports that were distributed by a corporate IT department.

distributed database management system (DDBMS) A system for managing data stored at more than one
location. Using a DDBMS offers several advantages: Data stored closer to users can reduce network

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 347

Phase 3 Systems Design

traffic; the system is scalable, so new data sites can be added without reworking the system design;
and with data stored in various locations, the system is less likely to experience a catastrophic failure.
A potential disadvantage of distributed data storage involves data security. It can be more difficult to
maintain controls and standards when data is stored in various locations.

distributed system Company-wide systems that are connected by one or more LANs or WANs. The
capabilities of a distributed system depend on the power and capacity of the underlying data commu-
nication network.

enterprise resource planning (ERP) A process that establishes an enterprise-wide strategy for IT
resources. ERP defines a specific architecture, including standards for data, processing, network, and
user interface design.

Extended Service Set (ESS) A wireless network configuration made up of two or more BSS networks,
which allows wireless clients to roam from BSS to BSS.

extensibility Refers to a system’s ability to expand, change, or downsize easily to meet the changing
needs of a business enterprise. Also known as scalability.

fat client A network design that locates all or most of the application processing logic at the client. Also
called a thick client design.

gateway (1) In business processing modeling notation, a fork in the process, allowing the flow to go one
way or another. (2) A router or other network device used to connect to a larger, dissimilar type of
network, such as the Internet.

gigabits per second (Gbps) A bandwidth or throughput measurement.

glueware See middleware.

hierarchical network A network design where one computer (typically a mainframe) controls the entire
network. Satellite computers or servers control lower levels of processing and network devices.

HTTP/2 The second major version of the network protocol used by the web. Released as a standard in
2015.

hub The center of a star network. Switches in modern networks have largely replaced hubs.

infrastructure mode A wireless network configuration in which a central wireless device called an access
point is used to serve all wireless clients; also called BSS.

Institute of Electrical and Electronics Engineers (IEEE) A professional organization that establishes stan-
dards for telecommunications.

Internet operating system Part of the Web 2.0 model, an online computing environment created by
online communities and services, based on layers of shared information that can contain text, sound
bytes, images, and video clips.

knee of the curve A performance characteristic of a client/server computing environment. Client/server
response times tend to increase gradually and then rise dramatically as the system nears its capacity.
The point where response times increase dramatically.

legacy data The data associated with an older, less technologically advanced legacy system.

legacy system Term used to describe older systems that are typically less technologically advanced than
currently available systems.

local area network (LAN) A network design that allows the sharing of data and hardware, such as print-
ers and scanners. Advances in data communication technology have made it possible to create power-
ful networks that use satellite links, high-speed fiber-optic lines, or the Internet to share data.

logical topology A view of a network that describes the way the components interact, rather than the
actual network cabling and connections.

mainframe architecture A system design where the server performs all the processing.

megabits per second (Mbps) A bandwidth or throughput measurement.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

348

Chapter 10 System Architecture

Key Terms

mesh network A network design in which each node connects to every other node. While this design is
very reliable, it is also expensive to install and maintain.

middleware Software that connects dissimilar applications and enables them to communicate and
exchange data. For example, middleware can link a departmental database to a Web server that can
be accessed by client computers via the Internet or a company intranet. See also glueware.

multipath design A network design that relies on multiple data paths to increase bandwidth and range,
using MIMO technology.

multiple input/multiple output (MIMO) A wireless networking technology incorporated in the IEEE
802.11n and 802.11ac standards that uses multiple data streams and multiple antennas to achieve
higher transmission speeds and substantially increase wireless range over earlier standards.

net-centric computing A distributed environment where applications and data are downloaded from
servers and exchanged with peers across a network on an as-needed basis.

network topology The way a network is configured. LAN and WAN networks typically are arranged in
one of four common patterns: hierarchical, bus, star, and ring.

node A physical device, wired or wireless, that can send, receive, or manage network data.

n-tier design A multilevel design or architecture. For example, three-tier designs also are called n-tier
designs, to indicate that some designs use more than one intermediate layer.

online system Handling transactions when and where they occur and providing output directly to users.
Because it is interactive, online processing avoids delays and allows a constant dialog between the
user and the system.

Open Systems Interconnection (OSI) model Describes how data actually moves from an application on
one computer to an application on another networked computer. The OSI consists of seven layers,
and each layer performs a specific function.

physical topology The connection structure of an actual network’s cabling.

platform A specific hardware and software configuration that supports IT business goals such as hard-
ware connectivity and easy integration of future applications. Also called an environment.

point-of-sale (POS) The part of an information system that handles daily sales transactions and main-
tains the online inventory file.

portal An entrance to a multifunction website. After entering a portal, a user can navigate to a destina-
tion, using various tools and features provided by the portal designer.

proxy server A networking device that provides Internet connectivity for internal LAN users.

ring network A network resembling a circle of computers that communicate with each other. A ring net-
work often is used when processing is performed at local sites rather than at a central location.

roaming A process that allows wireless clients to move from one access point to another, automatically
associating with the stronger access point and allowing for uninterrupted service.

router A device that connects network segments, determines the most efficient data path, and guides the
flow of data.

scalability A characteristic implying the system can be expanded, modified, or downsized to meet the
rapidly changing needs of a business enterprise.

scaling on demand The ability to match network resources to needs at any given time; a feature of cloud
computing. For example, during peak loads, additional cloud servers might come on line automati-
cally to support increased workloads.

semantic web An evolution of the web where the documents shared on the Internet have semantics
(meaning) and not just syntax (HTML markup). Sometimes called Web 3.0.

server Computer in a client/server design that supplies data, processing, and services to client
workstations.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 349

Phase 3 Systems Design

stand-alone When personal computers first appeared in large numbers in the 1990, users found that they
could run their own word processing, spreadsheet, and database applications, without assistance from
the IT group, in a mode called stand-alone computing.

star network A network design with a central device and one or more workstations connected to it in a
way that forms a star pattern.

supply chain management (SCM) The coordination, integration, and management of materials, infor-
mation, and finances as they move from suppliers to customers, both within and between companies.
In a totally integrated supply chain, a customer order could cause a production planning system to
schedule a work order, which in turn could trigger a call for certain parts from one or more suppliers.

switch Central networking device in a star network, which manages the network and acts as a conduit
for all network traffic.

system architecture A translation of the logical design of an information system into a physical structure
that includes hardware, software, network support, and processing methods.

system design specification A document that presents the complete design for the new information sys-
tem, along with detailed costs, staffing, and scheduling for completing the next SDLC phase, systems
implementation. Also called the technical design specification or the detailed design specification.

thick client A system design that locates most or all of the application processing logic at the client. Also
called a fat client design.

thin client A system design that locates most or all of the processing logic at the server.

three-tier design In a three-tier design, the user interface runs on the client and the data is stored on the
server, just as in a two-tier design. A three-tier design also has a middle layer between the client and
server that processes the client requests and translates them into data access commands that can be
understood and carried out by the server.

transparent A network is transparent if a user sees the data as if it were stored on his or her own
workstation.

two-tier design A network design where the user interface resides on the client, all data resides on the
server, and the application logic can run either on the server or on the client or be divided between the
client and the server.

web-centric A strategy or approach that emphasizes a high degree of integration with other web-based
components. A web-centric architecture follows Internet design protocols and enables a company to
integrate the new application into its e-commerce strategy.

wide area network (WAN) A network spanning long distances that can link users who are continents
apart.

Wi-Fi Alliance A nonprofit international association formed in 1999 to certify interoperability of wire-
less network products based on IEEE 802.11 specifications.

wiki A web-based repository of information that anyone can access, contribute to, or modify.

Wi-Max IEEE 802.16 specifications, which are expected to enable wireless multimedia applications with
a range of up to 30 miles.

wireless access point (WAP) A central wireless device that provides network services to wireless clients.
Also called an access point.

wireless fidelity (Wi-Fi) Family of popular IEEE LAN wireless networking standards, also known as
802.11, including 802.11a, b, g, and n. 802.11n is the most recent standard. 802.11ac and 802.11ad
are proposed new standards.

wireless local area network (WLAN) A wireless network that is relatively inexpensive to install and is
well suited to workgroups and users who are not anchored to a specific desk or location.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

350

Chapter 10 System Architecture

Exercises

Exercises

Questions
1. If you had to rank the items in the architecture checklist, from most important to least important,

what would your list look like?
2. What are the three functions that every business information system must carry out, irrespective of

system architecture?
3. What is client/server architecture?
4. What has been the impact of the Internet on system architecture?
5. What are the differences between in-house e-commerce development with packaged solutions and

service providers?
6. What are the advantages of online and batch processing, respectively?
7. Explain the five main network models.
8. What functions do routers, gateways, and proxy servers serve in a network?
9. What role do standards play in wireless networking?

10. List the sections of a system design specification and describe the contents.

Discussion Topics
1. How is the proliferation of mobile devices that are locally powerful, use apps instead of full-

fledged applications, and rely on wireless network connectivity changing system architecture design
considerations?

2. E-commerce has seen explosive growth in recent years. What are the most important reasons for this
trend? Will it continue? Why or why not?

3. Is batch processing still relevant? Why or why not?
4. What are the main differences between the BSS and ESS wireless topologies?
5. One manager states, “When a new system is proposed, I want a written report, not an oral presenta-

tion, which is like a sales pitch. I only want to see the facts about costs, benefits, and schedules.” Do
you agree with that point of view?

Projects
1. Visit the IT department at your school or a local company to learn about the network they use.

Describe the network and draw a sketch of the configuration.
2. Prepare a 10-minute talk explaining Web 2.0 and cloud computing to a college class. Using the text

and your own Internet research, briefly describe the five most important points you will include in
your presentation.

3. Perform research on the Internet to identify a service provider that offers web-based business solu-
tions, and write a report describing the firm and its services.

4. Perform research on the Internet to learn about emerging trends in wireless networking and typical
costs involved in the installation of a wireless LAN.

5. Examine the role wireless networks are having in the developing world. Why are some places bypass-
ing LANs and physical cabling altogether and moving to a wireless system architecture? What are the
advantages and disadvantages of this?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

351

PHASE4SYSTEMS IMPLEMENTATION

DELIVERABLE
A functioning information system

Systems implementation is the fourth of five phases in the systems development life cycle. In
the previous phase, systems design, a physical model of the system was developed. The output
of that phase, the systems design specification, is used as input to the systems implementation
phase, where a completely functioning information system is created.

Successful systems implementation requires considerable effort. After all, without a working
system delivered to the customer, all other phases of the SDLC have little meaning. In
software engineering, the construction phase is often jokingly referred to as “a small matter of
programming”—but of course it’s no small matter at all.

Chapter 11 focuses on managing systems implementation throughout the useful life of the
system. This includes quality assurance, application development (structured, object-oriented,
and agile), coding, testing, documentation, and system installation.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 11 Managing Systems Implementation

CHAPTER11Managing Systems
Implementation

Chapter 11 describes the systems implementation phase
of the SDLC. Managing systems implementation involves
paying constant attention to quality assurance throughout
the activities of application development, coding, testing,
documentation, and installation. The system design
specification serves as a blueprint for constructing the
new system. The initial task is application development,
which requires systems analysts and programmers to
work together to construct the necessary programs and
code modules. Before a changeover, the system must be
tested and documented carefully, users must be trained,

and existing data must be converted. After the new
system is operational, a formal evaluation of the results
takes place as part of a final report to management.

The chapter includes three “Case in Point”
discussion questions to help contextualize the concepts
described in the text. The “Question of Ethics”
concerns with an issue that all testers have to deal:
when to stop testing. In the example, there is an ethical
question raised about whether or not a 90% pass rate
is sufficient to ship the product, assuming the remaining
bugs will be fixed once the system is operational.

C O N T E N T S
11.1 Quality Assurance
11.2 Application Development
11.3 Structured Development
11.4 Object-Oriented Development
11.5 Agile Development
11.6 Coding
11.7 Testing
 Case in Point 11.1: Your Move, Inc.
11.8 Documentation
11.9 Installation
 Case in Point 11.2: Global Cooling
 Case in Point 11.3: Yorktown Industries
 A Question of Ethics
11.10 Summary
 Key Terms
 Exercises

L E A R N I N G O B J E C T I V E S
When you finish this chapter, you should be able
to:

1. Explain quality assurance and three techniques
to help improve the finished product

2. Outline application development

3. Apply structured development

4. Apply object-oriented development

5. Apply agile development

6. Explain coding

7. Explain unit, integration, and system testing

8. Differentiate between program, system, opera-
tions, and user documentation

9. Explain the role of online documentation

10. Describe the five tasks involved in system
installation

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

353

Phase 4 Systems Implementation

11.1 Quality Assurance

11.1 Quality assurance

In today’s competitive business environment, companies are intensely concerned
with the quality of their products and services. A successful organization must
improve quality in every area, including its information systems. Top management
must provide the leadership, encouragement, and support needed for high-quality
IT resources.

No matter how carefully a system is designed and implemented, problems can
occur. Rigorous testing can detect errors during implementation, but it is much less
expensive to correct mistakes earlier in the development process. The main objective
of quality assurance (QA) is to avoid problems or to identify them as soon as possi-
ble. Poor quality can result from inaccurate requirements, design problems, coding
errors, faulty documentation, and ineffective testing.

To improve the finished product, software systems developers should consider best
practices in software engineering, systems engineering, and internationally recognized
quality standards.

11.1.1 Software Engineering
Software engineering is the disciplined application of engineering principles to the
creation of complex, long-lived applications. It is an amalgam of people, process, and
technology. Software engineering is broader than just development. It includes five
technical activity areas: requirements, design, construction, testing, and maintenance
and evolution. It is supported by nontechnical activities such as cost and effort esti-
mation, project management, and process improvement.

The website for the Software Engineering Institute (SEI) at Carnegie Mellon
University is shown in Figure 11-1. SEI is a leader in software engineering and
provides quality standards and suggested procedures for software developers
and systems analysts. SEI’s primary objective is to find better, faster, and less-
expensive methods of software development. To achieve that goal, SEI designed an
influential set of software development standards called the Capability Maturity
Model (CMM)®, which has been used successfully by thousands of organizations
around the globe. The purpose of the model is to improve software quality, reduce
development time, and cut costs. The five maturity levels of the software CMM are
shown in Figure 11-2.

After the original software CMM was released and updated, other CMMs were
introduced. Eventually the SEI established a new model, called Capability Maturity
Model Integration (CMMI)®, that integrates software and systems development
into a much larger framework. The CMMI tracks an organization’s processes,
using five maturity levels, from Level 1, which is referred to as unpredictable,
poorly controlled, and reactive, to Level 5, in which the optimal result is process
improvement.

11.1.2 Systems Engineering
Systems engineering not only builds upon software engineering but also includes
other parts of the overall system, such as hardware, networks, and interfaces. Trade
organizations such as INCOSE and the IEEE Systems Council provide guidance on best
practices and emerging technologies in systems engineering. As shown in Figure 11-3,
systems analysts can benefit from a holistic approach to large-scale problem solving by
adopting a broader perspective.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

354

Chapter 11 Managing Systems Implementation

11.1 Quality Assurance

FIGURE 11-1 The Software Engineering Institute at Carnegie Mellon University has had profound
influence on software engineering research and practice.
Source: Carnegie Mellon University

Process improvement
strategies defined and used

Quality management
strategies defined and used

Essentially uncontrolled
Level 1
Initial

Level 2
Repeatable

Level 3
Defined

Level 4
Managed

Level 5
Optimizing

Product management
procedures defined and used

Process management
procedures defined and used

FIGURE 11-2 The CMM has five maturity levels, from Level 1 (initial), which is
essentially uncontrolled development, to Level 5 (optimizing), in which process
improvement strategies are defined and used.
Source: Scott Tilley

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

355

Phase 4 Systems Implementation

11.1 Quality Assurance

11.1.3 International Organization for Standardization
What do automobiles, water, and software have in common?
Along with thousands of other products and services, they are
all covered by standards from the International Organization
for Standardization (ISO), which was discussed in Chapter 9.

ISO standards include everything from internationally
recognized symbols, such as those shown in Figure 11-4
to the ISBN numbering system that identifies this text. In
addition, ISO seeks to offer a global consensus of what
constitutes good management practices that can help firms
deliver consistently high-quality products and services—
including software.

Because software is so important to a company’s success,
many firms seek assurance that software systems, either
purchased or developed in-house, will meet rigid quality
standards. In 2014, ISO updated a set of guidelines, called
ISO 9000-3:2014, that provided a QA framework for
developing and maintaining software.

A company can specify ISO standards when it purchases
software from a supplier or use ISO guidelines for in-house
software development to ensure that the final result measures
up to ISO standards. ISO requires a specific development
plan, which outlines a step-by-step process for transforming
user requirements into a finished product. ISO standards can
be quite detailed. For example, ISO requires that a software
supplier document all testing and maintain records of test
results. If problems are found, they must be resolved, and
any modules affected must be retested. Additionally, software
and hardware specifications of all test equipment must be
documented and included in the test records.

FIGURE 11-3 INCOSE’s view of systems engineering.
Source: INCOSE - International Council on Systems Engineering

FIGURE 11-4 ISO symbols include internationally
recognized symbols.
bytedust/Shutterstock.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

356

Chapter 11 Managing Systems Implementation

11.2 Application Development

11.2 application Development

Application development is the process of constructing the programs and code
modules that serve as the building blocks of the information system. In Chapter 1,
it was explained that structured analysis, object-oriented (O-O) analysis, and agile
methods are three popular development options. Regardless of the method, the
objective is to translate the design into program and code modules that will function
properly.

Regardless of whether structured analysis, O-O design, or agile methods are used,
even a modest-sized project might have hundreds or even thousands of modules. For
this reason, application development can become quite complex and difficult to man-
age. At this stage, project management is especially important to control schedules
and budgets.

Users and managers are looking forward to the new system, and it is very import-
ant to set realistic schedules, meet project deadlines, control costs, and maintain qual-
ity. To achieve these goals, the systems analyst or project manager should use project
management tools and techniques similar to those described in Chapter 3 to monitor
and control the development effort.

11.2.1 Review the System Design
At this point, it is helpful to review the tasks involved in the creation of the system
design:

• Chapter 4 focused on requirements modeling and how to use functional
decomposition diagrams (FDDs) to break complex business operations down
into smaller units, or functions.

• Chapter 5 focused on structured data and process modeling, and data flow dia-
grams (DFDs). The development of process descriptions for functional primi-
tive processes that documented the business logic and processing requirements
was also discussed.

• Chapter 6 focused on an O-O model of the new system that included use case
diagrams, class diagrams, sequence diagrams, state transition diagrams, and
activity diagrams.

• Chapter 7 focused on selecting a development strategy.

• Chapter 8 focused on designing the user interface.

• Chapter 9 focused on data design issues, analyzing relationships between sys-
tem entities, and constructing entity-relationship diagrams (ERDs).

• Chapter 10 focused on overall system architecture considerations.

Taken together, this set of tasks produced an overall design and a plan for physical
implementation.

11.2.2 Application Development Tasks
If traditional structured or O-O methods were used during system design, the process
of translating the design into a functioning application can begin. If an agile develop-
ment method was selected, development begins with planning the project, followed
by laying the groundwork, assembling the team, and preparing to interact with the
customers.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

357

Phase 4 Systems Implementation

11.2 Application Development

TRADITIONAL METHODS: Building a new system requires careful planning. After
an overall strategy is established, individual modules must be designed, coded, tested,
and documented. A module consists of related program code organized into small
units that are easy to understand and maintain. After the modules are developed and
tested individually, more testing takes place, along with thorough documentation of
the entire system, as shown in Figure 11-5.

TEST

PLAN

DEVELOP

FIGURE 11-5 The main steps in traditional application development.

When program modules are created using structured or O-O methods, the
process starts by reviewing requirements documentation from prior SDLC phases
and creating a set of program designs. If a documentation file was built early in
the development process and updated regularly, there is a valuable repository of
information. The documentation centerpiece is the system design specification,
accompanied by diagrams, source documents, screen layouts, report designs, data
dictionary entries, and user comments. If a CASE tool was used during the systems
analysis and design process, the analyst’s job will be much easier. At this point, coding
and testing tasks begin. Although programmers typically perform the actual coding,
IT managers usually assign systems analysts to work with them as a team.

AGILE METHODS: If an agile approach is decided upon, intense communication
and collaboration will now begin between the IT team and the users or customers.
The objective is to create the system through an iterative process of planning, design-
ing, coding, and testing. Agile projects use various iterative and incremental models,
including Extreme Programming (XP) as shown in Figure 11-6. Agile development
and XP are discussed more later in this chapter.

11.2.3 Systems Development Tools
Each systems development approach has its own set of tools that has worked well for
that method. For example, structured development relies heavily on DFDs and struc-
ture charts; O-O methods use a variety of UML diagrams, including use case, class,

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

358

Chapter 11 Managing Systems Implementation

11.2 Application Development

sequence, and transition state diagrams; and agile methods tend to use spiral or other
iterative models such as the example shown in Figure 11-6.

System developers also can use multipurpose tools to help them translate the sys-
tem logic into properly functioning program modules. These generic tools include
ERDs, flowcharts, pseudocode, decision tables, and decision trees.

Release
planning

Iteration
Acceptance

tests
Release

Preparation
Release

plan
New

version
Customer
approval

New user story

Test
scenarios

Next
iteration

User
stories

Concept

FIGURE 11-6 Simplified model of an XP project. Note the emphasis on iteration and testing.

ENTITY-RELATIONSHIP DIAGRAMS: During data design (Chapter 9), the use of
ERDs to show the interaction among system entities and objects was described. An
ERD is a useful tool regardless of which methodology used, because the various
relationships (one-to-one, one-to-many, and many-to-many) must be understood and
implemented in the application development process.

FLOWCHARTS: As described in Chapter 5, flowcharts can be used to represent
program logic and are very useful in visualizing a modular design. A flowchart
represents logical rules and interaction graphically, using a series of symbols
connected by arrows. Using flowcharts, programmers can break large systems into
subsystems and modules that are easier to understand and code.

PSEUDOCODE: Pseudocode is a technique for representing program logic.
Pseudocode is similar to structured English, which was explained in Chapter 5.
Pseudocode is not language-specific, so it can be used to describe a software module
in plain English without requiring strict syntax rules. Using pseudocode, a systems
analyst or a programmer can describe program actions that can be implemented in
any programming language. Figure 11-7 illustrates an example of pseudocode that
documents a sales promotion policy.

DECISION TABLES AND DECISION TREES: As explained in Chapter 5, decision
tables and decision trees can be used to model business logic for an information
system. In addition to being used as modeling tools, analysts and programmers can
use decision tables and decision trees during system development, as code modules
that implement the logical rules are developed. Figure 11-8 shows an example of a
decision tree that documents the sales promotion policy shown in Figure 11-7. Note
that the decision tree accurately reflects the sales promotion policy, which has three
separate conditions and four possible outcomes.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

359

Phase 4 Systems Implementation

11.3 Structured Development

11.3 structureD Development

Structured application development usually involves a top-down approach, which
proceeds from a general design to a detailed structure. After a systems analyst docu-
ments the system’s requirements, he or she breaks the system down into subsystems
and modules in a process called partitioning. This approach also is called modular
design and is similar to constructing a leveled set of DFDs. By assigning modules to
different programmers, several development areas can proceed at the same time. As
explained in Chapter 3, project management software can be used to monitor work
on each module, forecast overall development time, estimate required human and
technical resources, and calculate a critical path for the project.

Because all the modules must work together properly, an analyst must proceed
carefully, with constant input from programmers and IT management to achieve a
sound, well-integrated structure. The analyst also must ensure that integration capa-
bility is built into each design and thoroughly tested.

FIGURE 11-7 Sample of a sales promotion policy with logical rules (top) and a pseudocode version of the
same policy (bottom). Note the alignment and indentation of the logic statements in the pseudocode.

SAMPLE OF A SALES PROMOTION POLICY

• Preferred customers who order more than $1,000 are entitled to a 5% discount, and
an additional 5% discount if they used our charge card.

• Preferred customers who do not order more than $1,000 receive a $25 bonus
coupon.

• All other customers receive a $5 bonus coupon.

PSEUDOCODE VERSION OF THE SALES PROMOTION POLICY

 IF customer is a preferred customer, and
 IF customer orders more than $1,000 then
 Apply a 5% discount, and
 IF customer uses our charge card, then
 Apply an additional 5% discount
 ELSE
 Award a $25 bonus coupon
 ELSE
 Award a $5 bonus coupon

FIGURE 11-8 Sample decision tree that reflects the sales promotion policy in Figure 11-7. Like a decision
table, a decision tree shows the action to be taken based on certain properties.

Preferred
customer?

Ordered
more than
$1,000?

Used our
charge card?

5% discount and
an additional 5%
discount

5% discount

$25 bonus coupon

$5 bonus coupon

Y

N

N

N

Y

Y

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

360

Chapter 11 Managing Systems Implementation

11.3 Structured Development

11.3.1 Structure Charts
Structure charts show the program modules and the relationships among them. A
structure chart consists of rectangles that represent the program modules, with arrows
and other symbols that provide additional information. Typically, a higher-level module,
called a control module, directs lower-level modules, called subordinate modules. In
a structure chart, symbols represent various actions or conditions. Structure chart
symbols represent modules, data couples, control couples, conditions, and loops.

MODULE: A rectangle represents a module, as shown in Figure 11-9. In the figure,
vertical lines at the edges of a rectangle indicate that module 1.3 is a library module. A
library module is reusable code and can be invoked from more than one point in the chart.

DATA COUPLE: An arrow with an empty circle represents a data couple. A data
couple shows data that one module passes to another. In the data couple example
shown in Figure 11-10, the Look Up Customer Name module exchanges data with
the Maintain Customer Data module.

FIGURE 11-9 An example of structure chart modules.

FIGURE 11-10 An example of
a structure chart data couple.

CONTROL COUPLE: An arrow with a filled circle represents a control couple. A
control couple shows a message, also called a status flag, that one module sends to
another. In the example shown in Figure 11-11, the Update Customer File module
sends an Account Overdue flag back to the Maintain Customer Data module. A
module uses a flag to signal a specific condition or action to another module.

FIGURE 11-11 An example of a structure chart control couple.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

361

Phase 4 Systems Implementation

11.3 Structured Development

CONDITION: A line with a diamond on one end represents a condition. A condition
line indicates that a control module determines which subordinate modules will be
invoked, depending on a specific condition. In the example shown in Figure 11-12,
Sort Inventory Parts is a control module with a condition line that triggers one of the
three subordinate modules.

LOOP: A curved arrow represents a loop. A loop indicates that one or more mod-
ules are repeated. In the example shown in Figure 11-13, the Get Student Grades and
Calculate GPA modules are repeated.

FIGURE 11-12 The diagram shows a control module that triggers three subordinate
modules.

11.3.2 Cohesion and Coupling
Cohesion and coupling are important tools for evaluating the overall design. As
explained in the following sections, it is desirable to have modules that are highly
cohesive and loosely coupled. Otherwise, system maintenance becomes more costly
due to difficulties in making changes to the system’s structure.

Cohesion measures a module’s scope and processing characteristics. A module that
performs a single function or task has a high degree of cohesion, which is desirable.
Because it focuses on a single task, a cohesive module is much easier to code and
reuse. For example, a module named Verify Customer Number is more cohesive than
a module named Calculate and Print Statements. If the word and is found in a mod-
ule name, this implies that more than one task is involved.

FIGURE 11-13 The diagram shows a structure chart loop with two repeating modules.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

362

Chapter 11 Managing Systems Implementation

11.3 Structured Development

If a module must perform multiple tasks, more complex coding is required and
the module will be more difficult to create and maintain. To make a module more
cohesive, split it into separate units, each with a single function. For example, by
splitting the module Check Customer Number and Credit Limit in Figure 11-14 into
two separate modules, Check Customer Number and Check Customer Credit Limit,
cohesion is greatly improved.

Check Customer
Number and
Credit Limit

FIGURE 11-14 Two examples of cohesion. Note that the single module on the left is less cohesive than the
two modules on the right.

Coupling describes the degree of interdependence among modules. Modules that
are independent are loosely coupled, which is desirable. Loosely coupled modules
are easier to maintain and modify, because the logic in one module does not affect
other modules. If a programmer needs to update a loosely coupled module, he or
she can accomplish the task in a single location. If modules are tightly coupled,
one module is linked to internal logic contained in another module. For example,
Module A might refer to an internal variable contained in Module B. In that case,
a logic error in the Module B will affect the processing in Module A. For that
reason, passing a status flag down as a message from a control module is generally
regarded as poor design. It is better to have subordinate modules handle processing
tasks as independently as possible, to avoid a cascade effect of logic errors in the
control module.

In Figure 11-15, the tightly coupled example on the left shows that the
subordinate module Calculate Current Charges depends on a status flag sent down
from the control module Update Customer Balance. It would be preferable to have
the modules loosely coupled and logically independent. In the example on the
right, a status flag is not needed because the subordinate module Apply Discount
handles discount processing independently. Any logic errors are confined to a single
location: the Apply Discount module.

11.3.3 Drawing a Structure Chart
If a structured analysis method was used during system design, the structure charts
will be based on the DFDs created during data and process modeling.

Typically, three steps are followed when creating a structure chart. DFDs are
reviewed to identify the processes and methods, identify the program modules and
determine control-subordinate relationships, and add symbols for couples and loops.
Afterward, the structure chart is analyzed to ensure that it is consistent with the sys-
tem documentation.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

363

Phase 4 Systems Implementation

11.3 Structured Development

STEP 1. REVIEW THE DFDS: The first step is to review all DFDs for accuracy and
completeness, especially if changes have occurred since the systems analysis phase. If
object models also were developed, they should be analyzed to identify the objects,
the methods that each object must perform, and the relationships among the objects.
A method is similar to a functional primitive and requires code to implement the
necessary actions.

STEP 2. IDENTIFY MODULES AND RELATIONSHIPS: Working from the logical
model, functional primitives or object methods are transformed into program
modules. When analyzing a set of DFDs, remember that each DFD level represents
a processing level. If DFDs are being used, one works way down from the context
diagram to the lower-level diagrams, identifying control modules and subordinate
modules, until the functional primitives are reached. If more cohesion is desired,
processes can be divided into smaller modules that handle a single task. Figure 11-16
shows a structure chart based on the order system from Chapter 5. Note how the
three-level structure chart relates to the three DFD levels.

STEP 3. ADD COUPLES, LOOPS, AND CONDITIONS: Next, couples, loops, and
conditions are added to the structure chart. If DFDs are being used, the data flows
and the data dictionary can be reviewed to identify the data elements that pass from
one module to another. In addition to adding the data couples, control couples are
added where a module is sending a control parameter, or flag, to another module.
Loops and condition lines that indicate repetitive or alternative processing steps are
also added, as shown in Figure 11-16. If an object model was developed, the class
diagrams and object relationship diagrams can be reviewed to be sure that the inter-
action among the objects is fully understood.

FIGURE 11-15 An example of tightly coupled and loosely coupled structure charts.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

364

Chapter 11 Managing Systems Implementation

11.4 Object-Oriented Development

FIGURE 11-16 A structure chart based on the order system DFDs in Chapter 5. The three-level structure
chart relates to the three DFD levels.

At this point, the structure chart is ready for careful analysis. Each process, data
element, or object method should be checked to ensure that the chart reflects all pre-
vious documentation and that the logic is correct. All modules should be strongly
cohesive and loosely coupled. Often, several versions of the chart must be drawn.
Some CASE tools can help analyze the chart and identify problem areas.

11.4 object-orienteD Development

O-O methods were described in Chapter 6. O-O analysis makes it easier to translate
an object model directly into an O-O programming language. This process is called
object-oriented development (OOD). Although many structured design concepts also
apply to O-O methodology, there are some differences.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

365

Phase 4 Systems Implementation

11.4 Object-Oriented Development

11.4.1 Characteristics of Object-Oriented Development
When implementing a structured design, a structure chart is used to describe the
interaction between program modules, as explained earlier. In contrast, when
implementing an O-O design, relationships between objects already exist. Because
object interaction is defined during the O-O analysis process, the object model itself
represents the application’s structure.

As Chapter 6 explains, objects contain both data and program logic called
methods. Individual object instances belong to classes of objects with similar
characteristics. The relationship and interaction among classes are described using a
class diagram, such as the one shown in Figure 11-17. A class diagram includes the
class attributes, which describe the characteristics of objects in the class, and methods,
which represent program logic. For example, the Customer class describes customer
objects. Customer attributes include Number, Name, Address, and so on. Methods for
the Customer class include Place order, Modify order, and Pay invoice, among others.
The Customer class can exchange messages with the Order class.

In addition to class diagrams, programmers get an overview of object interaction
by using object relationship diagrams that were developed during the O-O analysis
process. For example, Figure 11-18 shows an object relationship diagram for a fitness
center. Note that the model shows the objects and how they interact to perform busi-
ness functions and transactions.

FIGURE 11-17 A simplified class diagram for a customer order
processing system.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

366

Chapter 11 Managing Systems Implementation

11.4 Object-Oriented Development

Properly implemented, object-oriented development can speed up projects, reduce
costs, and improve overall quality. However, these results are not always achieved.
Organizations sometimes have unrealistic expectations and do not spend enough
time learning about, preparing for, and implementing the OOD process. For example,
no one would build a bridge without an analysis of needs, supporting data, and a
detailed blueprint—and the bridge would not be opened for traffic until it had been
carefully inspected and checked to ensure that all specifications were met. O-O
software developers sometimes forget that the basic rules of architecture also apply to
their projects.

In summary, to secure the potential benefits of OOD, systems analysts must care-
fully analyze, design, implement, test, and document their O-O projects.

11.4.2 Implementation of Object-Oriented Designs
When a programmer translates an O-O design into an application, he or she ana-
lyzes the classes, attributes, methods, and messages that are documented in the object
model. During this process, the programmer makes necessary revisions and updates to
class diagrams, sequence diagrams, state transition diagrams, and activity diagrams.

The programmer’s main objective is to translate object methods into program code
modules and determine what event or message will trigger the execution of each mod-
ule. To accomplish the task, the programmer analyzes sequence diagrams and state
transition diagrams that show the events and messages that trigger changes to an
object. O-O applications are called event-driven, because each event, transaction, or
message triggers a corresponding action. The programmer can represent the program
steps in pseudocode initially or use CASE tools and code generators to create O-O
code directly from the object model.

11.4.3 Object-Oriented Cohesion and Coupling
The principles of cohesion and coupling also apply to O-O application development.
Classes should be as loosely coupled (independent of other classes) as possible. In
addition, an object’s methods also should be loosely coupled (independent of other

FIGURE 11-18 An object-relationship diagram for a fitness center.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

367

Phase 4 Systems Implementation

11.5 Agile Development

methods) and highly cohesive (perform closely related actions). By following these
principles, classes and objects are easier to understand and edit. O-O programmers
who ignore cohesion and coupling concepts may end up creating a web of code that
is difficult to maintain. When code is scattered in various places, editing becomes
complicated and expensive.

11.5 agile Development

As stated in Chapter 1, agile development is a distinctly different systems development
method. It shares many of the steps found in traditional development but uses a
highly iterative process. The development team is in constant communication with the
primary user, who is called the customer, shaping and forming the system to match the
customer’s specifications. Agile development is aptly named because it is based on a
quick and nimble development process that easily adapts to change. Agile development
focuses on small teams, intense communication, and rapid development iterations. The
four key values of agile software development are shown in Figure 11-19.

FIGURE 11-19 The manifesto for agile software development.
Source: Agile Software Development

Programmers can use popular agile-friendly languages such as Python, Ruby, and
Perl. However, agile methods do not require a specific programming language, and
programmers also use various O-O languages such as Java, C++, C#, and others.

As with traditional methodologies, agile development has both positive and negative
characteristics. Today, agile methodology is very popular for software projects. Its
supporters boast that it speeds up software development and delivers precisely what the
customer wants, when the customer wants it, while fostering teamwork and empowering
employees. However, there are drawbacks to this adaptive rather than predictive
method. Critics of agile development often claim that because it focuses on quick
iterations and fast releases, it lacks discipline and produces systems of questionable
quality. In addition, agile methodology generally does not work as well for larger
projects because of their complexity and the lack of focus on a well-defined end product.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

368

Chapter 11 Managing Systems Implementation

11.5 Agile Development

Before implementing agile development, the proposed system and development
methods should be examined carefully. As experienced IT professionals know, a
 one-size-fits-all solution does not exist. For more information on agile methods, refer
to the discussion of systems development methods in Chapter 1 and agile methods
such as Scrum in Chapter 4.

11.5.1 Extreme Programming
XP is an agile development method. It is an iterative approach, as shown in Figure 11-20,
where a team of users and developers immerse themselves in systems development. XP
supporters emphasize values such as simplicity, communication, feedback, respect, and
courage. Success requires strong commitment to the process, corporate support, and
dedicated team members.

FIGURE 11-20 The five core values of XP.
Source: ©2009, Don Wells

XP uses a concept called pair programming. In pair programming, two
programmers work on the same task on the same computer; one drives (programs)
while the other navigates (watches). The onlooker examines the code strategically to
see the forest while the driver is concerned with the individual trees immediately in
front of him or her. The two discuss their ideas continuously throughout the process.

Another important concept in XP is that unit tests are designed before code is
written. This test-driven development (TDD) focuses on end results from the begin-
ning and prevents programmers from straying from their goals. Because of the magni-
tude and intensity of the multicycle process, agile testing relies heavily on automated
testing methods.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

369

Phase 4 Systems Implementation

11.6 Coding

11.5.2 User Stories
Suppose that a customer has requested a sales tracking system. The first step in an
agile process, like any other development method, would be to define the system
requirements. The customer begins by meeting with programmers and providing user
stories. A user story is a short, simple requirements definition. Programmers review
user stories to determine the project’s requirements, priorities, and scope. Here are
three user story examples:

• As the sales manager, I want to identify fast- or slow-moving items so I can
manage our inventory more effectively.

• As a store manager, I need enough lead time to replenish my stock, so I don’t
run out of hot items.

• As a sales representative, I want to offer the best selection of fast-selling items
and clear out the old stock that is not moving.

User stories do not deal with technical details and are so short that they are often
written on index cards. Each user story is given a priority by the customer, so the
requirements can be ranked. In addition, programmers assign a score to each user
story that indicates the estimated difficulty of implementation. This information helps
the team form a plan and assign its resources. Projects are often composed of many
user stories, which taken together form epics, from which programmers can estimate
the scope, time requirements, and difficulty of the project. In addition to the user sto-
ries, frequent face-to-face meetings with customers provide a higher level of detail as
the project progresses.

11.5.3 Iterations and Releases
The team must also develop a release plan, which specifies when user stories will be
implemented and the timing of the releases. Releases are relatively frequent, and each
system release is like a prototype that can be tested and modified as needed.

User stories are implemented in a series of iteration cycles. An iteration cycle
includes planning, designing, coding, and testing of one or more features based on
user stories. At the beginning of each iteration cycle, which is often two weeks long,
the team holds an iteration planning meeting to break down the user stories into
specific tasks that are assigned to team members. As new user stories or features are
added, the team reviews and modifies the release plan.

As with any development process, success is determined by the customer’s
approval. The programming team regularly meets with the customer, who tests pro-
totype releases as they become available. This process usually results in additional
user stories, and changes are implemented in the next iteration cycle. As the project’s
code changes during each iteration, obsolete code is removed and remaining code is
restructured to keep the system up to date. The iteration cycles continue until all user
stories have been implemented, tested, and accepted.

11.6 coDing

Coding is the process of turning program logic into specific instructions that the
computer system can execute. Working from a specific design, a programmer uses a
programming language to transform program logic into code statements. An individ-
ual programmer might create a small program, while larger programs typically are
divided into modules that several individuals or groups can work on simultaneously.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

370

Chapter 11 Managing Systems Implementation

11.7 Testing

Each developer has their favorite programming environment and standards to
make coding easier. Visual Basic, Java, and Python are examples of commonly used
programming languages, and many commercial packages use a proprietary set of
commands. As the trend toward Internet-based and mobile applications contin-
ues, HTML/XML, JavaScript, Swift, and other web-centric languages will be used
extensively.

To simplify the integration of system components and reduce code development
time, many programmers use an integrated development environment (IDE). IDEs can
make it easier to program interactive software products by providing built-in tools
and advanced features, such as real-time error detection, syntax hints, highlighted
code, class browsers, and version control. Apple Xcode and Microsoft .NET are
popular IDEs. In addition to these commercial packages, programmers can use open-
source IDEs such as Eclipse.

Earlier chapters explained that systems analysts use application generators, report
writers, screen generators, fourth-generation languages, and other CASE tools that
produce code directly from program design specifications. Some commercial applica-
tions can generate editable program code directly from macros, keystrokes, or mouse
actions. For example, IBM’s Rational toolset can generate code fragments based on
UML design documents. This can help with QA.

11.7 testing

After coding, a programmer must test each program to make sure it functions cor-
rectly. Later, programs are tested in groups, and finally the development team must
test the entire system. The first step is to compile the program using a CASE tool or
a language compiler. This process detects syntax errors, which are language grammar
errors. The programmer corrects the errors until the program executes properly.

Next, the programmer desk checks the program. Desk checking is the process of
reviewing the program code to spot logic errors, which produce incorrect results.
This process can be performed by the person who wrote the program or by other
programmers. Many organizations require a more formal type of desk checking called
a structured walk-through, or code review.

Typically, a group of three to five IT staff members participates in code review.
The group usually consists of project team members and might include other pro-
grammers and analysts who did not work on the project. The objective is to have a
peer group identify errors, apply quality standards, and verify that the program meets
the requirements of the system design specification. Errors found during a structured
walk-through are easier to fix while coding is still in the developmental stages.

In addition to analyzing logic and program code, the project team usually holds a
session with users called a design walk-through, to review the interface with a cross
section of people who will work with the new system and ensure that all necessary
features have been included. This is a continuation of the modeling and prototyping
effort that began early in the systems development process.

The next step in application development is to initiate a sequence of unit testing,
integration testing, and system testing, as shown in Figure 11-21.

11.7.1 Unit Testing
The testing of an individual program or module is called unit testing. The objective is
to identify and eliminate execution errors that could cause the program to terminate
abnormally and logic errors that could have been missed during desk checking.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

371

Phase 4 Systems Implementation

11.7 Testing

Test data should contain both correct data and erroneous data and should test
all possible situations that could occur. For example, for a field that allows a range
of numeric values, the test data should contain minimum values, maximum values,
values outside the acceptable range, and alphanumeric characters. During testing,
programmers can use software tools to determine the location and potential causes of
program errors.

During unit testing, programmers must test programs that interact with other
programs and files individually, before they are integrated into the system. This
requires a technique called stub testing. In stub testing, the programmer simulates
each program outcome or result and displays a message to indicate whether or not
the program executed successfully. Each stub represents an entry or exit point that
will be linked later to another program or data file.

To obtain an independent analysis, someone other than the programmer who
wrote the program usually creates the test data and reviews the results. Systems
analysts frequently create test data during the systems design phase as part of an
overall test plan. A test plan consists of detailed procedures that specify how and
when the testing will be performed, who will participate, and what test data will be
used. A comprehensive test plan should include scenarios for every possible situation
the program could encounter.

Regardless of who creates the test plan, the project manager or a designated
analyst also reviews the final test results. Some organizations also require users to
approve final unit test results.

FIGURE 11-21 The first step in testing is unit testing, followed by integration testing and
then system testing.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

372

Chapter 11 Managing Systems Implementation

11.7 Testing

11.7.2 Integration Testing
Testing two or more programs that depend on each other is called integration
testing. For example, consider an information system with a program that checks
and validates customer credit status and a separate program that updates data in the
customer master file. The output from the validation program becomes input to the
master file update program. Testing the programs independently does not guarantee
that the data passed between them is correct. Only by performing integration testing
for this pair of programs can one ensure that the programs work together properly.
Figure 11-21 shows integration testing for several groups of programs. Note that a
program can have membership in two or more groups.

Systems analysts usually develop the data they use in integration testing. As is the
case with all forms of testing, integration test data must consider both normal and
unusual situations. For example, integration testing might include passing typical records
between two programs, followed by blank records, to simulate an unusual event or an
operational problem. Test data that simulates actual conditions should be used because
the interface that links the programs is being tested. A testing sequence should not move
to the integration test stage unless it has performed properly in all unit tests.

11.7.3 System Testing
After completing integration testing, system testing is performed, which involves
the entire information system, as shown in Figure 11-21. A system test includes all
likely processing situations and is intended to assure users, developers, and managers
that the program meets all specifications and that all necessary features have been
included.

During a system test, users enter data, including samples of actual, or live, data,
perform queries, and produce reports to simulate actual operating conditions. All
processing options and outputs are verified by users and the IT project development
team to ensure that the system functions correctly. Commercial software packages
must undergo system testing similar to that of in-house developed systems, although
unit and integration testing usually are not performed. Regardless of how the system
was developed, system testing has the following major objectives:

• Perform a final test of all programs

• Verify that the system will handle all input data properly, both valid and
invalid

• Ensure that the IT staff has the documentation and instructions needed to
operate the system properly and that backup and restart capabilities of the
system are adequate (the details of creating this sort of documentation are dis-
cussed later in this chapter)

• Demonstrate that users can interact with the system successfully

• Verify that all system components are integrated properly and that actual pro-
cessing situations will be handled correctly

• Confirm that the information system can handle predicted volumes of data in a
timely and efficient manner

Successful completion of system testing is the key to user and management
approval, which is why system tests sometimes are called acceptance tests. Final
acceptance tests, however, are performed during systems installation and evaluation
with actual user data, as described later in this chapter.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

373

Phase 4 Systems Implementation

11.8 Documentation

How much testing is necessary depends on the situation and requires good
judgment and input from other IT staff members, users, and management.
Unfortunately, IT project managers often are pressured to finish testing quickly and
hand the system over to users. Common reasons for premature or rushed testing
are demands from users, tight systems development budgets, and demands from top
management to finish projects early. Those pressures hinder the testing process and
often have detrimental effects on the final product’s quality.

Testing can be a cost-effective means of providing a quality product. Every error
caught during testing eliminates potential expenses and operational problems. No
system, however, is 100% error-free. Often, errors go undetected until the system
becomes operational. Errors that affect the integrity or accuracy of data must be cor-
rected immediately. Minor errors, such as typographical errors in the user interface,
can be corrected later.

Some users want a system that is a completely finished product, while others
realize that minor changes can be treated as maintenance items after the system
is operational. In the final analysis, a decision must be made whether or not to
postpone system installation if problems are discovered. If conflicting views exist,
management will decide whether or not to install the system after a full discussion
of the options.

CASE IN POINT 11.1: Your Move, Inc.

You work at Your Move, Inc., a large retailer specializing in games of all kinds. The company is in
the final stages of developing a new inventory management system, and the IT manager wants
you to handle the testing.

“Be sure you put lots of errors into the test data,” she said. “Users are bound to
make mistakes, and we need to design built-in safeguards that will catch the mistakes, and
either fix them automatically or alert the user to the problem.”

Of course, this comment makes a lot of sense, but you’ve never done this before, and
you wonder how to proceed. Should you try to invent every possible data error? How will
you know that you’ve thought of every situation that could occur? Consider the problem,
develop an approach, and write up your plan in a brief memo.

11.8 Documentation

Documentation describes an information system and helps the users, managers, and
IT staff who must interact with it. Accurate documentation can reduce system down-
time, cut costs, and speed up maintenance tasks. Figure 11-22 shows an example of
the Rigi research environment that can automate the documentation process and help
software developers generate accurate, comprehensive reference material through
detailed source code analysis.

Documentation is essential for successful system operation and maintenance. In
addition to supporting a system’s users, accurate documentation is essential for IT
staff members who must modify the system, add a new feature, or perform main-
tenance. Documentation includes program documentation, system documentation,
operations documentation, and user documentation.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

374

Chapter 11 Managing Systems Implementation

11.8 Documentation

11.8.1 Program Documentation
Program documentation describes the inputs, outputs, and processing logic for all
program modules. The program documentation process starts in the systems analysis
phase and continues during systems implementation. Analysts prepare overall docu-
mentation, such as process descriptions and report layouts, early in the SDLC. This
documentation guides programmers, who construct modules that are well supported
by internal and external comments and descriptions that can be understood and
maintained easily. A systems analyst usually verifies that program documentation is
complete and accurate.

System developers also use defect tracking software, sometimes called bug tracking
software, to document and track program defects, code changes, and replacement
code, called patches.

11.8.2 System Documentation
System documentation describes the system’s functions and how they are imple-
mented. System documentation includes data dictionary entries, DFDs, object models,
screen layouts, source documents, and the systems request that initiated the project.
System documentation is a necessary reference material for the programmers and
analysts who must support and maintain the system.

Most of the system documentation is prepared during the systems analysis and sys-
tems design phases. During the systems implementation phase, an analyst must review
prior documentation to verify that it is complete, accurate, and up to date, including
any changes made during the implementation process. For example, if a screen or
report has been modified, the analyst must update the documentation. Updates to the
system documentation should be made in a timely manner to prevent oversights.

FIGURE 11-22 Rigi is a research environment that uses reverse engineering technology to
provide software redocumentation capabilities to support program understanding.
Source: ©2009, Elsevier

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

375

Phase 4 Systems Implementation

11.8 Documentation

11.8.3 Operations Documentation
If the information system environment involves a mainframe or centralized servers,
the analyst must prepare documentation for the IT group that supports centralized
operations. A mainframe installation might require the scheduling of batch jobs and
the distribution of printed reports. In this type of environment, the IT operations staff
serves as the first point of contact when users experience problems with the system.

Operations documentation contains all the information needed for processing and
distributing online and printed output. Typical operations documentation includes the
following information:

• Program, systems analyst, programmer, and system identification

• Scheduling information for printed output, such as report run frequency and
deadlines

• Input files and where they originate; output files and destinations

• Email and report distribution lists

• Special forms required, including online forms

• Error and informational messages to operators and restart procedures

• Special instructions, such as security requirements

Operations documentation should be clear, concise, and available online if pos-
sible. If the IT department has an operations group, the documentation should be
reviewed with them, early and often, to identify any problems. By keeping the opera-
tions group informed at every phase of the SDLC, operations documentation can be
developed as the project progresses.

11.8.4 User Documentation
User documentation consists of instructions and information to users who will inter-
act with the system and includes user manuals, help screens, and online tutorials.
Programmers or systems analysts usually create program documentation and system
documentation. To produce effective and clear user documentation—and hence have
a successful project—someone with expert skills in this area doing the development
is needed, just as someone with expert skills developing the software is needed. The
skill set required to develop documentation usually is not the same as that to develop
a system. This is particularly true in the world of online documentation, which needs
to coordinate with print documentation and intranet and Internet information. Tech-
nical writing requires specialized skills, and competent technical writers are valuable
members of the IT team.

Just as a system cannot be thrown together in several days, documentation can-
not be added at the end of the project. While this has always been true of traditional
user documentation, this is an even more critical issue now that online help and con-
text-sensitive help are often used. Context-sensitive help is part of the program and it
has to be tested too.

Systems analysts usually are responsible for preparing documentation to help users
learn the system. In larger companies, a technical support team that includes technical
writers might assist in the preparation of user documentation and training materials.
Regardless of the delivery method, user documentation must be clear, understandable,
and readily accessible to users at all levels.

User documentation includes the following:

• A system overview that clearly describes all major system features, capabilities,
and limitations

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

376

Chapter 11 Managing Systems Implementation

11.8 Documentation

• Description of source document content, preparation, processing, and samples

• Overview of menu and data entry screen options, contents, and processing
instructions

• Examples of reports that are produced regularly or available at the user’s
request, including samples

• Security and audit trail information

• Explanation of responsibility for specific input, output, or processing
requirements

• Procedures for requesting changes and reporting problems

• Examples of exceptions and error situations

• Frequently asked questions (FAQs)

• Explanation of how to get help and procedures for updating the user manual

11.8.5 Online Documentation
Most users now prefer online documentation, which provides immediate help when
they have questions or encounter problems. Many users are accustomed to con-
text-sensitive help screens, hints and tips, hypertext, on-screen demos, and other user-
friendly features commonly found in popular software packages; they expect the same
kind of support for in-house developed software.

If the system will include online documentation, that fact needs to be identified
as one of the system requirements. If someone other than the analysts who are devel-
oping the system will create the documentation, that person or group needs to be
involved as early as possible to become familiar with the software and begin devel-
oping the required documentation and support material. In addition, system devel-
opers must determine whether the documentation will be available from within the
program or as a separate entity in the form of a tutorial, slide presentation, reference
manual, or website. If necessary, links should be created within the program that will
take the user to the appropriate documentation.

Effective online documentation is an important productivity tool because it
empowers users and reduces the time that IT staff members must spend in providing
telephone, email, or face-to-face assistance. Interactive tutorials are especially
popular with users who like to learn by doing, and visual impact is very important.
The use of YouTube as a host for tutorial videos has become commonplace. For
example, Figure 11-23 shows LearnCode.academy, which is a popular YouTube
channel offering free web development and website design tutorials.

In addition to program-based assistance, the Internet offers an entirely new level
of comprehensive, immediate support. Many programs include links to websites,
intranet sites, and Internet-based technical support. For example, the Cisco Systems
website shown in Figure 11-24 offers a wide range of support services and social
media links that allow Cisco users to collaborate and share their knowledge.

Although online documentation is essential, written documentation material also
is valuable, especially in training users and for reference purposes. Systems analysts
or technical writers usually prepare the manual, but many companies invite users to
review the material and participate in the development process.

No matter what form of user documentation the system requires, keep in mind that
it can take a good deal of time to develop. The time between finishing software coding
and the time when a complete package—including documentation—can be released to
users is entirely dependent on how well the documentation is planned in advance. If

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

377

Phase 4 Systems Implementation

11.8 Documentation

FIGURE 11-23 LearnCode.academy is a popular YouTube channel offering free web development tutorials, website design
tutorials, and more.
Source: Learn Code

FIGURE 11-24 The Cisco Support Community invites users to contribute valuable experience and documentation using
social media.
Source: Cisco Support Community

the completion of the project includes providing user documentation, this issue needs
to be addressed from the very beginning of the project. Determining what the user
documentation requirements are and ascertaining who will complete the documents
are critical to a timely release of the project.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

378

Chapter 11 Managing Systems Implementation

11.9 Installation

Neglecting user documentation issues until after all the program is complete often
leads to one of two things: (1) the documentation will be thrown together quickly just
to get it out the door on time, and it more than likely will be inadequate; or (2) it will
be done correctly, and the product release will be delayed considerably.

User training typically is scheduled when the system is installed. The training
sessions offer an ideal opportunity to distribute the user manual and explain the
procedures for updating it in the future. Training for users, managers, and IT staff is
described later in this chapter.

11.9 installation

After system testing is complete, the results are presented to management. The test
results should be described, the status of all required documentation updated, and input
from users who participated in system testing summarized. Detailed time schedules,
cost estimates, and staffing requirements for making the system fully operational
should also be provided. If system testing produced no technical, economical, or
operational problems, management determines a schedule for system installation.

The following system installation tasks are performed for every information sys-
tems project, whether the application is developed in-house or purchased as a com-
mercial package:

• Prepare a separate operational and test environment

• Perform system changeover

• Perform data conversion

• Provide training for users, managers, and IT staff

• Carry out post-implementation tasks

11.9.1 Operational and Test Environments
Recall that an environment, or platform, is a specific combination of hardware and
software. The environment for the actual system operation is called the operational
environment or production environment. The environment that analysts and
programmers use to develop and maintain programs is called the test environment.
A separate test environment is necessary to maintain system security and integrity
and protect the operational environment. Typically, the test environment resides on a
limited-access workstation or server located in the IT department.

Access to the operational environment is limited to users and must strictly be con-
trolled. Systems analysts and programmers should not have access to the operational
environment except to correct a system problem or to make authorized modifications
or enhancements. Otherwise, IT department members have no reason to access the
day-to-day operational system.

The test environment for an information system contains copies of all programs,
procedures, and test data files. Before making any changes to an operational system,
the analyst must verify them in the test environment and obtain user approval.
Figure 11-25 shows the differences between test environments and operational
environments.

An effective testing process is essential to ensuring product quality. Every
experienced systems analyst can tell a story about an apparently innocent program
change that was introduced without being tested properly. In those stories, the

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

379

Phase 4 Systems Implementation

11.9 Installation

Test Environment
IT Staff

Test Data

Procedures

Programs

Test Data

Procedures

Programs

Authorized
Changes

Operational Environment
Users

FIGURE 11-25 The test environment versus the operational environment. Note that access
to the test environment is limited to IT staff, while the operational environment is restricted to
users.

innocent change invariably ends up causing some unexpected and unwanted changes
to the program. After any modification, the same acceptance tests that were run when
the system was developed should be repeated. By restricting access to the operational
area and performing all tests in a separate environment, the system can be protected
and problems that could damage data or interrupt operations avoided.

The operational environment includes hardware and software configurations
and settings, system utilities, telecommunications resources, and any other
components that might affect system performance. Because network capability is
critically important in a client/server environment, connectivity, specifications, and
performance must be verified before installing any applications. All communications
features in the test environment should be checked carefully and then checked again
after loading the applications into the operational environment. The documentation
should identify all network specifications and settings, including technical and
operational requirements for communications hardware and software. If network
resources must be built or upgraded to support the new system, the platform must be
tested rigorously before system installation begins.

11.9.2 System Changeover
System changeover is the process of putting the new information system online and
retiring the old system. Changeover can be rapid or slow, depending on the method.
The four changeover methods are direct cutover, parallel operation, pilot operation,
and phased operation. Direct cutover is similar to throwing a switch that instantly
changes over from the old system to the new. Parallel operation requires that both
systems run simultaneously for a specified period, which is the slowest method. The
other methods, pilot and phased operation, fall somewhere between direct cutover
and parallel operation. Figure 11-26 illustrates the four system changeover methods.

DIRECT CUTOVER: The direct cutover approach causes the changeover from the
old system to the new system to occur immediately when the new system becomes
operational. Direct cutover usually is the least expensive changeover method because
the IT group has to operate and maintain only one system at a time.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

380

Chapter 11 Managing Systems Implementation

11.9 Installation

Direct cutover, however, involves more risk than other changeover methods.
Regardless of how thoroughly and carefully testing and training is conducted, some
difficulties can arise when the system goes into operation. Problems can result from
data situations that were not tested or anticipated or from errors caused by users or
operators. A system also can encounter difficulties because live data typically occurs
in much larger volumes than test data.

Although initial implementation problems are a concern with all four
changeover methods, they are most significant when the direct cutover approach
is used. Detecting minor errors also is more difficult with direct cutover because
users cannot verify current output by comparing it to output from the old system.
Major errors can cause a system process to terminate abnormally, and with the
direct cutover method, reverting to the old system as a backup option is not
possible.

Companies often choose the direct cutover method for implementing commer-
cial software packages because they feel that commercial packages involve less risk
of total system failure. Commercial software is certainly not risk-free, but the soft-
ware vendor usually maintains an extensive knowledge base and can supply reliable,
prompt fixes for most problems.

For systems developed in-house, most organizations use direct cutover only for
noncritical situations. Direct cutover might be the only choice, however, if the operat-
ing environment cannot support both the old and new systems or if the old and new
systems are incompatible.

Timing is very important when using a direct cutover strategy. Most systems operate
on weekly, monthly, quarterly, and yearly cycles. For example, consider a payroll system
that produces output on a weekly basis. Some employees are paid twice a month,
however, so the system also operates semimonthly. Monthly, quarterly, and annual
reports also require the system to produce output at the end of every month, quarter,

FIGURE 11-26 The four system changeover methods.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

381

Phase 4 Systems Implementation

11.9 Installation

and year. When a cyclical information system is implemented in the middle of any cycle,
complete processing for the full cycle requires information from both the old and the
new systems. To minimize the need to require information from two different systems,
cyclical information systems usually are converted using the direct cutover method at
the beginning of a quarter, calendar year, or fiscal year.

PARALLEL OPERATION: The parallel operation changeover method requires that
both the old and the new information systems operate fully for a specified period.
Data is input into both systems, and output generated by the new system is compared
with the equivalent output from the old system. When users, management, and
the IT group are satisfied that the new system operates correctly, the old system is
terminated.

The most obvious advantage of parallel operation is lower risk. If the new system
does not work correctly, the company can use the old system as a backup until appro-
priate changes are made. It is much easier to verify that the new system is working
properly under parallel operation than under direct cutover, because the output from
both systems is compared and verified during parallel operation.

Parallel operation, however, does have some disadvantages. First, it is the costliest
changeover method. Because both the old and the new systems are in full operation,
the company pays for both systems during the parallel period. Users must work in
both systems and the company might need temporary employees to handle the extra
workload. In addition, running both systems might place a burden on the operating
environment and cause processing delays.

Parallel operation is not practical if the old and new systems are incompatible
technically or if the operating environment cannot support both systems. Parallel
operation also is inappropriate when the two systems perform different functions or
if the new system involves a new method of business operations.

PILOT OPERATION: The pilot operation changeover method involves
implementing the complete new system at a selected location of the company.
A new sales reporting system, for instance, might be implemented in only one
branch office, or a new payroll system might be installed in only one department.
In these examples, the group that uses the new system first is called the pilot
site. During pilot operation, the old system continues to operate for the entire
organization, including the pilot site. After the system proves successful at the
pilot site, it is implemented in the rest of the organization, usually using the direct
cutover method. Therefore, pilot operation is a combination of parallel operation
and direct cutover methods.

Restricting the implementation to a pilot site reduces the risk of system failure,
compared with a direct cutover method. Operating both systems for only the pilot
site is less expensive than a parallel operation for the entire company. In addition, if
a parallel approach to complete the implementation is used later on, the changeover
period can be much shorter if the system proves successful at the pilot site.

PHASED OPERATION: The phased operation changeover method allows the new
system to be implemented in stages, or modules. For example, instead of implement-
ing a new manufacturing system all at once, the materials management subsystem
is installed first, then the production control subsystem, then the job cost subsys-
tem, and so on. Each subsystem can be implemented by using any of the other three
changeover methods.

Analysts sometimes confuse phased and pilot operation methods. Both methods
combine direct cutover and parallel operation to reduce risks and costs. With phased

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

382

Chapter 11 Managing Systems Implementation

11.9 Installation

operation, however, only a part of the system is given to all users, while pilot opera-
tion provides the entire system but to only some users.

One advantage of a phased approach is that the risk of errors or failures is limited
to the implemented module only. For instance, if a new production control subsystem
fails to operate properly, that failure might not affect the new purchasing subsystem
or the existing shop floor control subsystem.

Phased operation is less expensive than full parallel operation because the analyst
has to work with only one part of the system at a time. A phased approach is not pos-
sible, however, if the system cannot be separated easily into logical modules or seg-
ments. In addition, if the system involves a large number of separate phases, phased
operation can cost more than a pilot approach.

Figure 11-27 shows that each changeover method has risk and cost factors. A
systems analyst must weigh the advantages and disadvantages of each method and
recommend the best choice in a given situation. The final changeover decision will be
based on input from the IT staff, users, and management—and the choice must reflect
the nature of the business and the degree of acceptable risk.

CASE IN POINT 11.2: Global coolInG

You are a systems analyst at Global Cooling, a leading manufacturer of air conditioning units.
You are leading a team that is developing a new production scheduling system. The project is
now in the application development stage. You are in the final stages of integration testing. Your
 supervisor is eager to implement the new application ahead of schedule and asked if you could
trim system testing from two weeks to three days and use a direct cutover method instead
of the parallel changeover method that originally was planned. Write a brief memo expressing
your views.

FIGURE 11-27 Relative risk and cost characteristics of the four changeover methods.

11.9.3 Data Conversion
Data conversion is an important part of the system installation process. During data
conversion, existing data is loaded into the new system. Depending on the system,
data conversion can be done before, during, or after the operational environment is

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

383

Phase 4 Systems Implementation

11.9 Installation

complete. A data conversion plan should be developed as early as possible, and the
conversion process should be tested when the test environment is developed.

When a new system replaces an existing system, the data conversion process
should be automated, if possible. The old system might be capable of exporting data
in an acceptable format for the new system or in a standard format, such as ASCII
or ODBC. Open database connectivity (ODBC) is an industry-standard protocol
that allows DBMSs from various vendors to interact and exchange data. Most data-
base vendors provide ODBC drivers, which are a form of middleware. As discussed
in Chapter 10, middleware connects dissimilar applications and enables them to
communicate.

If a standard format is not available, a program to extract the data and convert
it to an acceptable format must be developed. Data conversion is more difficult
when the new system replaces a manual system, because all data must be entered
manually unless it can be scanned. Even when the data conversion is automated,
a new system often requires additional data items, which might require manual
entry.

Strict input controls should be maintained during the conversion process,
when data is extremely vulnerable. System control measures should be in place
and operational to protect data from unauthorized access and to help prevent
erroneous input.

Even with careful data conversion and input controls, some errors will occur. For
example, duplicate customer records or inconsistent part numbers might have been
tolerated by the old system but will cause the new system to crash. Most organizations
require that users verify all data, correct all errors, and supply every missing data item
during conversion. Although the process can be time consuming and expensive, it is
essential that the new system be loaded with accurate, error-free data.

11.9.4 Training
No system can be successful without proper training, whether it involves software,
hardware, or manufacturing. A successful information system requires training for users,
managers, and IT staff members. The entire systems development effort can depend on
whether or not people understand the system and know how to use it effectively.

TRAINING PLAN: A training plan should be considered early in the systems
development process. As documentation is created, consider how to use the material
in future training sessions. When the system is implemented, it is essential to provide
the right training for the right people at the right time. The first step is to identify
who should receive training and what training is needed. The organization should be
carefully examined to determine how the system will support business operations and
who will be involved or affected. Figure 11-28 shows specific training topics for users,
managers, and IT staff. Note that each group needs a mix of general background and
detailed information to understand and use the system.

As shown in Figure 11-28, the three main groups for training are users, managers,
and IT staff. A manager does not need to understand every submenu or feature, but
he or she does need a system overview to ensure that users are being trained properly
and are using the system correctly. Similarly, users need to know how to perform their
day-to-day job functions, but they do not need to know how the company allocates
system operational charges among user departments. IT staff people probably need
the most information. To support the new system, they must have a clear understand-
ing of how the system functions, how it supports business requirements, and the skills
that users need to operate the system and perform their tasks.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

384

Chapter 11 Managing Systems Implementation

11.9 Installation

After the objectives are identified, how the company will provide training must be
determined. The main choices are to obtain training from vendors, outside training
firms, or use IT staff and other in-house resources.

VENDOR TRAINING: If the system includes the purchase of software or hardware,
then vendor-supplied training is one of the features that should be included in the
requests for proposal (RFP) and requests for quotation (RFQ) that are sent to poten-
tial vendors.

Many hardware and software vendors offer training programs free or at a nom-
inal cost for the products they sell. In other cases, the company might negotiate the
price for training, depending on their relationship with the vendor and the prospect of
future purchases. The training usually is conducted at the vendor’s site by experienced
trainers who provide valuable hands-on experience. If a large number of people need
training, classes may be held at the company’s location.

Vendor training often gives the best return on training dollars because it is focused
on products that the vendor developed. The scope of vendor training, however,
usually is limited to a standard version of the vendor’s software or hardware. The
vendor’s training may have to be supplemented with in-house training, especially if
the IT staff customized the vendor’s package.

FIGURE 11-28 Examples of training topics for three different groups. Users, managers, and IT staff members
have different training needs.

USERS MANAGERS

TRAINING

IT STAFF

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

385

Phase 4 Systems Implementation

11.9 Installation

WEBINARS, PODCASTS, AND TUTORIALS: Many vendors offer web-based
training options, including webinars, podcasts, and tutorials. A webinar, which
combines the words web and seminar, is an Internet-based training session that
provides an interactive experience. Most webinars are scheduled events with a group
of preregistered users and an online presenter or instructor. A prerecorded webinar
session also can be delivered as a webcast, which is a one-way transmission, whenever
a user wants or needs training support.

A podcast refers to a web-based broadcast that allows a user to download multime-
dia files to a PC or portable device. Podcasts can be prescheduled, made available on
demand, or delivered as automatic updates, depending on a user’s preference. An advan-
tage of a podcast is that subscribers can access the recorded material anywhere, anytime.

A tutorial is a series of online interactive lessons that present material and provide
a dialog with users. Software vendors can develop tutorials, or a company’s IT team
can develop them. They can also be developed by third parties for popular software
packages and sold separately online.

OUTSIDE TRAINING RESOURCES: Independent training firms can also provide
in-house hardware or software training. If vendor training is not practical and the
project organization does not have the internal resources to perform the training, out-
side training consultants can be a viable alternative.

The rapid expansion of information technology has produced tremendous growth
in the computer-training field. Many training consultants, institutes, and firms are
available that provide either standardized or customized training packages. For exam-
ple, many people now use one of the many sources of online training, such as Udemy
shown in Figure 11-29, to satisfy their training needs. Assistance can also be sought
from nonprofit sources with an interest in training, including universities, industry
associations, and information management organizations.

FIGURE 11-29 Udemy is one of many sources of online training.
Source: Udemy.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

386

Chapter 11 Managing Systems Implementation

11.9 Installation

TRAINING TIPS: The IT staff and user departments often share responsibility for
developing and conducting training programs for internally developed software. If the
organization has a service desk, their staff might be able to handle user training.

Multimedia is an effective training method. Presentation software, such as
Microsoft PowerPoint or Apple Keynote, can be used to design training sessions that
combine slides, animation, and sound. Programs that capture actual keystrokes and
mouse actions, such as Camtasia and Panopto (shown in Figure 11-30), can be used
to replay the screens as a demonstration for users. If a media or graphic arts group
is available, they can help prepare training aids such as videos, charts, and other
instructional materials.

FIGURE 11-30 Panopto is a screen capture and video presentation program that can be used to prepare
webcasts and online learning materials.
Source: Panopto.com

Keep the following guidelines in mind when developing a training program:

• Train people in groups, with separate training programs for distinct groups.
Group training makes the most efficient use of time and training facilities.
In addition, if the group is small, trainees can learn from the questions and
problems of others. A training program must address the job interests and
skills of a wide range of participants. For example, IT staff personnel and
users require very different information. Problems often arise when some
participants have technical backgrounds and others do not. A single program
will not meet everyone’s needs.

• Select the most effective place to conduct the training. Training employees at
the company’s location offers several advantages. Employees incur no travel
expense, they can respond to local emergencies that require immediate atten-
tion, and training can take place in the actual environment where the system
will operate. There can be some disadvantages, however. Employees who are
distracted by telephone calls and other duties will not get the full benefit of
the training. In addition, using the organization’s computer facilities for train-
ing can disrupt normal operations and limit the amount of actual hands-on
training.

• Provide for learning by hearing, seeing, and doing. Some people learn best
from lectures, discussions, and question-and-answer sessions. Others learn best

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

387

Phase 4 Systems Implementation

11.9 Installation

from viewing demonstrations or from reading documentation and other mate-
rial. Most people learn best from hands-on experience. Training that supports
each type of learning should be provided.

• Rely on previous trainees. After one group of users has been trained, they
can assist others. Users often learn more quickly from coworkers who share
common experience and job responsibilities. Using a train-the-trainer strategy,
knowledgeable users can be selected who then conduct sessions for others.
When utilizing train-the-trainer techniques, the initial training must include not
only the use of the application or system but also some instruction on how to
present the materials effectively.

INTERACTIVE TRAINING: Usually, a relationship exists between training methods
and costs. Training an airline pilot in a state-of-the-art simulator is quite different
from helping corporate users learn a new inventory system. Obviously, training bud-
gets are business decisions, and IT staff sometimes has to work with the resources
that are available, rather than the resources they wish they had. Most people prefer
hands-on training. However, other less-expensive methods can be used, including
training manuals, printed handouts, and online materials.

If a new system is being launched and the resources to develop formal training
materials are lacking, a series of dialog boxes that respond with help information
and suggestions whenever users select various menu topics can still be designed.
A good user interface also includes helpful error messages and hints, as discussed
in Chapter 8. However, the most effective training is interactive, self-paced, and
multimedia-based. Online training and video tutorials are discussed in the following
sections.

ONLINE TRAINING: Regardless of the instructional method, training lessons should
include step-by-step instructions for using the features of the information system.
Training materials should resemble actual screens, and tasks should be typical of a
user’s daily work—the more realistic, the better. Video lessons are particularly popular
online. For example, Figure 11-31 shows a sample lesson on learning Python in an
online tutorial from lynda.com.

Sophisticated online training systems may offer interactive sessions where users
can perform practice tasks and view feedback. Online training materials also should
include a reference section that summarizes all options and commands, lists all pos-
sible error messages, and lists what actions the user should take when a problem
arises.

When training is complete, many organizations conduct a full-scale test, or
simulation, which is a dress rehearsal for users and IT support staff. Organizations
include all procedures, such as those that they execute only at the end of a month,
quarter, or year, in the simulation. As questions or problems arise, the participants
consult the system documentation, help screens, or each other to determine
appropriate answers or actions. This full-scale test provides valuable experience
and builds confidence for everyone involved with the new system.

11.9.5 Post-Implementation Tasks
Once the new system is installed and operational, two additional tasks must be per-
formed: (1) prepare a post-implementation evaluation, and (2) deliver a final report
to management.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

388

Chapter 11 Managing Systems Implementation

11.9 Installation

FIGURE 11-31 A sample lesson on learning Python in an online tutorial from lynda.com.
Source: LinkedIn Corporation

POST-IMPLEMENTATION EVALUATION: A post-implementation evaluation
assesses the overall quality of the information system. The evaluation verifies that the
new system meets specified requirements, complies with user objectives, and produces
the anticipated benefits. In addition, by providing feedback to the development team,
the evaluation also helps improve IT development practices for future projects.

A post-implementation evaluation should examine all aspects of the development
effort and the end product—the developed information system. A typical evaluation
includes feedback for the following areas:

• Accuracy, completeness, and timeliness of information system output

• User satisfaction

• System reliability and maintainability

• Adequacy of system controls and security measures

• Hardware efficiency and platform performance

• Effectiveness of database implementation

• Performance of the IT team

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

389

Phase 4 Systems Implementation

11.9 Installation

• Completeness and quality of documentation

• Quality and effectiveness of training

• Accuracy of cost-benefit estimates and development schedules

The same fact-finding techniques can be applied in a post-implementation evaluation,
which were used to determine the system requirements during the systems analysis
phase. When evaluating a system, the following should be done:

• Interview members of management and key users

• Observe users and computer operations personnel actually working with the
new information system

• Read all documentation and training materials

• Examine all source documents, output reports, and screen displays

• Use questionnaires to gather information and opinions from a large number of users

• Analyze maintenance and help desk logs

Figure 11-32 shows the first page of a sample user evaluation form for the new
information system where users evaluate 18 separate elements on a numerical scale,
so the results can be tabulated easily. Following that section, the form provides space
for open-ended comments and suggestions.

FIGURE 11-32 Sample user evaluation form. The numerical scale allows easy tabulation
of results. Following this section, the form provides space for open-ended comments and
suggestions.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

390

Chapter 11 Managing Systems Implementation

11.9 Installation

Whenever possible, people who were not directly involved in developing the sys-
tem should conduct the post-implementation evaluation. IT staff and users usually
perform the evaluation, although some firms use an internal audit group or indepen-
dent auditors to ensure the accuracy and completeness of the evaluation.

When to perform a post-implementation evaluation for a new system is not always
clear. Users can forget details of the developmental effort if too much time elapses
before the evaluation. After several months or a year, for instance, users might not
remember whether they learned a procedure through training, from user documenta-
tion, or by experimenting with the system on their own.

Users also might forget their impressions of IT team members over time.
An important purpose of the post-implementation evaluation is to improve the
quality of IT department functions, including interaction with users, training, and
documentation. Consequently, the evaluation team should perform the assessment
while users are able to recall specific incidents, successes, and problems so they can
offer suggestions for improvement.

On the other hand, if the evaluation is done too soon, the users may not be able to
provide sufficient feedback due to lack of experience with the new system. Post-im-
plementation evaluation is primarily concerned with assessing the quality of the new
system. If the team performs the evaluation too soon after implementation, users will
not have enough time to learn the new system and appreciate its strengths and weak-
nesses. Although many IT professionals recommend conducting the evaluation after
at least six months of system operation, pressure to finish the project sooner usually
results in an earlier evaluation in order to allow the IT department to move on to
other tasks.

Ideally, conducting a post-implementation evaluation should be standard practice
for all information systems projects. Sometimes, evaluations are skipped because
users are eager to work with the new system or because IT staff members have more
pressing priorities. In some organizations, management might not recognize the
importance and benefits of a post-implementation evaluation. The evaluations are
extremely important, however, because they enable the development team and the
IT department to learn what worked and what did not work. Otherwise, developers
might commit the same errors in another system.

FINAL REPORT TO MANAGEMENT: At the end of each SDLC phase, a final report
is submitted to management, and the systems implementation phase is no exception.
The report should include the following:

• Final versions of all system documentation

• Planned modifications and enhancements to the system that have been
identified

• Recap of all systems development costs and schedules

• Comparison of actual costs and schedules to the original estimates

• Post-implementation evaluation, if it has been performed

The final report to management marks the end of systems development work. The
next chapter examines the role of a systems analyst during systems operation, secu-
rity, and support, which is the final phase of the SDLC.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

391

Phase 4 Systems Implementation

11.10 Summary

CASE IN POINT 11.3: Yorktown IndustrIes

You like your new job as lead systems analyst at Yorktown Industries. You were pleased that
your development team completed the new human resources system ahead of schedule and
under budget. You looked forward to receiving the post-implementation evaluation because you
were confident that both the system and the development team would receive high marks from
users and managers.

After the system operated for one month, you received a call from your supervisor,
who told you that you would have to handle the evaluation—even though you headed
the development effort. You told your supervisor that you did not feel comfortable
evaluating your own team’s work. You explained that someone who was not involved in
its development should do an independent evaluation. Your supervisor responded that
he had full confidence in your ability to be objective. He explained that no one else was
available and he needed the evaluation quickly so he could move forward with the next
stage in the corporate development plan.

You are troubled about the situation. What should you do, and why?

A QUESTION OF ETHICS

A team member is handling the testing for the new accounting system, and right now she
is very upset about the most recent results. “It seems like every time we fix one problem,
another pops up! After ten days of testing and adjusting, we are meeting over 90% of the
goals and benchmarks. If we’re looking for perfection, we’ll never make the implementa-
tion deadline for the new system, and the users will be all over us. Not to mention top
management’s reaction to a delay. I’m sure we can resolve some of these issues after the
system becomes operational.”

How would you respond to this statement? Are ethical issues involved? What are your
responsibilities, as an employee, as an IT professional, and as a coworker?

iStock.com/faberfoto_it

11.10 summary

The systems implementation phase consists of application development, testing,
installation, and evaluation of the new system. During application development,
analysts determine the overall design strategy and work with programmers to
complete design, coding, testing, and documentation. QA is essential during the
implementation phase. Many companies utilize software engineering concepts and
quality standards established by the ISO.

Each systems development approach has its own set of tools. For example,
structured development relies heavily on DFDs and structure charts. A structure chart
consists of symbols that represent program modules, data couples, control couples,
conditions, and loops. O-O methods use a variety of UML diagrams, including

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

392

Chapter 11 Managing Systems Implementation

11.10 Summary

use case, class, sequence, and transition state diagrams. Agile methods tend to use
iterative and incremental models.

System developers also can use more generic tools to help them translate the sys-
tem logic into properly functioning program modules. These tools include ERDs,
flowcharts, pseudocode, decision tables, and decision trees.

Cohesion measures a module’s scope and processing characteristics. A module that
performs a single function or task has a high degree of cohesion, which is desirable.
Coupling measures relationships and interdependence among modules. Modules
that are relatively independent are loosely coupled, which is desirable. Cohesion and
coupling concepts are not only used in structured development but also applicable to
OOD.

Typically, three steps are followed when creating a structure chart. DFDs and
object models are reviewed to identify the processes and methods, identify the pro-
gram modules and determine control-subordinate relationships, and add symbols for
couples and loops. The structure chart is then analyzed to ensure that it is consistent
with the system documentation.

If an agile development approach is used, then the customer creates user stories
that describe required features and priority levels. In agile methodology, new system
releases are made after many iterations and each is test-driven carefully by the
customer.

Programmers perform desk checking, code review, and unit testing tasks during
application development. Systems analysts design the initial test plans, which include
test steps and test data for integration testing and system testing. Integration testing is
necessary for programs that interact. The final step is system testing for the completed
system. System testing includes users in the testing process.

In addition to system documentation, analysts and technical writers also prepare
operations documentation and user documentation. Operations documentation pro-
vides instructions and information to the IT operations group. User documentation
consists of instructions and information for users who interact with the system and
includes user manuals, help screens, and tutorials.

During the installation process, an operational, or production, environment is
established for the new information system that is completely separate from the test
environment. The operational environment contains live data and is accessible only
by authorized users. All future changes to the system must be verified in the test
environment before they are applied to the operational environment.

System changeover is the process of putting the new system into operation. Four
changeover methods exist: direct cutover, parallel operation, pilot operation, and
phased operation. With direct cutover, the old system stops and the new system
starts simultaneously; direct cutover is the least expensive but the riskiest changeover
method. With parallel operation, users operate both the old and new information
systems for some period of time; parallel operation is the most expensive and least
risky of the changeover methods. Pilot operation and phased operation represent
compromises between direct cutover and parallel operation; both methods are less
risky than direct cutover and less costly than parallel operation. With pilot operation,
a specified group within the organization uses the new system for a period of time,
while the old system continues to operate for the rest of the users. After the system
proves successful at the pilot site, it is implemented throughout the organization. With
phased operation, the system is implemented in the entire organization, but only one
module at a time, until the entire system is operational.

Data conversion often is necessary when installing a new information system.
When a new system replaces a computerized system, the data conversion process
should be automated if possible. The old system might be capable of exporting data

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

393

Phase 4 Systems Implementation

11.10 Summary

in a format that the new system can use, or the data might have to be extracted and
converted to an acceptable format. Data conversion from a manual system often
requires labor-intensive data entry or scanning. Even when data conversion can be
automated, a new system often requires additional data items, which might require
manual entry. Strict input controls are important during the conversion process to
protect data integrity and quality. Typically, data is verified, corrected, and updated
during the conversion process.

Everyone who interacts with the new information system should receive training
appropriate to his or her role and skills. The IT department usually is responsible for
training. Software or hardware vendors or professional training organizations also
can provide training. When a training program is developed, remember the following
guidelines: train people in groups; utilize people already trained to help train others;
develop separate programs for distinct employee groups; and provide for learning by
using discussions, demonstrations, documentation, training manuals, tutorials, webi-
nars, and podcasts. Users learn better with interactive, self-paced training methods.

A post-implementation evaluation assesses and reports on the quality of the new
system and the work done by the project team. Although it is best if people who
were not involved in the systems development effort perform the evaluation, that is
not always possible. The evaluation should be conducted early so users have a fresh
recollection of the development effort but not before users have experience using the
new system.

The final report to management includes the final system documentation, describes
any future system enhancements that already have been identified, and details the
project costs. The report represents the end of the development effort and the begin-
ning of the new system’s operational life.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

394 Key Terms

Chapter 11 Managing Systems Implementation

Key Terms

acceptance test Testing involves the entire information system, including all typical processing situations.
During an acceptance test, users enter data, including samples of actual or live data, perform queries,
and produce reports to simulate actual operating conditions. All processing options and outputs are
verified by users and the IT project development team to ensure that the system functions correctly.
Sometimes known as a system test.

application development The process of constructing the programs and code modules that are the
building blocks of an information system. Application development is handled by an application
development group within a traditional IT department that is composed of systems analysts and pro-
grammers who handle information system design, development, and implementation.

attribute A single characteristic or fact about an entity. An attribute, or field, is the smallest piece
of data that has meaning within an information system. For example, a Social Security number
or company name could be examples of an attribute. In O-O analysis, an attribute is part of
a class diagram that describes the characteristics of objects in the class. Also known as a data
element.

bug tracking software System developers use defect tracking software, sometimes called bug track-
ing software, to document and track program defects, code changes, and replacement code, called
patches.

Capability Maturity Model (CMM)® A model developed by SEI that integrates software and systems
development into a process improvement framework.

Capability Maturity Model Integration (CMMI)® An SEI-developed process to improve quality, reduce
development time, and cut costs. A CMM tracks an organization’s software development goals and
practices, using five maturity levels, from Level 1 (relatively unstable, ineffective software) to Level 5
(software that is refined, efficient, and reliable).

code review A review of a project team member’s work by other members of the team to spot logic
errors. Generally, systems analysts review the work of other systems analysts, and program-
mers review the work of other programmers, as a form of peer review. Structured walk-throughs
should take place throughout the SDLC and are called requirements reviews, design reviews, code
reviews, or testing reviews, depending on the phase in which they occur. Also known as a structured
walk-through.

coding The process of turning program logic into specific instructions that a computer system can
execute.

cohesion A measure of a module’s scope and processing characteristics. A module that performs a single
function or task has a high degree of cohesion, which is desirable.

condition A specified action or state in a structure chart.

control couple In a structure chart, a control couple shows a message, also called a flag, which one mod-
ule sends to another.

control module In a structure chart, a control module is a higher-level module that directs lower-level
modules, called subordinate modules.

coupling Measures relationships and interdependence among modules. The opposite of cohesion.

customer Primary user of a system, service, or product.

data conversion Existing data is loaded into the new system, transformed as needed. Depending on the
system, data conversion can be done before, during, or after the operational environment is complete.

data couple In a structure chart, a data couple shows data that one module passes to another.

defect tracking software System developers use defect tracking software, sometimes called bug track-
ing software, to document and track program defects, code changes, and replacement code, called
patches.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 395

Phase 4 Systems Implementation

design walk-through A session with users to review the interface with a cross section of people who will
work with the new system. This is a continuation of the modeling and prototyping effort that began
early in the systems development process.

desk checking The process of reviewing the program code to spot logic errors, which produce incorrect
results.

direct cutover The direct cutover approach causes the changeover from the old system to the new system
to occur immediately when the new system becomes operational.

documentation Material that explains a system, helps people interact with it, and includes program doc-
umentation, system documentation, operations documentation, and user documentation.

flowchart A diagram used to describe program logic that represents logical rules and interaction graph-
ically using a series of symbols connected by arrows. Flowcharts can be useful in visualizing modular
program designs.

integrated development environment (IDE) A suite of integrated tools to make it easier to plan, con-
struct, and maintain a specific software product. An IDE is designed to allow the easy integration of
system components with less time being spent on developing code for interactive modules.

integration testing The testing of two or more programs that depend on each other.

ISO 9000-3:2014 A set of guidelines established and updated by the ISO to provide a QA framework
for developing and maintaining software.

iteration cycle An agile development cycle that includes planning, designing, coding, and testing one or
more features based on user stories.

iteration planning meeting In agile development, a meeting held at the beginning of each iteration cycle
to break down user stories into specific tasks that are assigned to team members.

library module In a structure chart, a library module is a module that is reusable and can be invoked
from more than one point in the chart.

logic error Mistakes in the underlying logic that produce incorrect results.

loop In a structure chart, a loop indicates that one or more modules are repeated.

loosely coupled Modules that are relatively independent. Loosely coupled modules are easier to maintain
and modify, because the logic in one module does not affect other modules.

methods In a class diagram, methods represent program logic.

modular design A design that can be broken down into logical blocks. Also known as partitioning, or
top-down design.

module A module consists of related program code organized into small units that are easy to under-
stand and maintain. A complex program could have hundreds or even thousands of modules.

object-oriented development (OOD) The process of translating an object model directly into an O-O
programming language.

online documentation Provides immediate help when users have questions or encounter problems.

open database connectivity (ODBC) An industry-standard protocol that makes it possible for software
from different vendors to interact and exchange data.

operational environment The environment for the actual system operation. It includes hardware and
software configurations, system utilities, and communications resources. Also called the production
environment.

operations documentation Contains all the information needed for processing and distributing online
and printed output.

pair programming A practice in XP in which two programmers work on the same task on the same
computer; one drives (programs) while the other navigates (watches).

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

396 Key Terms

Chapter 11 Managing Systems Implementation

parallel operation The parallel operation changeover method requires that both the old and the new
information systems operate fully for a specified period. Data is input into both systems, and output
generated by the new system is compared with the equivalent output from the old system.

partitioning The breaking down of overall objectives into subsystems and modules.

patch Replacement code that is applied to fix bugs or security holes in software.

phased operation The phased operation method allows a new system to be implemented in stages, or
modules.

pilot operation The pilot operation changeover method involves implementing the complete new system
at a selected location of the company.

pilot site In a pilot operation, the group that uses the new system first is called the pilot site.

podcast A web-based broadcast that allows a user to receive audio or multimedia files using music
player software, such as iTunes, and listen to them on a PC or download them to a portable MP3
player or smart phone.

post-implementation evaluation An assessment of the overall quality of the information system. The
evaluation verifies that the new system meets specified requirements, complies with user objectives,
and achieves the anticipated benefits. In addition, by providing feedback to the development team, the
evaluation also helps improve IT development practices for future projects.

process improvement The framework used to integrate software and systems development by a new SEI
model, CMMI.

production environment The environment for the actual system operation. It includes hardware and
software configurations, system utilities, and communications resources. Also called the operational
environment.

program documentation Preparation of program documentation starts in the systems analysis phase
and continues during systems implementation. Systems analysts prepare overall documentation, such
as process descriptions and report layouts, early in the SDLC. Programmers provide documentation
by constructing modules that are well supported by internal and external comments and descriptions
that can be understood and maintained easily.

pseudocode A technique for representing program logic in semi-structured prose.

quality assurance (QA) A process or procedure for minimizing errors and ensuring quality in products.
Poor quality can result from inaccurate requirements, design problems, coding errors, faulty docu-
mentation, and ineffective testing. A QA team reviews and tests all applications and systems changes
to verify specifications and software quality standards.

release plan In agile development, a plan that specifies when user stories will be implemented and the
timing of the releases. Releases are relatively frequent, and each release is treated as a system proto-
type that can be tested and modified as needed.

simulation A dress rehearsal for users and IT support staff. Organizations typically include all proce-
dures, such as those that they execute only at the end of a month, quarter, or year, in their simulations.

software engineering A software development process that stresses solid design, effective structure, accu-
rate documentation, and careful testing.

status flag In structured application development, an indicator that allows one module to send a mes-
sage to another module.

structure chart A top-down representation of business functions and processes. Also called an FDD.

structured walk-through A review of a project team member’s work by other members of the team. Gen-
erally, systems analysts review the work of other systems analysts, and programmers review the work
of other programmers, as a form of peer review. Structured walk-throughs should take place through-
out the SDLC and are called requirements reviews, design reviews, code reviews, or testing reviews,
depending on the phase in which they occur.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 397

Phase 4 Systems Implementation

stub testing A form of testing where the programmer simulates each program outcome or result and dis-
plays a message to indicate whether or not the program executed successfully. Each stub represents an
entry or exit point that will be linked later to another program or data file.

subordinate module A lower-level module in a structure chart.

syntax error Programming language grammar error.

system changeover The process of putting the new information system online and retiring the old sys-
tem. Changeover can be rapid or slow, depending on the method.

system documentation A description of a system’s functions and how they are implemented. The analyst
prepares most of the system documentation during the systems analysis and systems design phases.
System documentation includes data dictionary entries, DFDs, object models, screen layouts, source
documents, and the systems request that initiated the project.

system testing A form of testing involving an entire information system and includes all typical process-
ing situations. During a system test, users enter data, including samples of actual or live data, perform
queries, and produce reports to simulate actual operating conditions. All processing options and
outputs are verified by users and the IT project development team to ensure that the system functions
correctly.

test data The data used in unit testing. Test data should contain both correct data and erroneous data
and should test all possible situations that could occur.

test-driven development (TDD) An XP concept that unit tests are designed before code is written, focus-
ing on end results and preventing programmers from straying from their goals.

test environment The environment that analysts and programmers use to develop and maintain
programs.

test plan A plan designed by a systems analyst that includes test steps and test data for integration test-
ing and system testing.

tightly coupled If modules are tightly coupled, one module refers to internal logic contained in another
module.

top-down approach A design approach, also called modular design, where the systems analyst defines
the overall objectives of the system and then breaks them down into subsystems and modules. This
breaking-down process also is called partitioning.

training plan A successful information system requires training for users, managers, and IT staff
members. The entire systems development effort can depend on whether or not people understand
the system and know how to use it effectively. The training plan is a document that details these
requirements.

train-the-trainer A strategy where one group of users has been trained and can assist others. Users often
learn more quickly from coworkers who share common experience and job responsibilities.

tutorial A series of online interactive lessons that present material and provide a dialog with users.

unit testing The testing of an individual program or module. The objective is to identify and eliminate
execution errors that could cause the program to terminate abnormally and logic errors that could
have been missed during desk checking.

user documentation Instructions and information to users who will interact with the system. Includes
user manuals, help screens, and tutorials.

user story In agile development, a short, simple requirements definition provided by the customer. Pro-
grammers use user stories to determine a project’s requirements, priorities, and scope.

webcast A one-way transmission of information or training materials, such as a webinar session, avail-
able on demand or for a specific period to online participants.

webinar An Internet-based training session that provides an interactive experience. The word webinar
combines the words web and seminar.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

398 Exercises

Chapter 11 Managing Systems Implementation

Exercises

Questions
1. What is QA?
2. What is application development?
3. Explain how structure charts are used in application development.
4. Should classes be tightly coupled or loosely coupled in OOD? Explain why.
5. What is pair programming?
6. What role do IDEs play in coding?
7. Describe three main types of testing and the order in which they are performed.
8. What are the differences between program, system, operations, and user documentation?
9. What is the role of online documentation?

10. What is the difference between an operational environment and a test environment?

Discussion Topics
1. Discuss the three techniques used to improve QA.
2. What are the most significant differences among structured, O-O, and agile methods? What do they

have in common?
3. Experienced programmers sometimes eschew IDEs for handcrafted tools, often connected in a pipeline

to facilitate complex workflows. What advantages and disadvantages would this approach have over
sophisticated IDEs?

4. Your supervisor said, “Integration testing is a waste of time. If each program is tested adequately,
integration testing isn’t needed. Instead, we should move on to system testing as soon as possible. If
modules don’t interact properly, we’ll handle it then.” Do you agree or disagree with this comment?
Explain your answer.

5. Suppose that you designed a tutorial to train a person in the use of specific software or hardware,
such as a web browser. What specific information would you want to know about the recipient of the
training? How would that information affect the design of the training material?

Projects
1. Using the material in this chapter and your own Internet research, prepare a presentation on the pros

and cons of agile development methods.
2. In this chapter, you learned about the importance of testing. Design a generic test plan that describes

the testing for an imaginary system.
3. Which system changeover method would you recommend for an air traffic control system upgrade?

Explain your answer.
4. Design a generic post-implementation evaluation form. The form should consist of questions that you

could use to evaluate any information system. The form should evaluate the training received and any
problems associated with the program.

5. Create an online training module using one of the systems discussed in this chapter, such as Udemy or
lynda.com, on the topic of managing systems implementations.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

399

PHASE

Systems support and security is the final phase in the systems development life cycle. In the
previous phase, systems implementation, a functioning system was delivered. The system now
moves into the support phase, where the analyst maintains the system, handles security issues,
protects the integrity of the system and its data, and is alert to any signs of obsolescence.

Security concerns have become a matter of national importance. Major security breaches at
large corporations are unfortunately quite commonplace. Sadly, system security is rarely solved
by a simple app—it requires a disciplined approach that affects virtually all tasks in the SDLC.

Chapter 12 focuses on managing systems support and security throughout the useful life of the
system. This includes user support, maintenance tasks, maintenance management, performance
management, security levels, backup and recovery, system retirement, and future challenges and
opportunities.

5SYSTEMS SUPPORT AND SECURITY

DELIVERABLE
An operational system that is properly
maintained, supported, and secured

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Chapter 12 Managing Systems Support and Security

CHAPTER12 Managing
Systems Support
and Security

Chapter 12 describes systems support and security
tasks that continue throughout the useful life of the
system. The systems support and security phase begins
when a system becomes operational and continues until
the system reaches the end of its useful life. Throughout
the development process, the objective has been to
create an information system that is efficient, easy to
use, and affordable. After delivering the system, the
IT team focuses on support and maintenance tasks.
Managing systems support and security involves three

main concerns: user expectations, system performance,
and security requirements.

The chapter includes three “Case in Point”
discussion questions to help contextualize the concepts
described in the text. There are two “Question of
Ethics” scenarios in this chapter. The first scenario
concerns known security vulnerabilities in a system and
what should be done about them. The second scenario
is about divulging personal information, social media, and
free speech.

C O N T E N T S
12.1 User Support
12.2 Maintenance Tasks
 Case in Point 12.1: Outback Outsourcing, Inc.
12.3 Maintenance Management
12.4 System Performance Management
12.5 System Security
12.6 Security Levels
 Case in Point 12.2: Outer Banks County
 Case in Point 12.3: Chain Link Consulting, Inc.
12.7 Backup and Recovery
12.8 System Retirement
12.9 Future Challenges and Opportunities
 A Question of Ethics
12.10 Summary
 Key Terms
 Exercises

L E A R N I N G O B J E C T I V E S
When you finish this chapter, you should be able
to:

1. Describe user support activities

2. Define the four types of maintenance

3. Explain seven strategies and techniques for
maintenance management

4. Describe techniques for system performance
management

5. Explain system security concepts and common
attacks against the system

6. Explain three tasks related to risk management
concepts

7. Assess system security at six levels: physical
security, network security, application security,
file security, user security, and procedural security

8. Describe backup and disaster recovery

9. List six factors indicating that a system has
reached the end of its useful life

10. List future challenges and opportunities for IT
professionals

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

401

Phase 5 Systems Support and Security

12.1 User Support

12.1 User sUpport

A systems analyst is like an internal consultant who provides guidance, support,
and training. Successful systems often need the most support because users want
to learn the features, try all the capabilities, and discover how the system can help
them perform their tasks. In most organizations, more than half of all IT department
effort goes into supporting existing systems. Companies provide user support in
many forms, including user training and a help desk to provide technical support and
assistance. This help can be provided in-house or outsourced.

12.1.1 User Training
Chapter 11 described the initial training that is performed when a new system is
introduced. Additionally, new employees must be trained on the company’s informa-
tion systems. If significant changes take place in the existing system or if a new ver-
sion is released, the IT department might develop a user training package. Depending
on the nature of the changes, the package could include online support via email, a
special website, a revision to the user guide, a training manual supplement, or formal
training sessions. Training users about system changes is similar to initial training.
The main objective is to show users how the system can help them perform their jobs.

12.1.2 Help Desks
As systems become more complex, users need constant support and guidance. To
make data more accessible and to empower users, many IT departments create help
desks. A help desk, also called a service desk, is a centralized resource staffed by IT
professionals who provide users with the support they need to do their jobs. A help
desk has three main objectives: (1) show people how to use system resources more
effectively, (2) provide answers to technical or operational questions, and (3) make
users more productive by teaching them how to meet their own information needs. A
help desk is the first place users turn when they need information or assistance.

A help desk does not replace traditional IT maintenance and support activities.
Instead, help desks enhance productivity and improve utilization of a company’s
information resources.

Help desk representatives need strong interpersonal and technical skills plus a
solid understanding of the business because they interact with users in many depart-
ments. A help desk should document carefully all inquiries, support tasks, and activity
levels. The information can identify trends and common problems and can help build
a technical support knowledge base.

A help desk can boost its productivity by using remote control software, which
allows IT staff to take over a user’s workstation and provide support and trouble-
shooting. One example of such a software application is GoToMyPC by Citrix,
shown in Figure 12-1.

During a typical day, the help desk staff members might have to perform the fol-
lowing tasks:

• Show a user how to create a data query or report that displays specific business
information

• Resolve network access or password problems

• Demonstrate an advanced feature of a system or a commercial package

• Help a user recover damaged data

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

402

Chapter 12 Managing Systems Support and Security

12.1 User Support

• Offer tips for better operation

• Explain an undocumented software feature

• Show a user how to use web conferencing

• Explain how to access the company’s intranet or the Internet

• Assist a user in developing a simple database to track time spent on various
projects

• Answer questions about software licensing and upgrades

• Provide information about system specifications and the cost of new hardware
or software

• Recommend a system solution that integrates data from different locations to
solve a business problem

• Provide hardware support by installing or reconfiguring devices such as scan-
ners, printers, network cards, wireless devices, optical drives, backup devices,
and multimedia systems

• Show users how to maintain data consistency and integrity among a desktop
computer, a notebook computer, and a handheld computer or smartphone

• Troubleshoot software issues via remote control utilities

FIGURE 12-1 Remote access software, such as GoToMyPC shown here, lets users access their PCs from anywhere—even with their
smartphones or tablets.
Source: gotomypc.com

In addition to functioning as a valuable link between IT staff and users, the help
desk is a central contact point for all IT maintenance activities. The help desk is
where users report system problems, ask for maintenance, or submit new systems
requests. A help desk can utilize many types of automated support, just as outside
vendors do, including email responses, on-demand fax capability, an online knowl-
edge base, frequently asked questions (FAQs), discussion groups, bulletin boards,
and automated voice mail. Many vendors now provide a live chat feature for online
visitors.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

403

Phase 5 Systems Support and Security

12.2 Maintenance Tasks

12.1.3 Outsourcing Issues
As discussed in Chapter 7, many firms outsource various aspects of application
development. This trend also includes outsourcing IT support and help desks. As with
most business decisions, outsourcing has pros and cons. Typically, the main reason
for outsourcing is cost reduction. Offshore call centers can trim expenses and free up
valuable human resources for product development.

However, firms have learned that if tech support quality goes down, customers
are likely to notice and might shop elsewhere. Critical factors might include
phone wait times, support staff performance, and online support tools. The
real question is whether a company can achieve the desired savings without
endangering its reputation and customer base. Risks can be limited but only
if a firm takes an active role in managing and monitoring support quality and
consistency.

12.2 Maintenance tasks

The systems support and security phase is an important component of total cost of
ownership (TCO) because ongoing maintenance expenses can determine the eco-
nomic life of a system. Figure 12-2 shows a typical pattern of operational and main-
tenance expenses during the useful life of a system. Operational costs include items
such as supplies, equipment rental, and software leases. Note that the lower area
shown in Figure 12-2 represents fixed operational expenses, while the upper area rep-
resents maintenance expenses.

FIGURE 12-2 The total cost of operating an information system includes operational and maintenance costs.
Operational costs (green) are relatively constant, while maintenance costs (purple) vary over time.

Maintenance expenses vary significantly during the system’s operational life
and include spending to support maintenance activities. Maintenance activities
include changing programs, procedures, or documentation to ensure correct
system performance; adapting the system to changing requirements; and making
the system operate more efficiently. Those needs are met by different types of
maintenance.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

404

Chapter 12 Managing Systems Support and Security

12.2 Maintenance Tasks

12.2.1 Types of Maintenance
Although some overlap exists, four types of maintenance tasks can be identified, as
shown by the examples in Figure 12-3. Corrective maintenance is performed to fix

errors, adaptive maintenance adds new capability and
enhancements, perfective maintenance improves efficiency,
and preventive maintenance reduces the possibility
of future system failure. Some analysts use the term
maintenance to describe only corrective maintenance
that fixes problems. It is helpful, however, to view the
maintenance concept more broadly and identify the
different types of tasks.

Maintenance expenses usually are high when a
system is implemented because problems must be
detected, investigated, and resolved by corrective
maintenance. Once the system becomes stable, costs
usually remain low and involve minor adaptive
maintenance. Eventually, both adaptive and perfective
maintenance activities increase in a dynamic business
environment.

Near the end of a system’s useful life, adaptive and
corrective maintenance expenses increase rapidly, but
perfective maintenance typically decreases when it
becomes clear that the company plans to replace the
system. Figure 12-4 shows the typical patterns for each
of the four classifications of maintenance activities over a
system’s life span.

12.2.2 Corrective Maintenance
Corrective maintenance diagnoses and corrects errors in
an operational system. To avoid introducing new prob-
lems, all maintenance work requires careful analysis
before making changes. The best maintenance approach
is a scaled-down version of the SDLC itself, where investi-
gation, analysis, design, and testing are performed before
implementing any solution. Recall from Chapter 11 the

differences between a test environment and an operational environment. Any main-
tenance work that could affect the system must be performed first in the test environ-
ment and then migrated to the operational system.

IT support staff respond to errors in various ways, depending on the nature and
severity of the problem. Most organizations have standard procedures for minor
errors, such as an incorrect report title or an improper format for a data element.
In a typical procedure, a user submits a system request that is evaluated, prioritized,
and scheduled by the system administrator or the systems review committee. If the
request is approved, the maintenance team designs, tests, documents, and implements
a solution.

As stated in Chapter 2, many organizations use a standard online form for systems
requests. In smaller firms, the process might be an informal email message. For more
serious situations, such as incorrect report totals or inconsistent data, a user submits a
system request with supporting evidence. Those requests receive a high priority and a
maintenance team begins work on the problem immediately.

Corrective Maintenance
• Diagnose and fix logic errors
• Replace defective network cabling
• Restore proper configuration settings
• Debug program code
• Update drivers
• Utilize remote control software for problem diagnosis and resolution

Adaptive Maintenance
• Add online capability
• Add support for mobile devices
• Add new data entry field to input screen
• Install links to website
• Create employee portal

Perfective Maintenance
• Upgrade or replace outdated hardware
• Write macros to handle repetitive tasks
• Compress system files
• Optimize user desktop settings
• Upgrade wireless network capability
• Install more powerful network server

Preventive Maintenance
• Install new antivirus software
• Develop standard backup schedule, including off-site

and cloud-based strategies
• Implement regular defragmentation process
• Analyze problem report for patterns
• Tighten all cable connections
• Develop user guide covering confidentiality rules and
 unauthorized use of company IT resources

FIGURE 12-3 Corrective maintenance fixes errors and
problems. Adaptive maintenance provides enhancements
to a system. Perfective maintenance improves a system’s
efficiency, reliability, or maintainability. Preventive
maintenance avoids future problems.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

405

Phase 5 Systems Support and Security

12.2 Maintenance Tasks

The worst-case situation is a system failure. If an emergency occurs, the mainte-
nance team bypasses the initial steps and tries to correct the problem immediately.
This often requires a patch, which is a specially written software module that pro-
vides temporary repairs so operations can resume. Meanwhile, a written systems
request is prepared by a user or a member of the IT department and added to the
maintenance log. When the system is operational again, the maintenance team deter-
mines the cause, analyzes the problem, and designs a permanent solution. The IT
response team updates the test data files, thoroughly tests the system, and prepares
full documentation. Regardless of how the priorities are set, a standard ranking
method can be helpful. For example, Figure 12-5 shows a three-level framework for
IT support potential impact.

FIGURE 12-4 Information systems maintenance costs depend on the type of maintenance and the age
of the system.

FIGURE 12-5 This three-level ranking framework for IT support considers potential impact and response
urgency.

PRIORITY IMPACT TIME FRAME

Level 1 Significant impact on IT operations,
security, or business activity that requires
immediate attention.

Implement patch as soon
as possible.

Level 2 Some impact on IT operations, security,
or business activity. Requires prompt
attention, but operations can continue.

Patch as necessary and
begin implementation
prior to next release.

Level 3 Little or no impact on current IT
operations, security, or business activity

Implement in the next
release.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

406

Chapter 12 Managing Systems Support and Security

12.2 Maintenance Tasks

The process of managing system support is described in more detail in Section 12.3,
including an overview of maintenance tasks and a procedural flowchart.

12.2.3 Adaptive Maintenance
Adaptive maintenance adds enhancements to an operational system and makes the
system easier to use. An enhancement is a new feature or capability. The need for
adaptive maintenance usually arises from business environment changes such as new
products or services, new manufacturing technology, or support for a new web-based
operation.

The procedure for minor adaptive maintenance is similar to routine corrective
maintenance. A user submits a system request that is evaluated and prioritized by
the systems review committee. A maintenance team then analyzes, designs, tests, and
implements the enhancement. Although the procedures for the two types of mainte-
nance are alike, adaptive maintenance requires more IT department resources than
minor corrective maintenance.

A major adaptive maintenance project is like a small-scale SDLC project because
the development procedure is similar. Adaptive maintenance can be more difficult
than new systems development because the enhancements must work within the con-
straints of an existing system.

12.2.4 Perfective Maintenance
Perfective maintenance involves changing an operational system to make it more
efficient, reliable, or maintainable. Requests for corrective and adaptive mainte-
nance normally come from users, while the IT department usually initiates perfective
maintenance.

During system operation, changes in user activity or data patterns can cause a
decline in efficiency, and perfective maintenance might be needed to restore perfor-
mance. When users are concerned about performance, it should be determined if a
perfective maintenance project could improve response time and system efficiency.

Perfective maintenance also can improve system reliability. For example, input
problems might cause a program to terminate abnormally. By modifying the data
entry process, errors can be highlighted, and users notified that they must enter
proper data. When a system is easier to maintain, support is less costly and less risky.
In many cases, a complex program can be simplified to improve maintainability.

In many organizations, perfective maintenance is not performed frequently enough.
Companies with limited resources often consider new systems development, adaptive
maintenance, and corrective maintenance more important than perfective maintenance.
Managers and users constantly request new projects, so few resources are available for
perfective maintenance work. As a practical matter, perfective maintenance can be per-
formed as part of another project. For example, if a new function must be added to a
program, perfective maintenance can be included in the adaptive maintenance project.

Perfective maintenance usually is cost-effective during the middle of the system’s
operational life. Early in systems operation, perfective maintenance usually is not
needed. Later, perfective maintenance might be necessary but have a high cost. Perfec-
tive maintenance is less important if the company plans to discontinue the system.

When performing perfective maintenance, analysts often use a technique called
software reengineering. Software reengineering uses analytical techniques to identify
potential quality and performance improvements in an information system. In that
sense, software reengineering is similar to business process reengineering, which seeks
to simplify operations, reduce costs, and improve quality.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

407

Phase 5 Systems Support and Security

12.2 Maintenance Tasks

Programs that need a large number of maintenance changes usually are good
candidates for reengineering. The more a program changes, the more likely it is to
become inefficient and difficult to maintain. Detailed records of maintenance work
can identify systems with a history of frequent corrective, adaptive, or perfective
maintenance.

12.2.5 Preventive Maintenance
To avoid problems, preventive maintenance requires analysis of areas where trouble is
likely to occur. Like perfective maintenance, the IT department normally initiates pre-
ventive maintenance. Preventive maintenance often results in increased user satisfac-
tion, decreased downtime, and reduced TCO. Preventive maintenance competes for IT
resources along with other projects and sometimes does not receive the high priority
that it deserves.

Regardless of the type of maintenance, trained professionals must support com-
puter systems, just as skilled technicians must service the particle detector at CERN
shown in Figure 12-6. In both cases, the quality of the maintenance will directly affect
the organization’s success.

FIGURE 12-6 Technicians use a motorized lift to get into position by the
ATLAS particle detector at CERN. Regardless of the type of system, trained
professionals must perform high-quality maintenance.
Source: Anna Pantelia/CERN

CASE IN POINT 12.1: Outback OutsOurcing, inc.

You are a systems analyst at Outback Outsourcing, a firm that handles payroll processing for
many large companies. Outback Outsourcing uses a combination of payroll package programs
and in-house developed software to deliver custom-made payroll solutions for its clients. Lately,
users have flooded you with requests for more new features and web-based capability to meet
customer expectations. Your boss, the IT manager, comes to you with a question. She wants to
know when to stop trying to enhance the old software and develop a totally new version better
suited to the new marketplace. How would you answer her?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

408

Chapter 12 Managing Systems Support and Security

12.3 Maintenance Management

12.3 Maintenance ManageMent

System maintenance requires effective management, quality assurance, and
cost control. To achieve these goals, companies use various strategies, such as
a maintenance team, a maintenance management program, a configuration
management process, and a maintenance release procedure. In addition, firms use
version control and baselines to track system releases and analyze the system’s life
cycle. These concepts are described in the following sections.

12.3.1 The Maintenance Team
A maintenance team includes a system administrator and one or more systems
analysts and programmers. The system administrator should have solid technical
expertise, and experience in troubleshooting and configuring operating systems and
hardware. Successful analysts need a strong IT background, solid analytical abilities,
good communication skills, and an overall understanding of business operations.

SYSTEM ADMINISTRATOR: A system administrator manages computer and net-
work systems. A system administrator must work well under pressure, have good
organizational and communication skills, and be able to understand and resolve com-
plex issues in a limited time frame. In most organizations, a system administrator has
primary responsibility for the operation, configuration, and security of one or more
systems. The system administrator is responsible for routine maintenance and usually
is authorized to take preventive action to avoid an immediate emergency, such as a
server crash, network outage, security incident, or hardware failure.

SYSTEMS ANALYSTS: Systems analysts assigned to a maintenance team are like
skilled detectives who investigate and rapidly locate the source of a problem by using
analysis and synthesis skills. Analysis means examining the whole in order to learn
about the individual elements, while synthesis involves studying the parts to under-
stand the overall system. In addition to strong technical skills, an analyst must have a
solid grasp of business operations and functions. Analysts also need effective interper-
sonal and communications skills, and they must be creative, energetic, and eager for
new knowledge.

PROGRAMMERS: In a small organization, a programmer might be expected to
handle a wide variety of tasks, but in larger firms, programming work tends to be
more specialized. For example, typical job titles include an applications programmer,
who works on new systems development and maintenance; a systems programmer,
who concentrates on operating system software and utilities; and a database
programmer, who focuses on creating and supporting large-scale database systems.
Many IT departments also use a job title of programmer/analyst to designate
positions that require a combination of systems analysis and programming skills.

ORGANIZATIONAL ISSUES: IT managers often divide systems analysts and
programmers into two groups: One group performs new system development,
and the other group handles maintenance. Some organizations use a more flexible
approach and assign IT staff members to various projects as they occur. By
integrating development and support work, the people developing the system assume
responsibility for maintaining it. Because the team is familiar with the project,
additional training or expense is unnecessary, and members are likely to have a sense
of ownership from the onset.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

409

Phase 5 Systems Support and Security

12.3 Maintenance Management

Unfortunately, many analysts feel that maintenance is less interesting and less cre-
ative than developing new systems. In addition, an analyst might find it challenging
to troubleshoot and support someone else’s work that might have been poorly docu-
mented and organized.

Some organizations that have separate maintenance and new systems groups
rotate people from one assignment to the other. When analysts learn different skills,
the organization is more versatile, and people can shift to meet changing business
needs. For instance, systems analysts working on maintenance projects learn why it is
important to design easily maintainable systems. Similarly, analysts working on new
systems get a better appreciation of the development process and the design compro-
mises necessary to meet business objectives.

One disadvantage of rotation is that it increases overhead because time is lost
when people move from one job to another. When systems analysts constantly shift
between maintenance and new development, they have less opportunity to become
highly skilled at any one job.

Newly hired and recently promoted IT staff members often are assigned to maintenance
projects because their managers believe that the opportunity to study existing systems and
documentation is a valuable experience. In addition, the mini-SDLC used in many adaptive
maintenance projects is good training for the full-scale systems development life cycle. For
a new systems analyst, however, maintenance work might be more difficult than systems
development, and it might make sense to assign a new person to a development team
where experienced analysts are available to provide training and guidance.

12.3.2 Maintenance Requests
Typically, maintenance requests involve a series of steps, as shown in Figure 12-7.
After a user submits a request, a system administrator determines whether immediate
action is needed and whether the request is under a prescribed cost limit. In none-
mergency requests that exceed the cost limit, a system review committee assesses the
request and either approves it, with a priority, or rejects it. The system administrator
notifies affected users of the outcome.

Users submit most requests for corrective and adaptive maintenance when the
system is not performing properly or if they want new features. IT staff members usu-
ally initiate requests for perfective and preventive maintenance. To keep a complete
maintenance log, all work must be covered by a specific request that users submit in
writing or by email.

INITIAL DETERMINATION: When a user submits a maintenance request, the system
administrator makes an initial determination. If the request is justifiable and involves
a severe problem that requires immediate attention, the system administrator takes
action at once. In justifiable, but noncritical, situations, the administrator determines
whether the request can be performed within a preauthorized cost level. If so, he or
she assigns the maintenance tasks and monitors the work.

THE SYSTEM REVIEW COMMITTEE: When a request exceeds a predetermined cost
level or involves a major configuration change, the system review committee either
approves it and assigns a priority or rejects it.

TASK COMPLETION: The system administrator usually is responsible for assign-
ing maintenance tasks to individuals or to a maintenance team. Depending on the
situation and the company’s policy, the system administrator might consider rotating
assignments among the IT staff or limiting maintenance tasks to certain individuals or
teams, as explained in the previous section.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

410

Chapter 12 Managing Systems Support and Security

12.3 Maintenance Management

FIGURE 12-7 Although the procedure varies from company to company, the chart shows a typical
process for handling maintenance requests.

Rejected?

Start

User sends maintenance
request to system

administrator

Request justifiable?

Request immediate
attention?

Request under
prescribed
cost limit?

System administrator
advises systems review
committee and affected
users of the status and

outcome

Systems review committee
assesses request and

assigns priority or rejects

End

System administrator
assigns maintenance
tasks and monitors

the work

No

Yes Yes

Yes

No No

No

Yes

USER NOTIFICATION: Users who initiate maintenance requests expect a prompt
response, especially if the situation directly affects their work. Even when corrective
action cannot occur immediately, users appreciate feedback from the system adminis-
trator and should be kept informed of any decisions or actions that could affect them.

12.3.3 Establishing Priorities
In many companies, the system review committee separates maintenance and new
development requests when setting priorities. In other organizations, all requests are

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

411

Phase 5 Systems Support and Security

12.3 Maintenance Management

considered together, and the most important project gets top priority, whether it is
maintenance or new development.

Some IT managers believe that evaluating all projects together leads to the best
possible decisions because maintenance and new development require similar IT
department resources. In IT departments where maintenance and new development
are not integrated, it might be better to evaluate requests separately. Another
advantage of a separate approach is that maintenance is more likely to receive a
proportional share of IT department resources.

The most important objective is to have a procedure that balances new
development and necessary maintenance work to provide the best support for
business requirements and priorities.

12.3.4 Configuration Management
Configuration management (CM), sometimes referred to as change control (CC), is a
process for controlling changes in system requirements during software development.
CM also is an important tool for managing system changes and costs after a system
becomes operational. Most companies establish a specific process that describes how
system changes must be requested and documented.

As enterprise-wide information systems grow more complex, CM becomes critical.
Industry standards have emerged, such as the IEEE’s Standard 828-2012 for CM in
systems and software, as shown in Figure 12-8.

FIGURE 12-8 IEEE Standard 828-2012 for configuration management in systems and software engineering.
Source: IEEE

CM is especially important if a system has multiple versions that run in different
hardware and software environments. CM also helps to organize and handle docu-
mentation. An operational system has extensive documentation that covers develop-
ment, modification, and maintenance for all versions of the installed system. Most

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

412

Chapter 12 Managing Systems Support and Security

12.3 Maintenance Management

documentation material, including the initial systems request, project management
data, end-of-phase reports, data dictionary, and the IT operations and user manuals,
is stored in the IT department.

Keeping track of all documentation and ensuring that updates are distributed
properly are important aspects of CM.

12.3.5 Maintenance Releases
Keeping track of maintenance changes and updates can be difficult, especially for a
complex system. When a maintenance release methodology is used, all noncritical
changes are held until they can be implemented at the same time. Each change is
documented and installed as a new version of the system called a maintenance release.

For an in-house developed system, the time between releases usually depends on
the level of maintenance activity. A new release to correct a critical error, however,
might be implemented immediately rather than saved for the next scheduled release.

When a release method is used, a numbering pattern distinguishes the different
releases. In a typical system, the initial version of the system is 1.0, and the release
that includes the first set of maintenance changes is version 1.1. A change, for
example, from version 1.4 to 1.5 indicates relatively minor enhancements, while
whole number changes, such as from version 1.0 to 2.0 or from version 3.4 to 4.0,
indicate a significant upgrade.

The release methodology offers several advantages, especially if two teams per-
form maintenance work on the same system. When a release methodology is used, all
changes are tested together before a new system version is released. This approach
results in fewer versions, less expense, and less interruption for users. Using a release
methodology also reduces the documentation burden because all changes are coordi-
nated and become effective simultaneously.

A release methodology also has some potential disadvantages. Users expect a rapid
response to their problems and requests, but with a release methodology, new fea-
tures or upgrades are available less often. Even when changes would improve system
efficiency or user productivity, the potential savings must wait until the next release,
which might increase operational costs.

Commercial software suppliers also provide maintenance releases, often called
service packs, as shown in Figure 12-9. As Microsoft explains, a service pack contains
all the fixes and enhancements that have been made available since the last program
version or service pack.

12.3.6 Version Control
Version control is the process of tracking system releases, or versions. When a new
version of a system is installed, the prior release is archived or stored. If a new version
causes a system to fail, a company can reinstall the prior version to restore opera-
tions. In addition to tracking system versions, the IT staff is responsible for config-
uring systems that have several modules at various release stages. For example, an
accounting system might have a one-year-old accounts receivable module that must
interface with a brand-new payroll module.

Many firms use commercial applications to handle version control for complex
systems. There are also numerous free and open-source alternatives. For example, one
of the most popular version control systems is git, which is shown in Figure 12-10.
Git is a free and open-source program designed for distributed systems. It is relatively
easy to use, is available across most major platforms, and is supported by the devel-
oper community.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

413

Phase 5 Systems Support and Security

12.3 Maintenance Management

FIGURE 12-9 A Microsoft service pack provides access to updated drivers, tools, security patches, and customer-
requested product changes.
Source: Microsoft

FIGURE 12-10 Git is a popular free version control system.
Source: git-scm.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

414

Chapter 12 Managing Systems Support and Security

12.4 System Performance Management

12.3.7 Baselines
A baseline is a formal reference point that measures system characteristics at a
specific time. Systems analysts use baselines as yardsticks to document features and
performance during the systems development process. The three types of baselines are
functional, allocated, and product.

The functional baseline is the configuration of the system documented at the
beginning of the project. It consists of all the necessary system requirements and
design constraints.

The allocated baseline documents the system at the end of the design phase and
identifies any changes since the functional baseline. The allocated baseline includes
testing and verification of all system requirements and features.

The product baseline describes the system at the beginning of system operation.
The product baseline incorporates any changes made since the allocated baseline and
includes the results of performance and acceptance tests for the operational system.

12.4 systeM perforMance ManageMent

Years ago, when most firms used a central computer for processing data, it was rel-
atively simple to manage a system and measure its efficiency. Today, companies use
complex networks, client/server systems, and cloud computing environments to sup-
port business needs. A user at a client workstation often interacts with an information
system that depends on other clients, servers, networks, and data located throughout
the company. Rather than a single computer, it is the integration of all those compo-
nents that determines the system’s capability and performance.

To ensure satisfactory support for business operations, the IT department must
manage system faults and interruptions, measure system performance and workload,
and anticipate future needs. In many situations, IT managers use automated software
and CASE tools to help with these tasks. Automated tools can provide valuable assis-
tance during the operation and support phases. Many CASE tools include system
evaluation and maintenance features, such as the following:

• Performance monitors that provide data on program execution times

• Program analyzers that scan source code, provide data element cross-reference
information, and help evaluate the impact of a program change

• Interactive debugging analyzers that locate the source of a programming error

• Reengineering tools

• Automated documentation capabilities

• Network activity monitors

• Workload forecasting tools

In addition to CASE tools, spreadsheet and presentation software can be used to
calculate trends, perform what-if analyses, and create attractive charts and graphs to
display the results. Information technology planning is an essential part of the busi-
ness planning process and often part of the presentations made to management.

12.4.1 Fault Management
No matter how well it is designed, every system will experience some problems, such
as hardware failures, software errors, user mistakes, and power outages. A system

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

415

Phase 5 Systems Support and Security

12.4 System Performance Management

administrator must detect and resolve operational problems as quickly as possible. That
task, often called fault management, includes monitoring the system for signs of trouble,
logging all system failures, diagnosing the problem, and applying corrective action.

The more complex the system, the more difficult it can be to analyze symptoms
and isolate a cause. In addition to addressing the immediate problem, it is import-
ant to evaluate performance patterns and trends. For example, the Activity Monitor
application shown in Figure 12-11 runs on Apple’s Mac OS X to display CPU, mem-
ory, energy, disk, and network activity of all running applications in real time. Similar
programs, such as the Resource Monitor, are available on Windows. Fault man-
agement software can help identify underlying causes, speed up response time, and
reduce service outages.

FIGURE 12-11 The Activity Monitor application on Apple’s Mac OS X displays CPU,
memory, energy, disk, and network activity of all running applications in real time.
Source: Apple

Although system administrators must deal with system faults and interruptions as
they arise, the best strategy is to prevent problems by monitoring system performance
and workload.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

416

Chapter 12 Managing Systems Support and Security

12.4 System Performance Management

12.4.2 Performance and Workload Measurement
In e-business, slow performance can be as devastating as no performance at all. Net-
work delays and application bottlenecks affect customer satisfaction, user produc-
tivity, and business results. In fact, many IT managers believe that network delays do
more damage than actual stoppages because they occur more frequently and are diffi-
cult to predict, detect, and prevent. Customers expect reliable, fast response 24 hours
a day, seven days a week. To support that level of service, companies use performance
management software.

To measure system performance, many firms use benchmark testing, which uses
a set of standard tests to evaluate system performance and capacity. In addition to
benchmark testing, performance measurements, called metrics, can monitor the num-
ber of transactions processed in a given time period, the number of records accessed,
and the volume of online data. Network performance metrics include response time,
bandwidth, throughput, and turnaround time, among others.

RESPONSE TIME: Response time is the overall time between a request for system
activity and the delivery of the response. In the typical online environment, response
time is measured from the instant the user presses the Enter key or clicks a mouse
button until the requested screen display appears or printed output is ready. Response
time is affected by the system design, capabilities, and processing methods. If the
request involves network or Internet access, response time is affected by data commu-
nication factors.

Online users expect an immediate response, and they are frustrated by any appar-
ent lag or delay. Of all performance measurements, response time is the one that users
notice and complain about most.

BANDWIDTH AND THROUGHPUT: Bandwidth and throughput are closely related
terms, and many analysts use them interchangeably. Bandwidth describes the amount
of data that the system can transfer in a fixed time period. Bandwidth requirements
are expressed in bits per second. Depending on the system, bandwidth can be
measured in kilobits per second (Kbps), megabits per second (Mbps), or gigabits per
second (Gbps). Analyzing bandwidth is similar to forecasting the hourly number of
vehicles that will use a highway in order to determine the number of lanes required.

Throughput measures actual system performance under specific circumstances
and is affected by network loads and hardware efficiency. Like bandwidth, through-
put is expressed as a data transfer rate, such as Kbps, Mbps, or Gbps. Just as traffic
jams delay highway traffic, throughput limitations can slow system performance and
response time. That is especially true with graphics-intensive systems and web-based
systems that are subject to Internet-related conditions.

In addition to the performance metrics explained in the previous section, system
administrators measure many other performance characteristics. Although no stan-
dard set of metrics exists, several typical examples are as follows:

• Arrivals: The number of items that appear on a device during a given observa-
tion time.

• Busy: The time that a given resource is unavailable.

• Completions: The number of arrivals that are processed during a given obser-
vation period.

• Queue length: The number of requests pending for a service.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

417

Phase 5 Systems Support and Security

12.4 System Performance Management

• Service time: The time it takes to process a given task once it reaches the front
of the queue.

• Think time: The time it takes an application user to issue another request.

• Utilization: How much of a given resource was required to complete a task.

• Wait time: The time that requests must wait for a resource to become available.

TURNAROUND TIME: Turnaround time applies to centralized batch processing
operations, such as customer billing or credit card statement processing. Turnaround
time measures the time between submitting a request for information and the
fulfillment of the request. Turnaround time also can be used to measure the quality
of IT support or services by measuring the time from a user request for help to the
resolution of the problem.

The IT department often measures response time, bandwidth, throughput, and
turnaround time to evaluate system performance both before and after changes to
the system or business information requirements. Performance data also is used for
cost-benefit analyses of proposed maintenance and to evaluate systems that are near-
ing the end of their economically useful lives.

Finally, management uses current performance and workload data as input for the
capacity planning process.

12.4.3 Capacity Planning
Capacity planning is a process that monitors current activity and performance levels,
anticipates future activity, and forecasts the resources needed to provide desired levels
of service.

The first step in capacity planning is to develop a current model based on the
system’s present workload and performance specifications. Then future demand and
user requirements are projected over a one- to three-year time period. The model
is analyzed to see what is needed to maintain satisfactory performance and meet
requirements. To assist in the process, a technique called what-if analysis can be used.

What-if analysis varies one or more elements in a model in order to measure the
effect on other elements. For example, what-if analysis might be used to answer
questions such as the following: How will response time be affected if more client
workstations were added to the network? Will the client/server system be able to
handle the growth in sales from the new website? What will be the effect on server
throughput if more memory is added?

Powerful spreadsheet tools also can assist in performing what-if analysis. For
example, Microsoft Excel contains a feature called Goal Seek that determines what
changes are necessary in one value to produce a specific result for another value. In
the example shown in Figure 12-12, a capacity planning worksheet indicates that the
system can handle 3,840 web-based orders per day, at 22.5 seconds each. Excel cal-
culates this automatically using the simple formula =86400/B4 for cell B5. (There are
86,400 seconds in a 24-hour day.) The user wants to know the effect on processing
time if the number of transactions increases to 9,000. As the Goal Seek solution in the
bottom figure shows, order processing will have to be performed in 9.6 seconds to
achieve that goal.

During plan capacity, detailed information is needed about the number of
transactions; the daily, weekly, or monthly transaction patterns; the number of

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

418

Chapter 12 Managing Systems Support and Security

12.4 System Performance Management

FIGURE 12-12 In this Goal Seek example, the user wants to know the effect on processing time if the number of
daily transactions increases from 3,840 to 9,000.

queries; and the number, type, and size of all generated reports. If the system
involves a LAN, network traffic levels must be estimated to determine whether or
not the existing hardware and software can handle the load. If the system uses a
client/server design, performance and connectivity specifications must be exam-
ined for each platform.

Most important, an accurate forecast of future business activities is needed. If
new business functions or requirements are predicted, contingency plans should be
developed based on input from users and management. The main objective is to ensure
that the system meets all future demands and provides effective support for business
operations. Some firms handle their own capacity planning, while others purchase
software such as Idera’s Uptime Infrastructure Monitor, shown in Figure 12-13.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

419

Phase 5 Systems Support and Security

12.5 System Security

12.5 systeM secUrity

Security is a vital part of every information system. Security
 protects the system and keeps it safe, free from danger, and
reliable. In a global environment that includes many types of
threats and attacks, security is more important than ever. This
section includes a discussion of system security concepts, risk
management, and common attacks against the system.

12.5.1 System Security Concepts
The CIA triangle in Figure 12-14 shows the three main elements
of system security: confidentiality, integrity, and availability.
Confidentiality protects information from unauthorized
disclosure and safeguards privacy. Integrity prevents
unauthorized users from creating, modifying, or deleting
information. Availability ensures that authorized users have
timely and reliable access to necessary information. The first
step in managing IT security is to develop a security policy
based on these three elements.

FIGURE 12-13 Idera’s Uptime Infrastructure Monitor is an example of capacity planning software and
services.
Source: Uptime Software

Information

Confidentiality Availability

Integrity

FIGURE 12-14 System security must provide
information confidentiality, integrity, and
availability (CIA).

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

420

Chapter 12 Managing Systems Support and Security

12.5 System Security

12.5.2 Risk Management
In the real world, absolute security is not a realistic goal. Instead,
managers must balance the value of the assets being protected,
potential risks to the organization, and security costs. For example,
it might not be worth installing an expensive video camera moni-
toring system to protect an empty warehouse. To achieve the best
results, most firms use a risk management approach that involves
constant attention to three interactive tasks: risk identification, risk
assessment, and risk control, as shown in Figure 12-15.

Risk identification analyzes the organization’s assets, threats,
and vulnerabilities. Risk assessment measures risk likelihood and
impact. Risk control develops safeguards that reduce risks and their
impact.

RISK IDENTIFICATION: The first step in risk identification is to
list and classify business assets. An asset might include company

Identify

Risk Management

Control Assess

FIGURE 12-15 Risk management requires
continuous risk identification, assessment, and
control.

Threat Categories and Examples

THREAT CATEGORY EXAMPLE

Extortion Hacker steals trade secrets and threatens to release
them if not paid.

Hardware and software failures Router stops functioning, or software causes the
application server to crash.

Human error or failure Employee accidentally deletes a file.

Natural disasters Flood destroys company building and networked
systems.

Service failure Electricity is disrupted and brings the entire system
down for hours.

Software attack A group plants destructive software, a virus, or a worm
into a company network.

Technical obsolescence Outdated software is slow, difficult to use, and
vulnerable to attacks.

Theft of physical or intellectual
property

Physical server is stolen, intellectual property is
stolen or used without permission; may be physical or
electronic.

Trespass and espionage Employee enters unlocked server room and views the
payroll data on a forbidden system.

Vandalism Attacker defaces website logo, or destroys CEO’s hard
drive physically or electronically.

FIGURE 12-16 System threats can be grouped into several broad categories.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

421

Phase 5 Systems Support and Security

12.5 System Security

hardware, software, data, networks, people, or procedures. For each asset, a risk
manager rates the impact of an attack and analyzes possible threats. A threat is an
internal or external entity that could endanger an asset. For example, threat catego-
ries might include natural disasters, software attacks, or theft, as shown in Figure
12-16.

Next, the risk manager identifies vulnerabilities and how they might be
exploited. A vulnerability is a security weakness or soft spot, and an exploit is an
attack that takes advantage of a vulnerability. To identify vulnerabilities, a risk
manager might ask questions like these: Could hackers break through the proxy
server? Could employees retrieve sensitive files without proper authorization?
Could people enter the computer room and sabotage our servers? Each vulnerabil-
ity is rated and assigned a value. The output of risk identification is a list of assets,
vulnerabilities, and ratings.

RISK ASSESSMENT: In IT security terms, a risk is the impact of an attack
multiplied by the likelihood of a vulnerability being exploited. For example, an
impact value of 2 and a vulnerability rating of 10 would produce a risk of 20. On
the other hand, an impact value of 5 and a vulnerability rating of 5 would produce
a risk of 25. When risks are calculated and prioritized, critical risks will head the
list. Although ratings can be subjective, the overall process provides a consistent
approach and framework.

RISK CONTROL: After risks are identified and assessed, they must be controlled.
Control measures might include the following examples: We could place a firewall
on the proxy server. We could assign permissions to sensitive files. We could
install biometric devices to guard the computer room. Typically, management
chooses one of four risk control strategies: avoidance, mitigation, transference,
or acceptance. Avoidance eliminates the risk by adding protective safeguards. For
example, to prevent unauthorized access to LAN computers, a secure firewall
might be installed. Mitigation reduces the impact of a risk by careful planning
and preparation. For example, a company can prepare a disaster recovery plan
in case a natural disaster occurs. Transference shifts the risk to another asset or
party, such as an insurance company. Acceptance means that nothing is done.
Companies usually accept a risk only when the protection clearly is not worth the
expense.

The risk management process is iterative—risks are constantly identified, assessed,
and controlled. To be effective, risk managers need a combination of business knowl-
edge, IT skills, and experience with security tools and techniques.

12.5.3 Attacker Profiles and Attacks
An attack is a hostile act that targets the system, or the company itself. Thus,
a disgruntled employee, or a hacker who is 6,000 miles away, might launch an
attack. Attackers break into a system to cause damage, steal information, or gain
recognition, among other reasons. Attackers can be grouped into categories, as
shown in Figure 12-17, while Figure 12-18 describes some common types of
attacks. Companies combat security threats and challenges by using a multilevel
strategy.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

422

Chapter 12 Managing Systems Support and Security

12.5 System Security

Types of Attacks and Examples

ATTACK EXAMPLES

Back door Attacker finds vulnerability in software package and exploits it.

Denial of service or
distributed denial of
service

One or more computers send a stream of connection requests to
disable a Web server.

Dumpster diving Attacker scours the trash for valuable information that can be
used to compromise the system.

Mail bombing Enormous volumes of email are sent to a target address.

Malicious code Attacker sends infected email to the target system. Attackers may
use viruses, worms, Trojan horses, keystroke loggers, spyware, or
scripts to destroy data, bog down systems, spy on users, or assume
control of infected systems.

Man in the middle The attacker intercepts traffic and poses as the recipient, sending
the data to the legitimate recipient but only after reading the
traffic or modifying it.

Password cracking Hacker attempts to discover a password to gain entry into a
secured system. This can be a dictionary attack, where numerous
words are tried, or a brute force attack, where every combination
of characters is attempted.

Phishing False DNS (Domain Name Server) information steers the user to
the attacker’s website. Attackers trick users into thinking they are
visiting a legitimate site, such as a bank site, then attempt to obtain
bank account numbers, usernames, and passwords.

Privilege escalation Employee tricks a computer into raising his or her account to the
administrator level.

Attacker Characteristics

ATTACKER DESCRIPTION SKILL SET

Cyberterrorist Attacks to advance political, social, or ideological goals. High

Employee Uses unauthorized information or privileges to break
into computer systems, steal information, or cause
damage.

Varies

Hacker Uses advanced skills to attack computer systems with
malicious intent (black hat) or to expose flaws and
improve security (white hat).

High

Hacktivist Attacks to further a social or political cause; often
involves shutting down or defacing websites.

Varies

Script kiddie Inexperienced or juvenile hacker who uses readily
available malicious software to disrupt or damage
computer systems, and gain recognition.

Low

Spy Non-employee who breaks into computer systems to
steal information and sell it.

High

FIGURE 12-17 IT security professionals have names for various types of attackers.

(continues)

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

423

Phase 5 Systems Support and Security

12.6 Security Levels

12.6 secUrity LeveLs

To provide system security, six separate but interrelated levels must
be considered: physical security, network security, application secu-
rity, file security, user security, and procedural security. Like the
chain shown in Figure 12-19, system security is only as strong as
the weakest link. The following sections describe these security lev-
els, and the issues that must be addressed. Top management often
makes the final strategic and budget decisions regarding security,
but systems analysts should understand the overall picture in order
to make informed recommendations.

12.6.1 Physical Security
The first level of system security concerns the physical environment,
including IT resources and people throughout the company. Special
attention must be paid to critical equipment located in operations cen-
ters, where servers, network hardware, and related equipment operate.
Large companies usually have a dedicated room built specifically for
IT operations. Smaller firms might use an office or storage area. Regardless of its size and
shape, an operations center requires special protection from unwanted intrusion. In addi-
tion to centrally located equipment, all computers on the network must be secure because
each server or workstation can be a potential access point. Physical access to a computer
represents an entry point into the system and must be controlled and protected.

OPERATIONS CENTER SECURITY: Perimeter security is essential in any room or
area where computer equipment is operated or maintained. Physical access must be
controlled tightly, and each entrance must be equipped with a suitable security device.
All access doors should have internal hinges and electromagnetic locks that are
equipped with a battery backup system to provide standby power in the event of a
power outage. When the battery power is exhausted, the doors should fail in a closed
position, but it should be possible for someone locked inside the room to open the
door with an emergency release.
To enhance security, many companies are installing biometric scanning systems, which
map an individual’s facial features, fingerprints, handprint, or eye characteristics, as
shown in Figure 12-20. These high-tech authentication systems replace magnetic identi-
fication badges, which can be lost, stolen, or altered. Apple’s Face ID system, described
in Chapter 2, is an example of a biometric security system for smartphones and mobile

ATTACK EXAMPLES

Sniffing Network traffic is intercepted and scanned for valuable
information.

Social engineering An attacker calls the service desk posing as a legitimate user and
requests that his or her password be changed.

Spam Unwanted, useless email is sent continuously to business email
accounts, wasting time and decreasing productivity.

Spoofing IP address is forged to match a trusted host, and similar content
may be displayed to simulate the real site for unlawful purposes.

FIGURE 12-18 Attacks can take many forms, as this table shows. IT security managers must be able to detect
these attacks and respond with suitable countermeasures.

FIGURE 12-19 Each security link has a
specific focus, and the overall chain is only as
strong as the weakest link.

Physical

Network

Application

Procedural

User

File

Security Levels

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

424

Chapter 12 Managing Systems Support and Security

12.6 Security Levels

devices, as discussed in the section on portable
 computers that follows.

Video cameras and motion sensors can be used
to monitor computer room security and provide
documentation of all physical activity in the area.
A motion sensor uses infrared technology to detect
movement and can be configured to provide audible
or silent alarms, and to send email messages when
one is triggered. Other types of sensors can monitor
temperature and humidity in the computer room.
Motion sensor alarms can be activated at times
when there is no expected activity in the computer
room, and authorized technicians should have codes
to enable or disable the alarms.

SERVERS AND DESKTOP COMPUTERS: If pos-
sible, server and desktop computer cases should be
equipped with locks. This simple, but important,

precaution might prevent an intruder from modifying the hardware configuration
of a server, damaging the equipment, or removing a disk drive. Server racks should
be locked to avoid the unauthorized placement and retrieval of keystroke loggers. A
keystroke logger is a device that can be inserted between a keyboard and a computer.
Typically, the device resembles an ordinary cable plug, so it does not call attention
to itself. The device can record everything that is typed into the keyboard, including
passwords, while the system continues to function normally. Keystroke loggers can
be used legitimately to monitor, back up, and restore a system, but if placed by an
intruder, a keystroke logger represents a serious security threat.

In addition to hardware devices, keystroke logging software also exists. A keystroke
logging program can be disguised as legitimate software and downloaded from the
Internet or a company network. The program remains invisible to the user as it records
keystrokes and uploads the information to whoever installed the program. Such mali-
cious software can be removed by antivirus and antispyware software, discussed later
in the Application Security section.

Tamper-evident cases should be used where possible. A tamper-evident case is
designed to show any attempt to open or unlock the case. In the event that a com-
puter case has been opened, an indicator LED remains lit until it is cleared with a
password. Tamper-evident cases do not prevent intrusion, but a security breach is
more likely to be noticed. Many servers now are offered with tamper-evident cases as
part of their standard configuration.

Monitor screen savers that hide the screen and require special passwords to clear
should be used on any server or workstation that is left unattended. Locking the screen
after a period of inactivity is another safeguard. A BIOS-level password, also called a
boot-level password or a power-on password, can also be used. This password must
be entered before the computer can be started. A boot-level password can prevent an
unauthorized person from booting a computer by using a secondary device.

Finally, companies must consider electric power issues. In mission-critical systems,
large-scale backup power sources are essential to continue business operations. In other
cases, computer systems and network devices should be plugged into an uninterruptible
power supply (UPS) that includes battery backup with suitable capacity. The UPS
should be able to handle short-term operations in order to permit an orderly backup
and system shutdown.

FIGURE 12-20 Companies use biometric scanning to analyze
the features of the eye’s iris, which has more than 200 points that
can be measured and used for comparison.
Andy Piatt/Shutterstock.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

425

Phase 5 Systems Support and Security

12.6 Security Levels

PORTABLE COMPUTERS: When assessing physical security issues, be sure to
consider additional security provisions for notebook, laptop, and tablet comput-
ers. Because of their small size and high value, these computers are tempting targets
for thieves and industrial spies. Although the following suggestions are intended
as a checklist for notebook computer security, many of them also apply to desktop
workstations.

• Select an operating system that allows secure logons, BIOS-level passwords,
and strong firewall protection. Log on and work with a user account that has
limited privileges rather than an administrator account and mask the admin-
istrator account by giving it a different name that would be hard for a casual
intruder to guess.

• Mark or engrave the computer’s case with the company name and address, or
attach a tamper-proof asset ID tag. Many hardware vendors allow corporate
customers to add an asset ID tag in the BIOS. For example, after powering up,
the following message may appear: Property of SCR Associates—Company
Use Only. These measures might not discourage a professional thief, but might
deter a casual thief, or at least make the computer relatively less desirable
because it would be more difficult to use or resell. Security experts also
 recommend using a generic carrying case, such as an attaché case, rather than a
custom carrying case that calls attention to itself and its contents.

• Consider devices that have a built-in fingerprint reader or facial recognition
system.

• Many notebook computers have a Universal Security
Slot (USS) that can be fastened to a cable lock or laptop
alarm. Again, while these precautions might not deter pro-
fessional thieves, they might discourage and deter casual
thieves.

• Back up all vital data before using the notebook computer
outside the office. Save and transport highly sensitive
data on removable media, such as a flash memory device,
instead of the computer’s hard drive.

• Use tracking software that directs the laptop to periodi-
cally contact a security tracking center. If the notebook is
stolen, the call-in identifies the computer and its physical
location. Armed with this information, the security track-
ing center can alert law enforcement agencies and commu-
nications providers.

• Apple, Google, and Microsoft offer services to locate lost
customer smartphones. The services also permit remote
data wipe and factory reset of the devices. For example,
Apple’s Find My iPhone app is shown in Figure 12-21.
Apple also provides a similar cloud-based service.

• While traveling, try to be alert to potential high-risk situ-
ations, where a thief, or thieves, might create a distraction
and attempt to snatch the computer. These situations often
occur in crowded, noisy places like airport baggage claim
areas, rental car counters, and security checkpoints. Also,
when traveling by car, store the computer in a trunk or
lockable compartment where it will not be visible.

FIGURE 12-21 Apple’s Find My iPhone app
helps customers locate lost devices and perform
remote data wipes and factory resets if needed.
Source: Scott Tilley/Apple

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

426

Chapter 12 Managing Systems Support and Security

12.6 Security Levels

• Establish stringent password protection policies that require minimum length
and complexity and set a limit on how many times an invalid password can be
entered before the system locks itself down. In some situations, consider estab-
lishing file encryption policies to protect extremely sensitive files.

CASE IN POINT 12.2: Outer banks cOunty

Outer Banks County is a 200-square-mile area in coastal North Carolina, and you are the
IT manager. The county has about a hundred office employees who perform clerical tasks in
 various departments. A recent budget crisis has resulted in a wage and hiring freeze, and morale
has declined. The county manager has asked you to install some type of keystroke logger to
monitor employees and determine whether they are fully productive. After your conversation,
you wonder whether there might be some potential privacy and security issues involved.

For example, does an employer have a duty to notify its employees that it is monitor-
ing them? Should the employer notify them even if not required to do so? From a human
resources viewpoint, what would be the best way to approach this issue? Also, does a
potential security issue exist? If an unauthorized person gained possession of the key-
stroke log, he or she might be able to uncover passwords and other sensitive data.

What are your conclusions? Are these issues important, and how would you respond
to the county manager’s recommendation? Before you answer, you should go on the
Internet and learn more about keystroke loggers generally, and specific products that
 currently are available.

12.6.2 Network Security
A network is defined as two or more devices that are connected for the purpose of
sending, receiving, and sharing data, which is called network traffic. In order to con-
nect to a network, a computer must have a network interface, which is a combination
of hardware and software that allows the computer to interact with the network. To
provide security for network traffic, data can be encrypted, which refers to a process
of encoding the data so it cannot be accessed without authorization.

ENCRYPTING NETWORK TRAFFIC: Network traffic can be intercepted and pos-
sibly altered, redirected, or recorded. For example, if an unencrypted, or plain text,
password or credit card number is transmitted over a network connection, it can be
stolen. When the traffic is encrypted, it still is visible, but its content and purpose are
masked.

Two commonly used encryption techniques are private key encryption and public
key encryption. Private key encryption is symmetric because a single key is used to
encrypt and decrypt information. While this method is simple and fast, it poses a fun-
damental problem. To use symmetric encryption, both the sender and receiver must
possess the same key beforehand, or it must be sent along with the message, which
increases the risk of interception and disclosure.

In contrast, public key encryption (PKE) is asymmetric, because each user has
a pair of keys: a public key and a private key. Public keys are used to encrypt mes-
sages. Users can share their public keys freely, while keeping their private keys tightly
guarded. Any message encrypted with a user’s public key can only be decrypted with
that user’s private key. This method is commonly used in secure online e-commerce
systems.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

427

Phase 5 Systems Support and Security

12.6 Security Levels

WIRELESS NETWORKS: As discussed in Chapter 10, wireless network security is a
vital concern because wireless transmission is much more vulnerable than traffic on a
wired network. However, if wireless traffic is encrypted, any data that is intercepted
by an unintended recipient will be useless to the intruder.

The earliest form of wireless security, called Wired Equivalent Privacy (WEP),
required each wireless client to use a special, pre-shared key. Although many home
and small office networks used this method, it provided relatively weak protection.

WEP was replaced by Wi-Fi Protected Access (WPA), which offered major secu-
rity improvements based on protocols created by the Wi-Fi Alliance. The most
recent wireless security enhancement, called WPA2, further strengthens the level of
wireless protection. WPA2 is an extension of WPA based on a full implementation
of the IEEE 802.11i standard. According to the Wi-Fi Alliance, the WPA2 standard
became mandatory for all new devices seeking Wi-Fi certification after 2006. WPA2 is
 compatible with WPA, so companies easily can migrate to the new security standard.

PRIVATE NETWORKS: It is not always practical to secure all network traffic.
Unfortunately, encrypting traffic increases the burden on a network, and can decrease
network performance significantly. In situations where network speed is essential,
such as a web server linked to a database server, many firms use a private network
to connect the computers. A private network is a dedicated connection, similar to a
leased telephone line. Each computer on the private network must have a dedicated
interface to the network, and no interface on the network should connect to any point
outside the network. In this configuration, unencrypted traffic safely can be transmit-
ted because it is not visible and cannot be intercepted from outside the network.

VIRTUAL PRIVATE NETWORKS: Private networks work well with a limited num-
ber of computers, but if a company wants to establish secure connections for a larger
group, it can create a virtual private network. A virtual private network (VPN) uses a
public network, such as the Internet or a company intranet, to connect remote users
securely. Instead of using a dedicated connection, a VPN allows remote clients to use
a special key exchange that must be authenticated by the VPN. Once authentication
is complete, a secure network connection, called a tunnel, is established between the
client and the access point of the local intranet. All traffic is encrypted through the
VPN tunnel, which provides an additional level of encryption and security. As more
companies allow employees to work from home, a VPN can provide acceptable levels
of security and reliability.

PORTS AND SERVICES: A port, which is identified by a number, is used to route
incoming traffic to the correct application on a computer. In TCP/IP networks, such
as the Internet, all traffic received by a computer contains a destination port. Because
the destination port determines where the traffic will be routed, the computer sorts
the traffic by port number, which is included in the transmitted data. An analogy
might be a large apartment building with multiple mailboxes. Each mailbox has the
same street address, but a different box number. Port security is critically important
because an attacker could use an open port to gain access to the system.

A service is an application that monitors, or listens on, a particular port. For
example, a typical email application listens on port 25. Any traffic received by that
port is routed to the email application. Services play an important role in computer
security, and they can be affected by port scans and denial-of-service attacks.

• Port scans. Port scans attempt to detect the services running on a computer
by trying to connect to various ports and recording the ports on which a
 connection was accepted. For example, the result of an open port 25 would

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

428

Chapter 12 Managing Systems Support and Security

12.6 Security Levels

indicate that a mail server is running. Port scans can be used to draw an
 accurate map of a network, and pinpoint possible weaknesses.

• Denial of service. A denial of service (DoS) attack occurs when an attacking com-
puter makes repeated requests to a service or services running on certain ports.
Because the target computer has to respond to each request, it can become bogged
down and fail to respond to legitimate requests. A much more devastating attack
based on this method is called a distributed denial of service (DDoS) attack. This
attack involves multiple attacking computers that can synchronize DOS attacks
and immobilize a server, as shown in Figure 12-22. A DDoS attack is an example
of the type of serious cyberattacks that United States Computer Emergency Readi-
ness Team (US-CERT), shown in Figure 12-23, was created to address.

FIGURE 12-22 In a DoS attack, an attacker sends numerous authentication requests with false return
addresses. The server tries unsuccessfully to send out authentication approval and is eventually disabled by the
floor of requests. More sophisticated DoS attacks are distributed (DDoS), as shown in this figure. Instead of a
single computer, the attacker uses an army of botnets (computers unknowingly infected with malware that are
difficult to trace) to attack the target.

Target

Botnet

Attacker

FIGURE 12-23 The US-CERT is a key player in the battle against cybersecurity threats.
Source: US-CERT

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

429

Phase 5 Systems Support and Security

12.6 Security Levels

FIREWALLS: A firewall is the main line of defense between a local network, or
intranet, and the Internet. A firewall must have at least one network interface with the
Internet, and at least one network interface with a local network or intranet. Firewall
software examines all network traffic sent to and from each network interface. Preset
rules establish certain conditions that determine whether the firewall will allow the
traffic to pass. When a matching rule is found, the firewall automatically accepts,
rejects, or drops the traffic. When a firewall rejects traffic, it sends a reply indicat-
ing that the traffic is not permissible. When a firewall drops traffic, no reply is sent.
 Firewalls can be configured to detect and respond to denial-of-service attacks, port
scans, and other suspicious activity.

Figure 12-24 shows a basic set of firewall rules for a company that has a web
server and a mail server. In this example, the firewall would accept public web server
traffic only on ports 80 and 443 and public mail server traffic only on port 25. The
firewall would allow private LAN traffic to any destination and port.

NETWORK INTRUSION DETECTION: Suppose an intruder attempts to gain access
to the system. Obviously, an intrusion alarm should be sounded when certain activity
or known attack patterns are detected. A network intrusion detection system (NIDS)
is like a burglar alarm that goes off when it detects a configuration violation. The
NIDS also can alert the administrator when it detects suspicious network traffic pat-
terns. An NIDS requires fine-tuning to detect the difference between legitimate net-
work traffic and an attack. It is also important that an NIDS be placed on a switch or
other network device that can monitor all network traffic. Although an NIDS requires
some administrative overhead, it can be very helpful in documenting the efforts of
attackers and analyzing network performance.

12.6.3 Application Security
In addition to securing the computer room and shielding network traffic, it is neces-
sary to protect all server-based applications. To do so, the analyst must analyze the
application’s functions, identify possible security concerns, and carefully study all
available documentation. Application security requires an understanding of services,
hardening, application permissions, input validation techniques, software patches and
updates, and software logs.

FIGURE 12-24 Examples of rules that determine whether the firewall will allow traffic to pass.

RULE INTERFACE SOURCE DESTINATION PORT ACTION

1 Public Any Web Server 80 Accept

2 Public Any Web Server 443 Accept

3 Public Any Web Server Any Reject

4 Public Any Mail Server 25 Accept

5 Public Any Mail Server Any Reject

6 Public Any Any Any Drop

7 Private LAN Any Any Accept

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

430

Chapter 12 Managing Systems Support and Security

12.6 Security Levels

SERVICES: The network security section explained how a service is an application
that monitors, or listens, on a particular port. Which services are running can be
determined by using a port scan utility. If a particular application is not needed, it
should be disabled. This will improve system security, performance, and reliability.
An unnecessary or improperly configured service could create a vulnerability called
a security hole. For example, if a loosely configured File Transfer Protocol (FTP) ser-
vice is available to a hacker, he or she might be able to upload destructive code to the
server.

HARDENING: The hardening process makes a system more secure by removing
unnecessary accounts, services, and features. Hardening is necessary because the
default configuration of some software packages might create vulnerability. For
example, initial software settings often include relatively weak account permissions
or file sharing controls. Hardening can be done manually or by using a configuration
template, which speeds up the process in a large organization.

Hardening also includes additional protection such as antivirus and antispyware
software. These programs can detect and remove malware, which is hostile soft-
ware designed to infiltrate, damage, or deny service to a computer system. Malware
includes worms, Trojan horses, keystroke loggers, and spyware, among others.

APPLICATION PERMISSIONS: Typically, an application is configured to be run
only by users who have specific rights. For example, an administrator account,
or superuser account, allows essentially unrestricted access. Other users might
be allowed to enter data, but not to modify or delete existing data. To prevent
unauthorized or destructive changes, the application should be configured so that
non-privileged users can access the program but cannot make changes to built-in
functions or configurations. User rights, also called permissions, are discussed in more
detail in the file security section.

INPUT VALIDATION: As discussed in Chapter 8, when designing the user interface,
input validation can safeguard data integrity and security. For example, if an applica-
tion requires a number from 1 to 10, what happens if an alphabetic character or the
number 31 is entered? If the application is designed properly, it will respond with an
appropriate error message. Chapter 8 also explained data entry and validation checks,
which are important techniques that can improve data integrity and quality. Failure
to validate input data can result in output errors, increased maintenance expense, and
erratic system behavior.

PATCHES AND UPDATES: In an operational system, security holes or vulnerabilities
might be discovered at any time. Patches can be used to repair these holes, reduce
vulnerability, and update the system. Like any other new software, patches must be
tested carefully. Before applying a patch, an effort should be made to determine the
risks of not applying the patch, and the possibility that the patch might affect other
areas of the system.

Many firms purchase software packages called third-party software. Patches
released by third-party software vendors usually are safe, but any patch must be
reviewed carefully before it is applied. Because researching and applying patches is
time consuming and expensive, many software vendors offer an automatic update
service that enables an application to contact the vendor’s server and check for a
needed patch or update. Depending on the configuration, available patches can be
downloaded and installed without human intervention or might require approval by
IT managers. Although it is convenient, automatic updating carries substantial risks,

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

431

Phase 5 Systems Support and Security

12.6 Security Levels

and should be used only if changes can readily be undone if unexpected results or
problems develop.

SOFTWARE LOGS: Operating systems and applications typically maintain a log
that documents all events, including dates, times, and other specific information. Logs
can be important in understanding past attacks and preventing future intrusions. For
example, a pattern of login errors might reveal the details of an intrusion attempt.
A log also can include system error messages, login histories, file manipulation, and
other information that could help track down unauthorized use. Software logs should
be monitored constantly to determine if misuse or wrongdoing has occurred. As
explained in the network security section, an NIDS can alert a system administrator
whenever suspicious events occur.

12.6.4 File Security
Computer configuration settings, users’ personal information, and other sensitive data
are stored in files. The safety and protection of these files is a vital element in any
computer security program, and a systems analyst needs to consider the importance
of encryption or encoding files to make them unreadable by unauthorized users, and
permissions, which can be assigned to individual users or to user groups.

ENCRYPTION: As explained in the section on network security, encryption scram-
bles the contents of a file or document to protect it from unauthorized access. All
corporate data must be protected, but encryption is especially important for sensitive
material such as personnel or financial records. User data can be encrypted using fea-
tures built-in to most modern operating systems.

PERMISSIONS: File security is based on establishing a set of permissions, which
describe the rights a user has to a particular file or directory on a server. The most
common permissions are read, write, and execute. Typical examples of permissions
include the following:

• Read a file: The user can read the contents of the file.

• Write a file: The user can change the contents of the file.

• Execute a file: The user can run the file, if it is a program.

• Read a directory: The user can list the contents of the directory.

• Write a directory: The user can add and remove files in the directory.

When assigning file permissions, a system administrator should ensure that each
user has only the minimum permissions necessary to perform his or her work—not
more. In some firms, the system administrator has broad discretion in assigning these
levels; in other companies, an appropriate level of management approval is required
for any permissions above a standard user level. In any case, a well-documented and
enforced permissions policy is necessary to promote file security and reduce system
vulnerability.

USER GROUPS: Individual users who need to collaborate and share files often
request a higher level of permissions that would enable any of them to change file
content. A better approach, from a system administrator’s viewpoint, might be to
create a user group, add specific users, and assign file permissions to the group,
rather than to the individuals. Many firms use this approach because it allows a
user’s rights to be determined by his or her work responsibilities, rather than by

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

432

Chapter 12 Managing Systems Support and Security

12.6 Security Levels

job title or rank. If a person is transferred, he or she leaves certain groups and joins
others that reflect current job duties.

12.6.5 User Security
User security involves the identification of system users and consideration of user-re-
lated security issues. Regardless of other security precautions and features, security
ultimately depends on system users and their habits, practices, and willingness to sup-
port security goals. Unfortunately, many system break-ins begin with a user account
that is compromised in some way. Typically, an intruder accesses the system using
the compromised account and may attempt a privilege escalation attack, which is an
unauthorized attempt to increase permission levels.

User security requires identity management, comprehensive password protection,
defenses against social engineering, an effective means of overcoming user resistance,
and consideration of new technologies. These topics are discussed in the following
sections.

IDENTITY MANAGEMENT: Identity management refers to controls and procedures
necessary to identify legitimate users and system components. An identity manage-
ment strategy must balance technology, security, privacy, cost, and user productivity.
Identity management is an evolving technology that is being pursued intensively by
corporations, IT associations, and governments.

Gartner has described identity management as a “set of electronic records that
represent . . . people, machines, devices, applications, and services.” This definition
suggests that not just users, but also each component in a system, must have a veri-
fiable identity that is based on unique characteristics. For example, user authentica-
tion might be based on a combination of a password, a Social Security number, an
employee number, a job title, and a physical location.

Because of the devastating consequences of intrusion, IT managers should give top
priority to identity management strategies and solutions.

PASSWORD PROTECTION: As the section on physical security points out, a secure
system must have a password policy that requires minimum length, complexity, and a
limit on invalid login attempts. Although passwords are a key element in any security
program, users often choose passwords that are easy to recall, and they sometimes
resent having to remember complex passwords. For example, for several years in a
row, one of the most common computer passwords has been “123456,” an unfortu-
nate choice that is trivially easy to crack.

As long as passwords are used, IT managers should insist on passwords that have
a minimum length, require a combination of case-sensitive letters and numbers, and
must be changed periodically. Unfortunately, any password can be compromised if a
user writes it down and stores it in an easily accessible location such as a desk, a bul-
letin board, or under the keyboard.

Several years ago, a hacker made headlines by gaining access to the email account
of a political candidate. The intruder signed on as the candidate, requested a new
password, guessed the answers to the security questions, and was able to enter the
account. These actions were totally illegal and constituted a serious felony under fed-
eral law.

SOCIAL ENGINEERING: Even if users are protecting and securing their pass-
words, an intruder might attempt to gain unauthorized access to a system using a
tactic called social engineering. In a social engineering attack, an intruder uses social

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

433

Phase 5 Systems Support and Security

12.6 Security Levels

interaction to gain access to a computer system. For example, the intruder might pre-
tend to be a new employee, an outside technician, or a journalist. Through a series of
questions, the intruder tries to obtain the information that he or she needs to compro-
mise the system. A common ploy is for the attacker to contact several people in the
same organization and use some information from one source to gain credibility and
entry to another source.

An intruder also might contact the help desk and say, “Hi. This is Anna Dressler
from accounting. I seem to have forgotten my password. Could you give me a new
one?” Although this request might be legitimate, it also might be an attacker trying to
access the system. A password never should be given based solely on this telephone
call. The user should be required to provide further information to validate his or her
identity, such as a unique employee ID, a telephone extension, and a company email
address.

One highly publicized form of social engineering is called pretexting, which is a
method of obtaining personal information under false pretenses. Pretexting is com-
monly used as part of identity theft, wherein personal information or online creden-
tials are stolen and used for illegal purposes. The Federal Trade Commission’s division
of Privacy, Identity & Online Security has a section dedicated to helping consum-
ers battle identify theft. The best way to combat social engineering attacks is with
employee education, more training, and a high level of awareness during day-to-day
operations.

USER RESISTANCE: Many users, including some senior managers, dislike tight secu-
rity measures because the measures can be inconvenient and time consuming. Systems
analysts should remind users that the company owes the best possible security to its
customers, who have entrusted personal information to the firm; to its employees,
who also have personal information stored in company files; and to its shareholders,
who expect the company to have a suitable, effective, and comprehensive security
program that will safeguard company assets and resources. When users understand
this overall commitment to security and feel that they are part of it, they are more
likely to choose better passwords, be more alert to security issues, and contribute to
the overall success of the company’s security program.

NEW TECHNOLOGIES: In addition to traditional measures and biometric devices,
new technologies can enhance security and prevent unauthorized access. For example,
the security token shown in Figure 12-25 is a
physical device that authenticates a legitimate
user. Some firms provide employees with secu-
rity tokens that generate a numeric validation
code, which the employee enters in addition to
his or her normal password.

Unfortunately, new technology sometimes
creates new risks. For example, a powerful
search application can scan all the files, docu-
ments, emails, chats, and stored webpages on
a user’s computer. Although this might pro-
vide a convenient way for users to locate and
retrieve their data, it also can make it easier
for an intruder to obtain private information,
especially in a multiuser environment, because
the program can recall and display almost
anything stored on the computer. Also, if an

FIGURE 12-25 Security tokens, which come in various forms, can
provide an additional level of security.
AMJonik.pl/Shutterstock.com

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

434

Chapter 12 Managing Systems Support and Security

12.6 Security Levels

intruder uses the term password in a search, the program might be able to find pass-
word reminders that are stored anywhere on the computer. To increase privacy for
multiuser computers, each user should have a separate account, with individual user-
names and passwords.

Business and personal users also should use caution when they consider cloud-
based storage and services. In this environment, where the technology changes
rapidly, the best bet may be to work with well-established vendors, who can provide
significant cloud security experience and safeguards.

12.6.6 Procedural Security
Procedural security, also called operational security, is concerned with managerial
policies and controls that ensure secure operations. In fact, many IT professionals
believe that security depends more on managerial issues than technology. Manage-
ment must work to establish a corporate culture that stresses the importance of secu-
rity to the firm and its people. Procedural security defines how particular tasks are to
be performed, from large-scale data backups to everyday tasks such as storing emails
or forms. Other procedures might spell out how to update firewall software or how
security personnel should treat suspected attackers.

All employees should understand that they have a personal responsibility for secu-
rity. For example, an employee handbook might require that users log out of their sys-
tem accounts, clear their desks, and secure all documents before leaving for the day.
These policies reduce the risk of dumpster diving attacks, in which an intruder raids
desks or trash bins for valuable information. In addition, paper shredders should be
used to destroy sensitive documents.

Procedural security also includes safeguarding certain procedures that would be
valuable to an attacker. The most common approach is a need-to-know concept,
where access is limited to employees who need the information to perform secu-
rity-related tasks. Many firms also apply a set of classification levels for access to
company documents. For example, highly sensitive technical documents might be
available only to the IT support team, while user-related materials would be available
to most company employees. If classification levels are used, they should be identified
clearly and enforced consistently.

Procedural security must be supported by upper management and fully explained
to all employees. The organization must provide training to explain the procedures
and issue reminders from time to time that will make security issues a priority.

CASE IN POINT 12.3: chain Link cOnsuLting, inc.

Chain Link Consulting is an IT consulting firm that specializes in system security issues. The com-
pany’s president has asked you to help her put together a presentation to a group of potential
clients at a trade show meeting next month. First, she wants you to review system security issues,
considering all six security levels. Then she wants you to come up with a list of ways that Chain
Link could test a client’s security practices, in order to get a real-world assessment of vulnerability.

To make matters more interesting, she told you it was OK to be creative in your recom-
mendations, but not to propose any action that would be illegal or unethical. For example,
it would be OK to pose as a job applicant with false references to see if they were being
checked, but it would not be appropriate to pick a lock and enter the computer room.

Your report is due tomorrow. What will you suggest?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

435

Phase 5 Systems Support and Security

12.7 Backup and Recovery

12.7 BackUp and recovery

Every system must provide for data backup and recovery. Backup refers to copying
data at prescribed intervals, or continuously. Recovery involves restoring the data and
restarting the system after an interruption. An overall backup and recovery plan that
prepares for a potential disaster is called a disaster recovery plan.

12.7.1 Global Terrorism
The tragic events of September 11, 2001, and increased concern about global terror-
ism, have led many companies to upgrade their backup and disaster recovery plans.
Heightened focus on disaster recovery has spawned a whole new industry, which
includes new tools and strategies. Many IT professionals feel that terrorism concerns
have raised security awareness throughout the corporate world. Although they are
separate topics, backup and disaster recovery issues usually are intertwined.

12.7.2 Backup Policies
The cornerstone of business data protection is a backup policy, which contains
detailed instructions and procedures. An effective backup policy can help a firm con-
tinue business operations and survive a catastrophe. The backup policy should specify
backup media, backup types, and retention periods.

BACKUP MEDIA: Backup media can include tape, hard drives, optical storage, and
online storage. Physical backups must be carefully identified and stored in a secure
location. Offsiting refers to the practice of storing backup media away from the main
business location, in order to mitigate the risk of a catastrophic disaster such as a
flood, a fire, or an earthquake. Even if the operating system includes a backup utility,
many system administrators prefer to use specialized third-party software that offers
more options and better controls for large-scale operations.

In addition to onsite data storage, cloud-based storage is growing rapidly. Many
companies use online backup and retrieval services offered by leading vendors. For a
small- or medium-sized firm, this option can be cost effective and reliable.

BACKUP TYPES: Backups can be full, differential, incremental, or continuous. A full
backup is a complete backup of every file on the system. Frequent full backups are
time consuming and redundant if most files are unchanged since the last full backup.
Instead of performing a full backup, another option is to perform a differential
backup, which is faster because it backs up only the files that are new or changed
since the last full backup. To restore the data to its original state, the last full backup
is restored first, and then the last differential backup is restored. Many IT managers
believe that a combination of full and differential backups is the best option because
it uses the least amount of storage space and is simple.

The fastest method, called an incremental backup, only includes recent files that
never have been backed up by any method. This approach, however, requires multiple
steps to restore the data—one for each incremental backup.

Most large systems use continuous backup, which is a real-time streaming method
that records all system activity as it occurs. This method requires hardware, soft-
ware, and substantial network capacity. However, system restoration is rapid and
effective because data is being captured in real time, as it occurs. Continuous backup
often uses a redundant array of independent disks (RAID) system that mirrors the
data. RAID systems are called fault tolerant because a failure of any one disk does

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

436

Chapter 12 Managing Systems Support and Security

12.7 Backup and Recovery

not disable the system. Compared to one large drive, a RAID design offers better
performance, greater capacity, and improved reliability. When installed on a server,
a RAID array of multiple drives appears to the computer as a single logical drive.
 Figure 12-26 shows a comparison of various backup methods.

FIGURE 12-26 Comparison of full, differential, incremental, and continuous backup methods.

Comparison of Backup Methods

BACKUP TYPE CHARACTERISTICS PROS AND CONS
TYPICAL
FREQUENCY

Full Backs up all files. Slowest backup time and
requires the most storage
space. Rapid recovery
because all files are restored
in a single step.

Monthly or
weekly.

Differential Only backs up files that
are new or changed
since the last full
backup.

Faster than a full backup and
requires less storage space.
All data can be restored in
just two steps by using the
last full backup and the last
differential backup.

Weekly or daily.

Incremental Only backs up files that
are new or changed
since the last backup of
any kind.

Fastest backup and requires
the least storage space
because it only saves files
that have never been backed
up. However, requires many
restore steps—one for each
incremental backup.

Daily or more
often.

Continuous Real-time, streaming
method that records
all system activity.

Very expensive hardware,
software, and network
capacity. Recovery is very
fast because system can be
restored to just before an
interruption.

Usually only
used by large
firms and
network-based
systems.

RETENTION PERIODS: Backups are stored for a specific retention period after
which they are either destroyed or the backup media is reused. Retention periods can
be a specific number of months or years, depending on legal requirements and com-
pany policy. Stored media must be secured, protected, and inventoried periodically.

12.7.3 Business Continuity Issues
Global concern about terrorism has raised awareness levels and increased top
management support for a business continuity strategy in the event of an emergency.
A disaster recovery plan describes actions to be taken, specifies key individuals and
rescue authorities to be notified, and spells out the role of employees in evacuation,
mitigation, and recovery efforts. The disaster recovery plan should be accompanied by
a test plan, which can simulate various levels of emergencies and record the responses,
which can be analyzed and improved as necessary.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

437

Phase 5 Systems Support and Security

12.8 System Retirement

After personnel are safe, damage to company assets should be mitigated. The plan
might require shutting down systems to prevent further data loss or moving physical
assets to a secure location. Afterward, the plan should focus on resuming business
operations, including the salvaging or replacement of equipment and the recovery
of backup data. The main objective of a disaster recovery plan is to restore business
operations to pre-disaster levels.

Disaster recovery plans are often part of a larger business continuity plan (BCP),
which goes beyond a recovery plan, and defines how critical business functions can
continue in the event of a major disruption. Some BCPs specify the use of a hot site.
A hot site is an alternate IT location, anywhere in the world, that can support critical
systems in the event of a power outage, system crash, or physical catastrophe. A hot
site requires data replication, which means that any transaction on the primary sys-
tem must be mirrored on the hot site. If the primary system becomes unavailable, the
hot site will have the latest data and can function seamlessly, with no downtime.

Although hot sites are attractive backup solutions, they are very expensive. How-
ever, a hot site provides the best insurance against major business interruptions. In
addition to hot sites, business insurance can be important in a worst-case scenario.
Although expensive, business insurance can offset the financial impact of system fail-
ure and business interruption.

12.8 systeM retireMent

At some point, every system becomes obsolete and is ripe for retirement. For example,
in the 1960s, punched cards represented the cutting edge of data management. Data
was stored by punching holes at various positions and was retrieved by machines that
could sense the presence or absence of a punched hole. Most full-size cards stored
only 80 characters, or bytes, so more than 12,000 cards would be needed to store a
megabyte. Punched cards were even used as checks and utility bills. Today, this tech-
nology is obsolete.

Constantly changing technology means that every system has a limited economic
life span. Analysts and managers can anticipate system obsolescence in several ways
and it never should come as a complete surprise.

A system becomes obsolete when it no longer supports user needs, or when the
platform becomes outmoded. The most common reason for discontinuing a system is
that it has reached the end of its economically useful life, as indicated by the follow-
ing signs:

• The system’s maintenance history indicates that adaptive and corrective main-
tenance are increasing steadily.

• Operational costs or execution times are increasing rapidly, and routine perfec-
tive maintenance does not reverse or slow the trend.

• A software package is available that provides the same or additional services
faster, better, and less expensively than the current system.

• New technology offers a way to perform the same or additional functions more
efficiently.

• Maintenance changes or additions are difficult and expensive to perform.

• Users request significant new features to support business requirements.

Systems operation and support continue until a replacement system is installed.
Toward the end of a system’s operational life, users are unlikely to submit new

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

438

Chapter 12 Managing Systems Support and Security

12.9 Future Challenges and Opportunities

requests for adaptive maintenance because they are looking forward to the new
release. Similarly, the IT staff usually does not perform much perfective or preventive
maintenance because the system will not be around long enough to justify the cost.
A system in its final stages requires corrective maintenance only to keep the system
operational.

User satisfaction typically determines the life span of a system. The critical success
factor for any system is whether or not it helps users achieve their operational and
business goals. All negative feedback should be investigated and documented, because
it can be the first signal of system obsolescence.

At some point in a system’s operational life, maintenance costs start to increase,
users begin to ask for more features and capability, new systems requests are
 submitted, and the SDLC begins again.

12.9 fUtUre chaLLenges and opportUnities

There is an old saying that the only constant in life is change. The same is true for
information technology—except that the rate of change in IT seems to increase every
year. Rapid change can present numerous challenges to organizations and individuals,
but it can also offer exciting new opportunities. The secret to success is to be ready
for the changes that are bound to occur and be proactive, not reactive.

No prudent professional would start a complex journey without a map and a plan.
To navigate the future of information technology, companies require strategic plans,
which were discussed in Chapter 2. An individual also needs a plan to reach to a spe-
cific goal or destination. This section discusses trends and predictions that will affect
all IT professionals. To prepare for the challenges ahead, individuals will need to plan
and develop their knowledge, skills, and credentials.

12.9.1 Trends and Predictions
Navigating an IT career can be compared to sailing a small ship in difficult seas.
Even a very good captain with a clear map for guidance will be subjected to forces
and circumstances that are sometimes beyond their control. What can be done is to
 understand these forces and try to prepare for them. Figure 12-27 describes some
winds of change that may influence IT trends, including globalization, technology
integration, service orientation, cloud computing, and the workplace of the future.

In addition to the trends described in Figure 12-27, most firms will face economic,
social, and political uncertainty. Many IT experts believe that in this environment, the
top priorities will be the safety and security of corporate operations, agility and the
ability to quickly respond to changing market forces, and bottom-line TCO. Here are
some examples of possible trends and developments over the next few years:

• Cybercrime will increase significantly, with negative financial, social, and
national security implications.

• Smartphones and tablets will become the dominant computing platform for
most users, bypassing the traditional PC or laptop as the device of choice.

• Software as a Service (SaaS) will become the norm, which will affect business
models and consumer costs as the industry moves from a purchase to a leasing
model for computer applications.

• Cloud computing will become the principal computing infrastructure for the
enterprise, which in turn will enable software-as-a-service and lower TCO.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

439

Phase 5 Systems Support and Security

12.9 Future Challenges and Opportunities

TREND DESCRIPTION
IMPACT ON IT
GENERALLY

IMPACT ON FUTURE
SYSTEMS ANALYSTS

Globalization New kinds of corporations will
be globally integrated, driven
by the Internet, and free of
traditional trade barriers.

Language skills will be extremely
important. Technology will open
new opportunities for developing
countries to compete more
effectively. Knowledge workers
will communicate and collaborate
across borders and boundaries.
Work will be done 24/7 across
multiple time zones.

Systems analysts will be directly
affected by global trends. They will
probably work for more firms in
their careers, be exposed to more
information, need more technical
skills, and see greater change than
at any time in history.

Technology
Integration

Powered by an enormous
increase in computing
power, new IT models will
include networks with smart,
interconnected devices such
as communication systems,
automobiles, entertainment,
transportation infrastructure,
and “smart” power grids.

New technology will drive major
changes in how personal and
business services are provided.
Firms will compete in a global
marketplace that will reward
innovation, creativity, and positive
societal outcomes.

The systems analyst will need
a mix of business savvy and
technical skills. He or she will have
a unique opportunity to work
at the intersection of business
operations and IT. Synergy
between technology growth and
globalization will create jobs and
opportunities for people with the
right skills.

Service
Orientation

A business model of computing
where processing capabilities
and data storage are leased
(rented) instead of bought
(owned). Computing capabilities
are seen as services used
on-demand, like electricity or
water, rather than as managed
programs.

Service orientation is a paradigm
shift. It represents a maturing
of the field, where end users no
longer care about technical details
as much as business functionality.
IT systems will be built using SOA
(service-oriented architecture)
to enable current and new
functionality to be delivered as
services to customers.

Systems analysts will need to
increase their business acumen to
work effectively in a service-oriented
IT environment. Technical skills will
still be needed, but services are
about fulfilling business requirements.

Cloud
Computing

Cloud computing is a new
model for delivering business
and IT services. It will have a
profound impact on business
strategies, including product
innovation, marketing, customer
relationships, and social media.
Cloud computing provides the
IT infrastructure that enables
service orientation.

The full potential of cloud
computing will be realized by
firms that can integrate cloud-
based infrastructure, services,
servers, data access, and a secure
environment. Creativity and
innovation will be rewarded, and
competition will be intense. Cloud
computing will lower TCO by
reducing capital expenditures.

Like any new technology, systems
development for cloud-based
applications will be a challenge
for some and an opportunity
for others. Regardless of the
development method or platform,
an analyst will need business savvy
and technical know-how to help an
organization take full advantage of
the cloud.

The Workplace In the face of worldwide
competition and enormous
technology change, firms will
stress innovation, vision, and
the ability to adapt rapidly. The
ability to think critically will be
vital.

Successful IT workers must be able
to innovate, analyze, communicate
effectively, and “think outside the
box.” The winners will be those
who can adapt to change and
embrace new technology and new
ways of doing business.

Students preparing for the
workplace of tomorrow will
need a strong skill set. Systems
analysts will be expected to bring
communications, modeling, problem-
solving, decision making, and critical
thinking skills to the workplace —
and to be aware of ethical issues that
might affect them.

FIGURE 12-27 Major trends and their impact on IT in general and on future systems analysts.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

440

Chapter 12 Managing Systems Support and Security

12.9 Future Challenges and Opportunities

• Insourcing (the moving of jobs from off-shore locations back home) will
increase, due to economic factors such as higher wages in emerging markets,
improved automation through the use of sophisticated manufacturing robots,
security concerns from outsourced components (hardware and software) devel-
oped overseas, and political pressure to preserve jobs.

It is entirely possible that large enterprises would require suppliers to certify their
security credentials and sourcing policies. Another issue might relate to the growth of
cloud computing and large-scale data centers such as the one shown in Figure 12-28.
Access controls and issues related to international law concerning ownership and
surveillance of network activity between the data centers and customers around the
world will become progressively more important as the digital life of companies and
individuals are placed online.

FIGURE 12-28 The rapid growth of data centers and cloud computing has increased security
and privacy concerns.
Oleksiy Mark/Shutterstock.com

It’s also possible that large enterprises will require suppliers to certify their green
credentials and sourcing policies. One issue might relate to the explosion of data
storage and server farms, such as the one shown in Figure 12-28. These server farms
can use massive amounts of electricity, for normal operation and for cooling, which
affects the environment and the corporate bottom line.

12.9.2 Strategic Planning for IT Professionals
A systems analyst should think like a small business entrepreneur who has certain assets,
potential liabilities, and specific goals. Individuals, like companies, must have a strategic
plan. The starting point is to formulate an answer to the following question: Have career
goals been set for the next year, the next three years, and the next five years?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

441

Phase 5 Systems Support and Security

12.9 Future Challenges and Opportunities

Working backward from these goals, intermediate milestones can be developed. An
analyst’s career can be managed just as an IT project would be managed. The project
management tools described in Chapter 3 can be used to construct a Gantt chart or a
PERT/CPM chart using months (or years) as time units. Once the plan is developed, it
should be monitored regularly to stay on track. As with an agile enterprise, progress
toward satisfying career goals should be corrected as needed.

12.9.3 IT Credentials and Certification
In recent years, technical credentials and certification have become extremely important
to IT employers and employees. In a broad sense, credentials include formal degrees,
diplomas, or certificates granted by learning institutions to show that a certain level
of education has been achieved. The term certification also has a special meaning that
relates to specific hardware and software skills that can be measured and verified by
examination. For example, a person might have a two- or four-year degree in Informa-
tion Systems and possess an ISTQB foundation level certification shown in Figure 12-29,
which attests to the person’s software testing knowledge and skills.

FIGURE 12-29 ASTQB has created a very successful scheme for certifying software testers.
Source: American Software Testing Qualifications Board, Inc.

Rapid changes in the IT field require professionals adopt a life-long learning
approach to managing their career. Even advanced degrees from universities have
a short half-life, which means continuing education credits are needed to maintain
competency. Many professional organizations offer continuing education courses and

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

442

Chapter 12 Managing Systems Support and Security

12.9 Future Challenges and Opportunities

credentialed certificates, such as the ACM and the IEEE, as do IT industry leaders
such as Microsoft, Cisco, and Oracle.

12.9.4 Critical Thinking Skills
In addition to technical skills, systems analysts must have soft skills, such as commu-
nications, interpersonal, and perceptive abilities. In fact, employers often lament the
fact that their new hires are technically adept but lacking in these other areas. For a
successful career, these areas must be mastered too—particularly for more senior lead-
ership positions in the organization.

IT professionals also need critical thinking skills to succeed in the workplace.
Perhaps the most important skill taught to students in school is how to learn, so that
they can adapt to dynamic environments later in their career. For example, it’s not so
important for developers to know the latest programming languages as it is for them
to be able to learn a new programming language very quickly.

The importance of critical thinking skills has been recognized for some time. They
have been part of the higher cognitive levels of Bloom’s taxonomy of learning objec-
tives in education for many years. What has changed—particularly within informa-
tion technology—is the relative importance of critical thinking skills for long-term
career success.

Our digital society is inundated with massive amounts of data. Data mining,
sophisticated algorithms, and technical innovation are important, but the most valu-
able asset is an employee who can solve problems. The IT community has become
interested in critical thinking skills that can help a person find, organize, analyze, and
use the information that he or she needs on the job. Many employers now seek criti-
cal thinkers who can locate data, identify important facts, and apply their knowledge
in real-world decisions.

Many training courses exist for technical skills but developing critical thinking
skills is equally important. Performing practice tasks that resemble actual workplace
tasks can develop critical thinking skills. Studying systems analysis and design can
help, because it provides a solid foundation in techniques for developing models,
organizing data, and recognizing patterns. Just as with hardware or software skills,
formal certification is valuable in the job marketplace, but the greatest value is in
learning the skills and using them to achieve career goals.

Many instructors find that individual and team-based exercises can strengthen
critical thinking skills. Examples include games, puzzles, brainstorming, creative
problem-solving, decision tables, working with ethical questions, Boolean logic, Venn
diagrams, and using cause-and-effect tools such as Pareto charts, X-Y diagrams, and
fishbone diagrams, all of which are found in this text.

12.9.5 Cyberethics
As computers permeate more and more of our lives, the decisions made by IT profes-
sionals can have serious implications. Situations may arise involving ethical consider-
ations that are not easy to resolve. Nevertheless, ethical, social, and legal aspects of IT
are topics that today’s systems analyst should be prepared to address.

In the two scenarios presented in the following “Question of Ethics” section, ask
yourself what would you do? Where would you draw the line? How much would
you be willing to risk doing what you thought was the right thing? The decisions you
make could well affect your job and future employment (Scenario 1), but there are
other situations where the implications can be even more severe (Scenario 2).

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

443

Phase 5 Systems Support and Security

12.10 Summary

A QUESTION OF ETHICS

“Better blow the whistle,” says your friend and project teammate at work. “The project
is out of control, and you know it!” “Maybe so,” you respond, “But that’s not my call—I’m
not the project manager.” What you don’t say is that the project manager feels like her
career is on the line, and she is reluctant to bring bad news to management at this time.
She honestly believes that the project can catch up and says that a bad report on a major
project could result in bad publicity for the firm and frighten potential customers.

To be fair, the next management progress report is scheduled in three weeks. It is
possible that the team could catch up, but you doubt it. You wonder if there is an ethical
question here: Even though the report isn’t due yet, should a significant problem be
reported to management as soon as possible? You are concerned about the issue, and you
decide to discuss it with Stephanie. What will you say to her?

iStock.com/faberfoto_it

A QUESTION OF ETHICS

SCENARIO 1: You have just completed a routine security audit on the company’s
information systems, and you found several areas of vulnerability. For example, file permis-
sions have not been updated in some time, no comprehensive password policy exists, and
network traffic is not fully encrypted. You noted these areas, among others, in a report to
your supervisor. The report included specific recommendations to fix the problems.

Your supervisor responded by saying that budgets are tight right now, and she could
not approve your requests to resolve these issues. As an IT professional, you are very
uncomfortable with the risk level, but you have been unable to sway your supervisor.
When you discussed the situation with a colleague, he said, “Why worry about it? If it’s
good enough for her, it should be good enough for you.”

What do you think of your colleague’s advice, and why? Is this an ethical question? If
you are still is uncomfortable, what are your options?

SCENARIO 2: You work for a large IT company. The company is presented with a legal
directive from the federal government to divulge personal data regarding some of the
company’s customers who are suspected of wrongdoing.

You feel that this is a violation of the customers’ privacy and you are reluctant to com-
ply with the request. Your boss tells you the company has no choice; it must follow the
law. You are told you can always resign from the company if you feel so strongly about the
situation.

Instead of complying or resigning, you go public. You use the media to advocate your
point of view for freedom and privacy, even while knowing that your actions will have
far-reaching consequences. Instead of just losing your job, you risk losing your freedom
and your future.

Did you do the right thing? Are you a hero of free speech or a criminal (and possibly
even a traitor)? What other options were available to you? What should the company have
done when you went public? What should the government do?

12.10 sUMMary

Systems support and security cover the period from the implementation of an
information system until the system no longer is used. A systems analyst’s pri-
mary involvement with an operational system is to manage and solve user support
requests.

Corrective maintenance includes changes to correct errors. Adaptive mainte-
nance satisfies new systems requirements, and perfective maintenance makes the
system more efficient. Adaptive and perfective maintenance changes often are called
enhancements. Preventive maintenance is performed to avoid future problems.

The typical maintenance process resembles a miniature version of the systems
development life cycle. A system request for maintenance work is submitted and
evaluated. If it is accepted, the request is prioritized and scheduled for the IT group.
The maintenance team then follows a logical progression of investigation, analysis,
design, development, testing, and implementation.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

444

Chapter 12 Managing Systems Support and Security

12.10 Summary

Corrective maintenance projects occur when a user or an IT staff member reports
a problem. Standard maintenance procedures usually are followed for relatively
minor errors but work often begins immediately when users report significant errors.

In contrast to corrective maintenance, adaptive, perfective, and preventive main-
tenance projects always follow the organization’s standard maintenance procedures.
Adaptive maintenance projects occur in response to user requests for improvements
to meet changes in the business or operating environments. The IT staff usually ini-
tiates perfective maintenance projects to improve performance or maintainability.
Automated program restructuring and reengineering are forms of perfective mainte-
nance. In order to avoid future problems, IT staff perform preventive maintenance,
which involves analysis of areas where trouble is likely to occur.

A maintenance team consists of one or more systems analysts and programmers.
Systems analysts need the same talents and abilities for maintenance work as they use
when developing a new system. Many IT departments are organized into separate
new development and maintenance groups where staff members are rotated from one
group to the other.

CM is necessary to handle maintenance requests, to manage different versions
of the information system, and to distribute documentation changes. Maintenance
changes can be implemented as they are completed, or a release methodology can
be used in which all noncritical maintenance changes are collected and implemented
simultaneously. A release methodology usually is cost effective and advantageous for
users because they do not have to work with a constantly changing system. Systems
analysts use functional, allocated, and product baselines as formal reference points to
measure system characteristics at a specific time.

System performance measurements include response time, bandwidth, throughput,
and turnaround time. Capacity management uses those measurements to forecast
what is needed to provide future levels of service and support. Also, CASE tools that
include system evaluation and maintenance features can be used during the systems
operation, security, and support phase.

Security is a vital part of every information system. System security is dependent
upon a comprehensive security policy that defines how organizational assets are to be
protected and how attacks are to be responded to.

Risk management creates a workable security policy by identifying, analyzing,
anticipating, and reducing risks to an acceptable level. Because information systems
face a wide array of threats and attacks, six separate but interrelated security lev-
els should be analyzed: physical security, network security, application security, file
security, user security, and procedural security. Physical security concerns the phys-
ical environment, including critical equipment located in a computer room, as well
as safeguards for servers and desktops throughout the company. Network security
involves encryption techniques, as well as private networks and other protective
measures, especially where wireless transmissions are concerned. Application secu-
rity requires an understanding of services, hardening, application permissions, input
validation techniques, software patches and updates, and software logs. File security
involves the use of encryption and permissions, which can be assigned to individual
users or to user groups. User security involves identity management techniques, a
comprehensive password protection policy, an awareness of social engineering risks,
and an effective means of overcoming user resistance. Procedural security involves
managerial controls and policies that ensure secure operations.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

445

Phase 5 Systems Support and Security

12.10 Summary

Data backup and recovery issues include backup media, backup schedules, and
retention periods, as well as backup designs such as RAID and cloud-based backups.

All information systems eventually become obsolete. The end of a system’s eco-
nomic life usually is signaled by rapidly increasing maintenance or operating costs,
the availability of new software or hardware, or new requirements that cannot be
achieved easily by the existing system. When a certain point is reached, an informa-
tion system must be replaced, and the entire systems development life cycle begins
again.

Many IT experts predict intense competition in the future, along with economic,
political, and social uncertainty. Facing these challenges, top IT priorities will be the
safety and security of corporate operations, environmental concerns, and bottom-line
TCO.

An IT professional should have a strategic career plan that includes long-term
goals and intermediate milestones. An important element of a personal strategic plan
is the acquisition of IT credentials and certifications that document specific knowl-
edge and skills. Many IT industry leaders offer certification. In addition to technical
ability, other skills, such as critical thinking skills, also are extremely valuable.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

446 Key Terms

Chapter 12 Managing Systems Support and Security

acceptance One of four risk control strategies. In acceptance, the risk is accepted and nothing is done.
Risk is usually accepted only if protection from risk is clearly not worth the expense.

adaptive maintenance Adds new capability and enhancements to an existing system.

administrator account An account that allows essentially unrestricted access to the application.

allocated baseline Documents the system at the end of the design phase and identifies any changes since
the functional baseline. The allocated baseline includes testing and verification of all system require-
ments and features.

applications programmer A person who works on new systems development and maintenance.

archived The storage of previous version of a system when a new version is installed.

asset Hardware, software, data, networks, people, or procedures that provide tangible or intangible ben-
efit to an organization.

attack A hostile act that targets an information system, or an organization itself.

automatic update service Enables an application to contact the vendor’s server and check for a needed
patch.

availability One of the three main elements of system security: confidentiality, integrity, and availabil-
ity (CIA). Availability ensures that authorized users have timely and reliable access to necessary
information.

avoidance One of four risk control strategies. In avoidance, adding protective safeguards eliminates the risk.

backup The process of saving a series of file or data copies to be retained for a specified period of time.
Data can be backed up continuously, or at prescribed intervals.

backup media Data storage options, including tape, hard drives, optical storage, and online storage.

backup policy Detailed instructions and procedures for all backups.

bandwidth The amount of data that the system can handle in a fixed time period. Bandwidth require-
ments are expressed in bits per second (bps).

baseline A formal reference point that measures system characteristics at a specific time. Systems
analysts use baselines as yardsticks to document features and performance during the systems
development process.

benchmark testing A form of testing used by companies to measure system performance.

biometric scanning systems Mapping an individual’s facial features, handprint, or eye characteristics for
identification purposes.

BIOS-level password A password that must be entered before the computer can be started. It prevents an
unauthorized person from booting a computer by using a secondary device. Also called a power-on
password or a boot-level password.

boot-level password See BIOS-level password.

business continuity plan (BCP) A plan that defines how critical business functions can continue in the
event of a major disruption.

capacity planning A process that monitors current activity and performance levels, anticipates future
activity, and forecasts the resources needed to provide desired levels of service.

certification A credential an individual earns by demonstrating a certain level of knowledge and skill on
a standardized test.

change control (CC) A process for controlling changes in system requirements during software devel-
opment; also an important tool for managing system changes and costs after a system becomes
operational.

CIA triangle The three main elements of system security: confidentiality, integrity, and availability.

Key Terms

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 447

Phase 5 Systems Support and Security

confidentiality One of the three main elements of system security: confidentiality, integrity, and availabil-
ity (CIA). Confidentiality protects information from unauthorized discloser and safeguards privacy.

configuration management (CM) A process for controlling changes in system requirements during the
development phases of the SDLC. CM also is an important tool for managing system changes and
costs after a system becomes operational.

continuous backup A real-time streaming backup method that records all system activity as it occurs.

corrective maintenance Changes to the system to fix errors.

credentials Formal qualifications that include degrees, diplomas, or certificates granted by learning insti-
tutions to show that a certain level of education has been achieved.

critical risk When risks are categorized and prioritized, critical risks (those with the highest vulnerability
and impact ratings) head the list.

critical thinking skills The ability to compare, classify, evaluate, recognize patterns, analyze cause and
effect, and apply logic. Such skills are valued in the IT industry.

data replication In normal operating conditions, any transaction that occurs on the primary system must
automatically propagate to the hot site.

database programmer A person who focuses on creating and supporting large-scale database systems.

denial of service (DOS) An online attack that occurs when an attacking computer makes repeated
requests to a service or services running on certain ports.

differential backup A backup that includes only the files that have changed since the last full backup.

disaster recovery plan A documented procedure consisting of an overall backup and recovery plan.

distributed denial of service (DDOS) A service attack involving multiple attacking computers that can
synchronize DOS attacks on a server.

dumpster diving Raiding desks or trash bins for valuable information.

encryption A process where data is coded (converted into unreadable characters) so that only those with
the required authorization can access the data (usually via decoding software).

enhancement A new feature or capability.

exploit An attack that takes advantage of a system vulnerability, often due to a combination of one or
more improperly configured services.

fault management The timely detection and resolution of operational problems. Fault management
includes monitoring a system for signs of trouble, logging all system failures, diagnosing the problem,
and applying corrective action.

fault tolerant A system or application is said to be fault tolerant if the failure of one component does not
disable the rest of the system or application.

firewall The main line of defense between a local network, or intranet, and the Internet.

full backup A complete backup of every file on the system.

functional baseline The configuration of the system documented at the beginning of the project. It con-
sists of all the necessary system requirements and design constraints.

gigabits per second (Gbps) A bandwidth or throughput measurement.

hardening Making a system more secure by removing unnecessary accounts, services, and features.

help desk A centralized resource staffed by IT professionals that provides users with the support they
need to do their jobs. A help desk has three main objectives: to show people how to use system
resources more effectively, to provide answers to technical or operational questions, and to make
users more productive by teaching them how to meet their own information needs. Also called service
desk or information center.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

448 Key Terms

Chapter 12 Managing Systems Support and Security

hot site A separate IT location, which might be in another state or even another country, that can support
critical business systems in the event of a power outage, system crash, or physical catastrophe.

identity management Controls and procedures necessary to identify legitimate users and system
components.

identity theft The stealing of personally identifying information online.

IEEE 802.11i A security standard for Wi-Fi wireless networks that uses the WPA2 protocol, currently
the most secure encryption method for Wi-Fi networks.

incremental backup Saving a copy of only the files that have changed since the last full backup.

integrity One of the three main elements of system security: confidentiality, integrity, and availability
(CIA). Integrity prevents unauthorized users from creating, modifying, or deleting information.

Kbps (kilobits per second) A bandwidth or throughput measurement.

keystroke logger A device that can be inserted between a keyboard and a computer to record keystrokes.

log Record typically kept by operating systems and applications that documents all events, including
dates, times, and other specific information. Logs can be important in understanding past attacks and
preventing future intrusions.

maintenance activities Changing programs, procedures, or documentation to ensure correct system
performance. Adapting the system to changing requirements, and making the system operate more
efficiently. Those needs are met by corrective, adaptive, perfective, and preventive maintenance.

maintenance expenses Costs that vary significantly during the system’s operational life and include
spending to support maintenance activities.

maintenance release A formal release of a new system version that contains a number of changes.

maintenance release methodology A system of numbered releases used by organizations (especially soft-
ware vendors) that helps organize maintenance changes and updates.

maintenance team One or more systems analysts and programmers working on product maintenance
issues together.

malware Malicious software that might jeopardize the system’s security or privacy.

megabits per second (Mbps) A bandwidth or throughput measurement.

metrics Workload measurements, also called metrics, include the number of lines printed, the number of
records accessed, and the number of transactions processed in a given time period.

mitigation One of four risk control strategies. Mitigation reduces the impact of a risk by careful plan-
ning and preparation. For example, a company can prepare a disaster recovery plan to mitigate the
effects of a natural disaster should one occur.

network Two or more devices that are connected for the purpose of sending, receiving, and sharing data.

network interface A combination of hardware and software that allows the computer to interact with
the network.

network intrusion detection system (NIDS) Software that monitors network traffic to detect attempted
intrusions or suspicious network traffic patterns and sends alerts to network administrators. Can be
helpful in documenting the efforts of attackers and analyzing network performance.

offsiting The practice of storing backup media away from the main business location, in order to miti-
gate the risk of a catastrophic disaster such as a flood, fire, or earthquake.

operational costs Expenses that are incurred after a system is implemented and continue while the sys-
tem is in use. Examples include system maintenance, supplies, equipment rental, and annual software
license fees.

operational security Concerned with managerial policies and controls that ensure secure operations.
Also called procedural security.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 449

Phase 5 Systems Support and Security

patch Replacement code that is applied to fix bugs or security holes in software.

perfective maintenance Changes to a system to improve efficiency.

permissions User-specific privileges that determine the type of access a user has to a database, file, or
directory. Also called user rights.

plain text Data that is not encrypted.

port A positive integer that is used for routing incoming traffic to the correct application on a computer.

port scan An attempt to detect the services running on a computer by trying to connect to various ports
and recording the ports on which a connection was accepted.

power-on password See BIOS-level password.

pretexting Obtaining personal information under false pretenses.

preventive maintenance Changes to a system to reduce the possibility of future failure.

private key encryption A common encryption technology called PKE. The private key is one of a pair of
keys, and it decrypts data that has been encrypted with the second part of the pair, the public key.

private network A dedicated connection, similar to a leased telephone line.

privilege escalation attack An unauthorized attempt to increase permission levels.

procedural security Concerned with managerial policies and controls that ensure secure operations. Also
called operational security.

product baseline Describes the system at the beginning of operation. The product baseline incorporates
any changes made since the allocated baseline and includes the results of performance and acceptance
tests for the operational system.

programmer/analyst A designation for positions that require a combination of systems analysis and
 programming skills.

public key encryption (PKE) A common encryption technique. Each user on the network has a pair of
keys: a public key and a private key. The public key encrypts data that can be decrypted with the
private key.

redundant array of independent disks (RAID) A RAID system may be part of an organization’s backup
and recovery plans. A RAID system mirrors the data while processing continues. RAID systems are
called fault-tolerant, because a failure of any one disk does not disable the system.

recovery The process of restoring data and restarting a system after an interruption.

remote control software Applications that allow IT staff to take over a user’s workstation and provide
support and troubleshooting.

response time The overall time between a request for system activity and the delivery of the response. In
the typical online environment, response time is measured from the instant the user presses the ENTER
key or clicks a mouse button until the requested screen display appears or printed output is ready.

retention period Backups are stored for a specific retention period after which they are either destroyed
or the backup media is reused.

risk An event that could affect the project negatively.

risk assessment Measures the likelihood and impact of risks.

risk control Develops safeguards that reduce the likelihood and impact of risks.

risk identification Listing each risk and assessing the likelihood that it could affect a project.

risk management The process of identifying, evaluating, tracking, and controlling risks to minimize their
impact.

security Hardware, software, and procedural controls that safeguard and protect a system and its data
from internal or external threats.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

450 Key Terms

Chapter 12 Managing Systems Support and Security

security hole Created by a combination of one or more improperly configured services.

security policy A plan that addresses the three main elements of system security: confidentiality, integrity,
and availability.

security token A physical device that authenticates a legitimate user, such as a smart card or keychain
device.

service An application that monitors, or listens on, a particular port.

service desk A centralized resource staffed by IT professionals that provides users with the support they
need to do their jobs. Also called help desk.

service pack A maintenance release supplied by commercial software suppliers.

social engineering An intruder uses social interaction to gain access to a computer system.

soft skills Communications, interpersonal skills, perceptive abilities, and critical thinking are soft skills.
IT professionals must have soft skills as well as technical skills.

software reengineering Uses analytical techniques to identify potential quality and performance improve-
ments in an information system.

superuser account A login account that allows essentially unrestricted access to the application.

system administrator A person who is responsible for the CM and maintenance of an organization’s
computer networks.

systems programmer A person who concentrates on operating system software and utilities.

tamper-evident case A case designed to show any attempt to open or unlock the case.

test plan A plan designed by a systems analyst that includes test steps and test data for integration test-
ing and system testing.

third-party software An application that is not developed in-house.

threat In risk management, an internal or external or external entity that could endanger an asset.

throughput A measurement of actual system performance under specific circumstances and is affected by
network loads and hardware efficiency. Throughput, like bandwidth, is expressed as a data transfer
rate, such as Kbps, Mbps, or Gbps.

transference One of four risk control strategies. In transference, risk is shifted to another asset or party,
such as an insurance company.

tunnel A secure network connection established between the client and the access point of the local
intranet.

turnaround time A measure applied to centralized batch processing operations, such as customer billing
or credit card statement processing. Turnaround time measures the time between submitting a request
for information and the fulfillment of the request. Turnaround time also can be used to measure the
quality of IT support or services by measuring the time from a user request for help to the resolution
of the problem.

unencrypted Data that is not encrypted.

uninterruptible power supply (UPS) Battery-powered backup power source that enables operations to
continue during short-term power outages and surges.

Universal Security Slot (USS) Can be fastened to a cable lock or laptop alarm.

user rights User-specific privileges that determine the type of access a user has to a database, file, or
directory. Also called permissions.

user training package The main objective of a user training package is to show users how the system can
help them perform their jobs.

version control The process of tracking system releases.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Key Terms 451

Phase 5 Systems Support and Security

virtual private network (VPN) Uses a public network to connect remote users securely. Allows a remote
client to use a special key exchange that must be authenticated by the VPN.

vulnerability A security weakness or soft spot.

what-if analysis A feature of business support systems that allows analysis to define and account for a
wide variety of issues (including issues not completely defined).

Wi-Fi Protected Access (WPA) A common method used to secure a wireless network. This approach
requires each wireless client be configured manually to use a special, pre-shared key, rather than key
pairs. The most recent and more secure version is WPA2.

Wired Equivalent Privacy (WEP) One of the earliest methods used to secure a wireless network, super-
seded by WPA and WPA2.

WPA2 A wireless security standard based on 802.11i that provides a significant increase in protection
over WEP and WPA.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

452 Exercises

Chapter 12 Managing Systems Support and Security

Exercises

Questions
1. In what forms can companies provide user support?
2. Describe four types of system maintenance.
3. What is CM and why is it important?
4. Define the following terms: response time, bandwidth, throughput, and turnaround time. How are the

terms related?
5. What is the CIA triangle?
6. Explain the concept of risk management, including risk identification, assessment, and control.
7. What are the six security levels? Provide examples of threat categories, attacker profiles, and types of

attacks.
8. What are some key issues that you must address when considering data backup and recovery?
9. Provide an example of technical obsolescence and explain how it can be a threat to an information

system.
10. Why is strategic planning important for IT professionals?

Discussion Topics
1. The four types of IT system maintenance also apply to other industries. Suppose you were in charge

of aircraft maintenance for a small airline. What would be a specific example of each type of
maintenance?

2. Assume that your company uses a release methodology for its sales system. The current version is 5.5.
Decide whether each of the following changes would justify a version 6.0 release or be included in a
version 5.6 update: (a) Add a new report, (b) add a web interface, (c) add data validation checks, (d)
add an interface to the marketing system, and (e) change the user interface.

3. How could you use a spreadsheet in capacity planning?
4. What are the most important IT security issues facing companies today? Have these changed in the

last five years, and will they continue to change? How should companies prepare themselves for secu-
rity threats and problems in the future?

5. Many people don’t back up their data until it’s too late. Once they go through a catastrophic loss of
all their work, they tend to change their habits. What are some of the better ways to perform personal
backups, such as cloud-based services?

Projects
1. Develop a process for managing change requests and design a form to handle a generic change

request. The process should include a contingency plan for changes that must be resolved immediately.
2. Visit the IT department at your school or at a local company and find out whether performance

 measurements are used. Write a brief report describing your findings.
3. Security breaches are in the news all the time. Document a recent hack involving the theft of employee

information or customer data. Suggest ways the attack could have been avoided.
4. Using the Internet, locate a software package designed to automate version control. List the key

 features and describe your findings in a brief memo.
5. How do you decide if a car should be repaired or replaced? Develop an assessment framework to aid

this decision process. Is the framework also applicable to software systems?

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

453

GLOSSARY
1:1 A type of entity relationship. A one-to-one relationship, abbrevi-
ated 1:1, exists when exactly one of the second entity occurs for each
instance of the first entity.

1:M A type of entity relationship. A one-to-many relationship, abbre-
viated 1:M, exists when one occurrence of the first entity can be
related to many occurrences of the second entity, but each occurrence
of the second entity can be associated with only one occurrence of the
first entity.

802.11 A family of wireless network specifications developed by the
IEEE.

802.11ac An IEEE wireless network specification, approved in 2014,
that uses expanded MIMO technology to achieve theoretical speeds of
nearly 7 Gbps while increasing the wireless range and is backward
compatible with 802.11a, b, g, and n.

802.11b An IEEE wireless network specification introduced in 1999
based on a frequency of 2.4 GHz and maximum bandwidth of 11
Mbps. Replaced by 802.11g.

802.11g An IEEE wireless network specification introduced in 2003
based on a frequency of 2.4 GHz and maximum bandwidth of 54
Mbps; compatible with and replaced 802.11b and has been superseded
by the 802.11n standard.

802.11n An IEEE wireless network specification adopted in 2009 that
uses MIMO technology to achieve speeds of 200+ Mbps while increas-
ing the wireless range and is backward compatible with 802.11a, b,
and g.

abbreviation code Alphabetic abbreviation. For example, standard
state codes include NY for New York, ME for Maine, and MN for
Minnesota.

absolute date The total number of days from some specific base date.
To calculate the number of days between two absolute dates, subtract
one date from the other. For example, using a base date of January 1,
1900, September 27, 2012, has an absolute date value of 41179 and
July 13, 2011, has an absolute date of 40737. If the earlier date value
is subtracted from the later one, the result is 442 days.

acceptance One of four risk control strategies. In acceptance, the risk
is accepted and nothing is done. Risk is usually accepted only if protec-
tion from risk is clearly not worth the expense.

acceptance test Testing involves the entire information system,
including all typical processing situations. During an acceptance test,
users enter data, including samples of actual or live data, perform que-
ries, and produce reports to simulate actual operating conditions. All
processing options and outputs are verified by users and the IT project
development team to ensure that the system functions correctly. Some-
times known as a system test.

access point A central wireless device that provides network services
to wireless clients.

action code Indicates what action is to be taken with an associated
item. For example, a student records program might prompt a user to
enter or click an action code such as D (to display the student’s record),
A (to add a record), and X (to exit the program).

activity Any work that has a beginning and an end and requires the
use of company resources including people, time, and/or money. Exam-
ples include conducting a series of interviews, designing a report,
selecting software, waiting for the delivery of equipment, and training
users. See also task.

activity diagram A diagram that resembles a horizontal flowchart
that shows the actions and events as they occur. Activity diagrams
show the order in which actions take place and identify the outcome.

actor An external entity with a specific role. In a use case model,
actors are used to model interaction with the system.

adaptive maintenance Adds new capability and enhancements to an
existing system.

administrator account An account that allows essentially unre-
stricted access to the application.

agile methods Systems development methods that attempt to develop
a system incrementally by building a series of prototypes and con-
stantly adjusting them to user requirements. Also called adaptive
methods.

alias A term used in various data dictionaries to indicate an alternate
name, or a name other than the standard data element name, that is
used to describe the same data element.

allocated baseline Documents the system at the end of the design
phase and identifies any changes since the functional baseline. The
allocated baseline includes testing and verification of all system
requirements and features.

alphabetic code Uses alphabet letters to distinguish one item from
another based on a category, an abbreviation, or an easy-to-remember
value, called a mnemonic code.

app A software application that runs on a mobile device, such as a
smartphone or tablet.

application Part of the information system, an application handles the
input, manages the processing logic, and provides the required output.

application development The process of constructing the programs
and code modules that are the building blocks of an information sys-
tem. Application development is handled by an application
development group within a traditional IT department that is com-
posed of systems analysts and programmers who handle information
system design, development, and implementation.

application lifecycle management (ALM) Activities that cover the
entire SDLC, including requirements, design, development, testing, and
deployment and management of software applications.

application logic The underlying business rules or logic for an appli-
cation.

application server A computer acting as “middlemen” between cus-
tomers and an organization’s databases and applications. Often used to
facilitate complex business transactions.

application service provider (ASP) A firm that delivers a software
application, or access to an application, by charging a usage or sub-
scription fee.

application software Software programs, such as email, word proces-
sors, spreadsheets, and graphics packages, used by employees in typical
office scenarios.

applications programmer A person who works on new systems
development and maintenance.

archived The storage of previous version of a system when a new
version is installed.

artificial intelligence The attempt to recreate natural intelligence
through software in machines.

ASCII Stands for American Standard Code for Information Inter-
change, a data storage coding method used on most personal
computers and workstations.

asset Hardware, software, data, networks, people, or procedures that
provide tangible or intangible benefit to an organization.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

454 Glossary

associative entity An entity that has its own set of attributes and
characteristics. Associative entities are used to link between many-to-
many (M:N) relationships.

attack A hostile act that targets an information system, or an organi-
zation itself.

attribute A single characteristic or fact about an entity. An attribute,
or field, is the smallest piece of data that has meaning within an infor-
mation system. For example, a Social Security number or company
name could be examples of an attribute. In object-oriented analysis, an
attribute is part of a class diagram that describes the characteristics of
objects in the class. Also known as a data element.

audit fields Special fields within data records to provide additional
control or security information. Typical audit fields include the date the
record was created or modified, the name of the user who performed
the action, and the number of times the record has been accessed.

audit log files Record details of all accesses and changes to a file or
database and can be used to recover changes made since the last
backup.

audit trail A record of the source of each data item and when it
entered a system. In addition to recording the original source, an audit
trail must show how and when data is accessed or changed, and by
whom. All these actions must be logged in an audit trail file and moni-
tored carefully.

authorization zone Part of a form that contains any required signa-
tures.

automated fax A system that allows a customer to request a fax
using email, the company website, or a telephone. The response is
transmitted in a matter of seconds back to the user’s fax machine.
See faxback.

automatic update service Enables an application to contact the ven-
dor’s server and check for a needed patch.

availability One of the three main elements of system security: confi-
dentiality, integrity, and availability (CIA). Availability ensures that
authorized users have timely and reliable access to necessary informa-
tion.

avoidance One of four risk control strategies. In avoidance, adding
protective safeguards eliminates the risk.

B2B (business-to-business) A commercial exchange (e.g., products
or services) between businesses, typically enabled by the Internet or
electronic means.

B2C (business-to-consumer) A commercial exchange (e.g., products
or services) between businesses and consumers conducted over the
Internet.

backup The process of saving a series of file or data copies to be
retained for a specified period of time. Data can be backed up continu-
ously, or at prescribed intervals.

backup media Data storage options, including tape, hard drives, opti-
cal storage, and online storage.

backup policy Detailed instructions and procedures for all backups.

balancing A process used to maintain consistency among an entire
series of diagrams, including input and output data flows, data defini-
tion, and process descriptions.

bandwidth The amount of data that the system can handle in a fixed
time period. Bandwidth requirements are expressed in bits per second
(bps).

baseline A formal reference point that measures system characteristics
at a specific time. Systems analysts use baselines as yardsticks to docu-
ment features and performance during the systems development
process.

Basic Service Set (BSS) A wireless network configuration in which a
central wireless device called an access point is used to serve all wire-
less clients; also called infrastructure mode.

batch A group of data, usually inputted into an information system at
the same time.

batch control A total used to verify batch input. Batch controls might
check data items such as record counts and numeric field totals. For
example, before entering a batch of orders, a user might calculate the
total number of orders and the sum of all the order quantities. When
the batch of orders is entered, the order system also calculates the same
two totals. If the system totals do not match the input totals, then a
data entry error has occurred.

batch input A process where data entry is performed on a specified
time schedule, such as daily, weekly, monthly, or longer. For example,
batch input occurs when a payroll department collects time cards at
the end of the week and enters the data as a batch.

benchmark A measures of the time a package takes to process a cer-
tain number of transactions.

benchmark testing A form of testing used by companies to measure
system performance.

best-case estimate The most optimistic outcome.

big data Extremely large datasets (e.g., petabytes) requiring nontradi-
tional approaches to deal with them. Sometimes characterized by three
terms: volume, variety, and velocity.

binary storage format A format that offers efficient storage of
numeric data. For example, when numeric data types are specified
using Microsoft Access, there are a variety of storage formats choices,
including integer and long integer, among others.

biometric devices A mechanism used to uniquely identify a person
by a retina scan or by mapping a facial pattern.

biometric scanning systems Mapping an individual’s facial features,
handprint, or eye characteristics for identification purposes.

BIOS-level password A password that must be entered before the
computer can be started. It prevents an unauthorized person from
booting a computer by using a secondary device. Also called a power-
on password or a boot-level password.

bit The smallest unit of data is one binary digit.

black box A metaphor for a process or an action that produces results
in a non-transparent or non-observable manner. In data flow diagrams,
a process appears as a black box where the inputs, outputs, and gen-
eral function of the process are known, but the underlying details are
not shown.

black hole A process that has no output.

block sequence code Cipher that uses blocks of numbers for differ-
ent classifications.

blockchain A distributed ledger system. The technology underlying
Bitcoin.

blog An online journal. The term is a contraction of “web log.”

Bluetooth A form of wireless transmission very popular for short-
distance wireless communication that does not require high power.

boot-level password See BIOS-level password.

bottom-up technique A method for analyzing a large, complex proj-
ect as a series of individual tasks, called project tasks.

brainstorming A fact-finding technique for gaining information
through the use of a small group discussion of a specific problem,
opportunity, or issue.

bring your own device (BYOD) An equipment management model
where employees are in charge of their devices (e.g., computers, tablets,
smartphones) at work, not the IT department. This includes device
selection and setup, program installation and updating, and network
connectivity (including security).

Brooks’ law Frederick Brooks, an IBM engineer, observed that adding
more manpower to a late software project only makes it later.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

455 Glossary

bug tracking software System developers use defect tracking soft-
ware, sometimes called bug tracking software, to document and track
program defects, code changes, and replacement code, called patches.

build or buy A choice between developing in-house software and pur-
chasing software, often called a build or buy, or make or buy, decision.

bus network A computer network where a single communication
path connects the mainframe computer, server, workstations, and
peripheral devices. Information is transmitted in either direction from
any workstation to another workstation, and any message can be
directed to a specific device.

business case Refers to the reasons, or justification, for a proposal.

business continuity plan (BCP) A plan that defines how critical busi-
ness functions can continue in the event of a major disruption.

business logic Rules to determine how a system handles data and
produces useful information, reflecting the operational requirements of
the business. Examples include adding the proper amount of sales tax
to invoices, calculating customer balances and finance charges, and
determining whether a customer is eligible for a volume-based dis-
count. Also called business rules.

business model A graphical representation of business functions
that consist of business processes, such as sales, accounting, and
purchasing.

business process A description of specific events, tasks, and desired
results.

business process model (BPM) A graphical representation of one or
more business processes.

business process modeling notation (BPMN) A standard set of
shapes and symbols used to represent events, processes, and workflows
in computer-based modeling tools.

business process outsourcing (BPO) The outsourcing of a basic
business process. See also outsourcing.

business profile A definition of a company’s overall functions, pro-
cesses, organization, products, services, customers, suppliers,
competitors, constraints, and future direction.

business rules How a system handles data and produces useful infor-
mation. Business rules, also called business logic, reflect the operational
requirements of the business. Examples include adding the proper
amount of sales tax to invoices, calculating customer balances and
finance charges, and determining whether a customer is eligible for a
volume-based discount.

business rules See business logic.

business support systems Provide job-related information support to
users at all levels of a company.

byte A group of eight bits is called a byte, or a character. A set of
bytes forms a field, which is an individual fact about a person, a place,
a thing, or an event.

calendar control A calendar control allows the user to select a date
that the system will display and store as a field value.

candidate key Sometimes it is possible to have a choice of fields or
field combinations to use as the primary key. Any field that could serve
as a primary key is called a candidate key.

Capability Maturity Model (CMM)® A model developed by SEI that
integrates software and systems development into a process improve-
ment framework.

Capability Maturity Model Integration (CMMI)® An SEI-developed
process to improve quality, reduce development time, and cut costs. A
CMM tracks an organization’s software development goals and prac-
tices, using five maturity levels, from Level 1 (relatively unstable,
ineffective software) to Level 5 (software that is refined, efficient, and
reliable).

capacity planning A process that monitors current activity and per-
formance levels, anticipates future activity, and forecasts the resources
needed to provide desired levels of service.

cardinality A concept that describes how instances of one entity relate
to instances of another entity. Described in entity-relationship
 diagrams by notation that indicates combinations that include zero
or one-to-many, one-to-one, and many-to-many.

cardinality notation Code that shows relationships between entities.

case for action A part of the preliminary investigation report to man-
agement that summarizes project requests and makes specific
recommendations.

CASE tools Powerful software used in computer-aided systems engi-
neering (CASE) to help systems analysts develop and maintain
information systems.

category codes Ciphers that identify a group of related items. For
example, a local department store may use a two-character category
code to identify the department in which a product is sold.

certification A credential an individual earns by demonstrating a cer-
tain level of knowledge and skill on a standardized test.

change control (CC) A process for controlling changes in system
requirements during software development; also an important tool for
managing system changes and costs after a system becomes operational.

character A group of eight bits is called a character, or a byte. A set
of bytes forms a field, which is an individual fact about a person, a
place, a thing, or an event.

character-based report A report created using a single mono-spaced
character set.

check box Used to select one or more choices from a group. A check
mark, or an X, represents selected options.

child diagram The lower-level diagram in an exploded DFD.

child In inheritance, a child is the object that derives one or more
attributes from another object, called the parent.

CIA triangle The three main elements of system security: confidential-
ity, integrity, and availability.

cipher codes Use of a keyword to encode a number. A retail store, for
example, may use a 10-letter word, such as CAMPGROUND, to code
wholesale prices, where the letter C represents 1, A represents 2, and so
on. Thus, the code, GRAND, would indicate that the store paid
$562.90 for the item.

class A term used in object-oriented modeling to indicate a collection
of similar objects.

class diagram A detailed view of a single use case, showing the classes
that participate in the use case, and documenting the relationship
among the classes.

clicks to close The average number of page views to accomplish a
purchase or obtain desired information.

clickstream storage Recording web visitor behavior and traffic
trends for later data mining. use.

client Workstation that users interact within a client/server design.
These workstations, or computers, are supplied data, processing ser-
vices, or other support from other computers, called servers.

client/server architecture Generally refers to systems that divide
processing between one or more networked clients and a central server.
In a typical client/ server system, the client handles the entire user inter-
face, including data entry, data query, and screen presentation logic.
The server stores the data and provides data access and database man-
agement functions. Application logic is divided in some manner
between the server and the clients.

closed-ended questions Queries that limit or restrict the range of
responses. Used in the interview process when specific information or
fact verification is desired.

cloud computing An online software and data environment in which
applications and services are accessed and used through an Internet
connection rather than on a local computer; refers to the cloud symbol
for the Internet.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

456 Glossary

code A set of letters or numbers that represents a data item. Codes
can be used to simplify output, input, and data formats.

code review A review of a project team member’s work by other
members of the team to spot logic errors. Generally, systems analysts
review the work of other systems analysts, and programmers review
the work of other programmers, as a form of peer review. Structured
walk-throughs should take place throughout the SDLC and are called
requirements reviews, design reviews, code reviews, or testing reviews,
depending on the phase in which they occur. Also known as a struc-
tured walk-through. See structured walk-through.

coding The process of turning program logic into specific instructions
that a computer system can execute.

cohesion A measure of a module’s scope and processing characteris-
tics. A module that performs a single function or task has a high degree
of cohesion, which is desirable.

combination check A type of data validation check that is performed
on two or more fields to ensure that they are consistent or reasonable
when considered together. Even though all the fields involved in a com-
bination check might pass their individual validation checks, the
combination of the field values might be inconsistent or unreasonable.

combination key A type of data validation check that is performed
on two or more fields to ensure that they are consistent or reasonable
when considered together. Even though all the fields involved in a com-
bination check might pass their individual validation checks, the
combination of the field values might be inconsistent or unreasonable.

command button Onscreen button that initiates an action such as
printing a form or requesting Help.

common field An attribute that appears in more than one entity. Com-
mon fields can be used to link entities in various types of relationships.

composite key Sometimes it is necessary for a primary key to consist
of a combination of fields. In that case, the primary key is called a
combination key, composite key, concatenated key, or multivalued key.

computer resources committee A group of key managers and users
responsible for evaluating systems requests. The term “systems review
committee” is also used.

computer-aided software engineering (CASE) A technique that uses
powerful programs called CASE tools to provide an overall framework
for systems development. The tools support a wide variety of design
methodologies, including structured analysis and object- oriented
 analysis. Also referred to as computer-aided systems engineering.

computer-aided systems engineering (CASE) See computer-aided
software engineering (CASE).

concatenated key See composite key.

concurrent task A task that can be completed at the same time as
(in parallel with) another task.

condition A specified action or state in a structure chart.

confidentiality One of the three main elements of system security:
confidentiality, integrity, and availability (CIA). Confidentiality pro-
tects information from unauthorized discloser and safeguards privacy.

configuration management (CM) A process for controlling changes
in system requirements during the development phases of the SDLC.
CM also is an important tool for managing system changes and costs
after a system becomes operational.

constraint A requirement or a condition that the system must satisfy
or an outcome that the system must achieve.

construction phase A phase that focuses on program and application
development tasks similar to the SDLC.

context diagram A top-level view of an information system that
shows the boundaries and scope.

context-sensitive A feature that is sensitive to the current conditions
when it is invoked. For example, context-sensitive help offers assis-
tance for a task in progress.

continuous backup A real-time streaming backup method that
records all system activity as it occurs.

control break A control break usually causes specific actions to occur,
such as printing subtotals for a group of records.

control break report A detail report that focuses on control breaks.

control couple In a structure chart, a control couple shows a message,
also called a flag, which one module sends to another.

control field order In a control break report, the records are arranged
or sorted in the same order as the control fields.

control module In a structure chart, a control module is a higher-level
module that directs lower-level modules, called subordinate modules.

control structure Serve as building blocks for a process. Control
structures have one entry and exit point. They may be completed in
sequential order, as the result of a test or condition, or repeated until a
specific condition changes. Also called logical structure.

corporate culture A set of beliefs, rules, traditions, values, and atti-
tudes that define a company and influence its way of doing business.

corporate portal A website that provides various tools and features
for an organization’s customers, employees, suppliers, and the public.

corrective maintenance Changes to the system to fix errors.

coupling Measures relationships and interdependence among mod-
ules. The opposite of cohesion.

credentials Formal qualifications that include degrees, diplomas, or
certificates granted by learning institutions to show that a certain level
of education has been achieved.

critical path A series of events and activities with no slack time. If any
activity along the critical path falls behind schedule, the entire project
schedule is similarly delayed. As the name implies, a critical path
includes all activities that are vital to the project schedule.

Critical Path Method (CPM) Shows a project as a network diagram.
The activities are shown as vectors, and the events are displayed graph-
ically as nodes. Although CPM developed separately from the Program
Evaluation Review Technique (PERT), the two methods are essentially
identical. See also PERT/CPM.

critical risk When risks are categorized and prioritized, critical risks
(those with the highest vulnerability and impact ratings) head the list.

critical success factors Vital objectives that must be achieved for the
enterprise to fulfill its mission.

critical thinking skills The ability to compare, classify, evaluate,
recognize patterns, analyze cause and effect, and apply logic. Such
skills are valued in the IT industry.

crow’s foot notation A type of cardinality notation. It is called crow’s
foot notation because of the shapes, which include circles, bars, and
symbols, that indicate various possibilities. A single bar indicates one, a
double bar indicates one and only one, a circle indicates zero, and a
crow’s foot indicates many.

customer Primary user of a system, service, or product.

customer relationship management (CRM) Many companies
implement systems to integrate all customer-related events and transac-
tions including marketing, sales, and customer service activities.

cutover phase A phase that resembles the final tasks in the SDLC
implementation phase, including data conversion, testing, changeover
to the new system, and user training.

data The raw material or basic facts used by information systems.

data center A large concentration of networked computers working
together.

data conversion Existing data is loaded into the new system, trans-
formed as needed. Depending on the system, data conversion can be
done before, during, or after the operational environment is complete.

data couple In a structure chart, a data couple shows data that one
module passes to another.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

457 Glossary

data dictionary A central storehouse of information about a system’s
data.

data element A single characteristic or fact about an entity. A data
element, field, or attribute is the smallest piece of data that has mean-
ing within an information system. For example, a Social Security
number or company name could be examples of a data element. Also
called data item.

data flow A path for data to move from one part of the information
system to another.

data flow diagram (DFD) Graphical representation of the system,
showing it stores, processes, and transforms data into useful information.

data frames Traffic on a computer network.

data item See data element.

data manipulation language (DML) A DML controls database oper-
ations, including storing, retrieving, updating, and deleting data. Most
commercial DBMSs, such as Oracle and IBM’s DB2, use a DML.

data mart A specialized database designed to serve the needs of a
specific department, such as sales, marketing, or finance. Each data
mart includes only the data that users in that department require to
perform their jobs.

data mining Looking for meaningful patterns and relationships
among data. For example, data mining software could help a consumer
products firm identify potential customers based on their prior pur-
chases.

data processing center A central location where physical data was
delivered or transmitted in some manner and entered into the system.
Users in the organization had no input or output capability, except for
printed reports that were distributed by a corporate IT department.

data replication In normal operating conditions, any transaction that
occurs on the primary system must automatically propagate to the hot
site.

data repository A symbol used in DFDs to represent a situation in
which a system must retain data because one or more processes need
to use that stored data at a later time. Used interchangeably with the
term data store.

data science Interdisciplinary field that blends computer science,
math and statistics, and business methods to analyze large datasets.
Involves artificial intelligence, machine learning and predictive analyt-
ics, and visualization techniques.

data security Protection of data from loss or damage and recovers
data when it is lost or damaged.

data store See data repository.

data structure A meaningful combination of related data elements
that are included in a data flow or retained in a data store. A frame-
work for organizing and storing data.

data type check A type of data validation check that is used to ensure
that a data item fits the required data type. For example, a numeric
field must have only numbers or numeric symbols, and an alphabetic
field can contain only the characters A through Z or the characters a
through z.

data validation rule A mechanism to improve input quality by testing
the data and rejecting any entry that fails to meet specified conditions.

data warehouse An integrated collection of data that can support
management analysis and decision making.

database administrator (DBA) Someone who manages a DBMS.
The DBA assesses overall requirements and maintains the database for
the benefit of the entire organization rather than a single department
or user.

database management system (DBMS) A collection of tools, fea-
tures, and interfaces that enables users to add, update, manage, access,
and analyze data in a database.

database programmer A person who focuses on creating and sup-
porting large-scale database systems.

decision table A table that shows a logical structure, with all possible
combinations of conditions and resulting actions.

decision tree A graphical representation of the conditions, actions,
and rules found in a decision table.

decomposing Another way of conveying a process or system that has
been broken down from a general, top-level view to more detail. The
terms exploded and partitioned also can be used.

default value A value that a system displays automatically.

defect tracking software System developers use defect tracking soft-
ware, sometimes called bug tracking software, to document and track
program defects, code changes, and replacement code, called patches.

deliverable A polished, final product, suitable for its intended use.
End products or deliverables often coincide with the completion of
each SDLC phase.

denial of service (DOS) An online attack that occurs when an
attacking computer makes repeated requests to a service or services
running on certain ports.

dependent task A task is said to be dependent when it has to be com-
pleted in a serial sequence.

derivation code Combining data from different item attributes, or
characteristics, to build the code. Most magazine subscription codes
are derivation codes.

design prototyping Creating a prototype of user requirements, after
which the prototype is discarded and implementation continues. Also
called throwaway prototyping.

design review See structured walk-through.

design walk-through A session with users to review the interface with
a cross section of people who will work with the new system. This is a
continuation of the modeling and prototyping effort that began early
in the systems development process.

desk checking The process of reviewing the program code to spot
logic errors, which produce incorrect results.

detail report A detail report produces one or more lines of output for
each record processed.

diagram 0 A diagram depicting the first level of detail below the ini-
tial context diagram. Diagram 0 (zero) zooms in on the context
diagram and shows major processes, data flows, and data stores, as
well as repeating the external entities and data flows that appear in the
context diagram.

dialog box Allows a user to enter information about a task that a
system will perform.

differential backup A backup that includes only the files that have
changed since the last full backup.

direct cutover The direct cutover approach causes the changeover
from the old system to the new system to occur immediately when the
new system becomes operational.

disaster recovery plan A documented procedure consisting of an
overall backup and recovery plan.

discretionary projects Where management has a choice in
implementing a project, they are called discretionary. For example,
creating a new report for a user is an example of a discretionary project.

diskless workstation A network terminal that supports a full-featured
user interface but limits the printing or copying of data, except to certain
network resources that can be monitored and controlled more easily.

distributed database management system (DDBMS) A system for
managing data stored at more than one location. Using a DDBMS
offers several advantages: Data stored closer to users can reduce
network traffic; the system is scalable, so new data sites can be added
without reworking the system design; and with data stored in various
locations, the system is less likely to experience a catastrophic failure.
A potential disadvantage of distributed data storage involves data
security. It can be more difficult to maintain controls and standards
when data is stored in various locations.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

458 Glossary

distributed denial of service (DDOS) A service attack involving
multiple attacking computers that can synchronize DOS attacks on a
server.

distributed system Company-wide systems that are connected by one
or more LANs or WANs. The capabilities of a distributed system
depend on the power and capacity of the underlying data communica-
tion network.

Diverging data flow A data flow in which the same data travels to
two or more different locations.

document review A review of baseline documentation. A useful fact-
finding technique that helps an analyst understand how the current
system is supposed to work.

documentation Material that explains a system, helps people interact
with it, and includes program documentation, system documentation,
operations documentation, and user documentation.

domain The set of values permitted for a data element.

dumpster diving Raiding desks or trash bins for valuable information.

duration The amount of time it will take to complete a task.

EBCDIC Stands for Extended Binary Coded Decimal Interchange
Code, a coding method used on mainframe computers and some high-
capacity servers.

e-commerce (electronic commerce) Transactions (e.g., buying and
selling of goods and information) that occur on the Internet. Includes
both business-to-consumer and business-to-business.

economic feasibility Achieved if the projected benefits of the pro-
posed system outweigh the estimated costs involved in acquiring,
installing, and operating it.

economy of scale The inherent efficiency of high-volume processing
on larger computers. Database design allows better utilization of hard-
ware. If a company maintains an enterprise-wide database, processing
is less expensive using a powerful mainframe server instead of using
several smaller computers.

electronic data interchange (EDI) The exchange of business docu-
ments between computers using a standard electronic format.

electronic health record (EHR) An electronic record of a patient’s
health information generated as the patient encounters various health-
care providers and shared among multiple facilities and agencies.

electronic product code (EPC) Technology that uses RFID tags to
identify and monitor the movement of each individual product, from
the factory floor to the retail checkout counter.

electronic proof of delivery (EPOD) A supplier uses RFID tags on
each crate, case, or shipping unit to create a digital shipping list to ver-
ify receipt of goods.

empowerment A business practice that places more responsibility
and accountability throughout all levels of an organization.

encapsulation The idea that all data and methods are self-contained,
as in a black box.

encryption A process where data is coded (converted into unreadable
characters) so that only those with the required authorization can
access the data. (usually via decoding software)

engaged listening The ability to really concentrate on what someone
is saying and avoid the temptation to hear what is expected. Also
includes noticing nonverbal communication.

enhancement A new feature or capability.

enterprise applications Company-wide applications, such as order
processing systems, payroll systems, and company communications
networks.

enterprise computing Information systems that support company-
wide data management requirements, such as airline reservations or
credit card billing systems.

enterprise resource planning (ERP) A process that establishes an
enterprise-wide strategy for IT resources. ERP defines a specific archi-

tecture, including standards for data, processing, network, and user
interface design.

entity A person, a place, a thing, or an event for which data is col-
lected and maintained. For example, an online sales system may
include entities named CUSTOMER, ORDER, PRODUCT, and
SUPPLIER.

entity-relationship diagram (ERD) A graphical model of the infor-
mation system that depicts the relationships among system entities.

epic In an agile project, a simple, high-level statement of a require-
ment. See feature.

evaluation and selection team A group of people involved in select-
ing hardware and software. The group includes systems analysts and
users. A team approach ensures that critical factors are not overlooked
and that a sound choice is made.

evaluation model A technique that uses a common yardstick to mea-
sure and compare vendor ratings.

event A reference point that marks a major occurrence. Used to moni-
tor progress and manage a project. See also milestone.

exception report A document displaying only those records that
meet a specific condition or conditions. Exception reports are useful
when the user wants information only on records that might require
action but does not need to know the details.

existence check A type of data validation check that is used for man-
datory data items. For example, if an employee record requires a Social
Security number, an existence check would not allow the user to save
the record until he or she enters a suitable value in the SSN field.

exploding A diagram is said to be exploded if it “drills down” to a
more detailed or expanded view

exploit An attack that takes advantage of a system vulnerability,
often due to a combination of one or more improperly configured
services.

Extended Service Set (ESS) A wireless network configuration made
up of two or more BSS networks, which allows wireless clients to roam
from BSS to BSS.

extensibility Refers to a system’s ability to expand, change, or down-
size easily to meet the changing needs of a business enterprise. Also
known as scalability.

fact-finding The process of gathering requirements. See requirements
elicitation.

fat client A network design that locates all or most of the application
processing logic at the client. Also called a thick client design.

fault management The timely detection and resolution of operational
problems. Fault management includes monitoring a system for signs of
trouble, logging all system failures, diagnosing the problem, and apply-
ing corrective action.

fault tolerant A system or application is said to be fault tolerant if the
failure of one component does not disable the rest of the system or
application.

faxback See automated fax.

feasibility study An initial investigation to clearly identify the nature
and scope of the business opportunity or problem. Also called prelimi-
nary investigation.

feature In an agile project, a simple, high-level statement of a require-
ment. See epic.

field A single characteristic or fact about an entity. A field, or attri-
bute, is the smallest piece of data that has meaning within an
information system. For example, a Social Security number or com-
pany name could be examples of a field. The terms data element, data
item, and field are used interchangeably.

file Each file or table contains data about people, places, things, or
events that interact with the information system.

file-oriented system A file-oriented system, also called a file process-
ing system, stores and manages data in one or more separate files.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

459 Glossary

fill-in form A template used to collect data on the Internet or a com-
pany intranet.

finish day/date The day or date when a task is scheduled to be fin-
ished.

firewall The main line of defense between a local network, or intranet,
and the Internet.

first normal form (1NF) A record is said to be in 1NF if it does not
contain a repeating group (a set of data items that can occur any num-
ber of times in a single record).

fishbone diagram An analysis tool that represents the possible causes
of a problem as a graphical outline. Also called an Ishikawa diagram.

fixed fee model A service model that charges a set fee based on a
specified level of service and user support.

flowchart A diagram used to describe program logic that represents
logical rules and interaction graphically using a series of symbols con-
nected by arrows. Flowcharts can be useful in visualizing modular
program designs.

focus In a sequence diagram, a focus indicates when an object sends
or receives a message. It is indicated by a narrow vertical rectangle that
covers the lifeline.

foreign key A field in one table that must match a primary key value
in another table in order to establish the relationship between the two
tables.

form filling A very effective method of online data entry where a
blank form that duplicates or resembles the source document is com-
pleted on the screen. The user enters the data and then moves to the
next field.

form layout The physical appearance and placement of data on a
form. Form layout makes the form easy to complete and provides
enough space, both vertically and horizontally, for users to enter the
data.

forum An online discussion on a particular topic, where people meet,
offer support, and exchange ideas.

four-model approach A physical model of the current system, a logi-
cal model of the current system, a logical model of the new system, and
a physical model of the new system are all developed.

full backup A complete backup of every file on the system.

functional baseline The configuration of the system documented at
the beginning of the project. It consists of all the necessary system
requirements and design constraints.

functional decomposition diagram (FDD) A top-down representa-
tion of business functions and processes. Also called a structure chart.

functional primitive A single function that is not exploded further.
The logic for functional primitives is documented in a data dictionary
process description.

functional requirement A statement of the services a system pro-
vides.

functionally dependent Functional dependence is an important con-
cept for understanding the 2NF. The field X is said to be functionally
dependent on the field Y if the value of X depends on the value of Y.
For example, an order date is dependent on an order number; for a
particular order number, there is only one value for the order date. In
contrast, the product description is not dependent on the order num-
ber. For a particular order number, there might be several product
descriptions, one for each item ordered.

Gane and Sarson A popular symbol set used in DFDs. Processes, data
flows, data stores, and external entities all have a unique symbol.

Gantt chart A horizontal bar chart that illustrates a schedule. Devel-
oped many years ago by Henry L. Gantt as a production control
technique. Still are in common use today.

garbage in, garbage out (GIGO) The concept that the quality of the
output is only as good as the quality of the input.

gateway (1) In business processing modeling notation, a fork in the
process, allowing the flow to go one way or another. (2) A router or
other network device used to connect to a larger, dissimilar type of
network, such as the Internet.

gigabits per second (Gbps) A bandwidth or throughput measure-
ment.

global outsourcing The practice of shifting IT development, support,
and operations to other countries.

glueware See middleware.

graphical user interface (GUI) The use of graphical objects and
techniques allowing users to communicate with a system. A well-
designed GUI can help users learn a new system rapidly and work with
the system effectively.

gray hole A process with an input obviously insufficient to generate
the shown output.

groupware Programs that run on a network that enable users to share
data, collaborate on projects, and work in teams. Also called work-
group software.

hardening Making a system more secure by removing unnecessary
accounts, services, and features.

hardware The physical layer of the information system, to include
computers, networks, communications equipment, and other technol-
ogy-based infrastructure.

hash totals Not meaningful numbers themselves but are useful for
comparison purposes. Also known as batch control totals.

Hawthorne Effect A phenomenon where employees who know they
are being observed are more productive.

help desk A centralized resource staffed by IT professionals that pro-
vides users with the support they need to do their jobs. A help desk has
three main objectives: to show people how to use system resources
more effectively, to provide answers to technical or operational ques-
tions, and to make users more productive by teaching them how to
meet their own information needs. Also called service desk or informa-
tion center.

hierarchical network A network design where one computer (typi-
cally a mainframe) controls the entire network. Satellite computers or
servers control lower levels of processing and network devices.

histogram A common tool for showing the distribution of question-
naire or sampling results. It takes the form of a vertical bar chart.

horizontal application A software package that can be used by many
different types of organizations.

horizontal system A basic system, such as an inventory or payroll
package, that is commonly used by a variety of companies.

hot site A separate IT location, which might be in another state or
even another country, that can support critical business systems in the
event of a power outage, system crash, or physical catastrophe.

HTTP/2 The second major version of the network protocol used by
the web. Released as a standard in 2015.

hub The center of a star network. Switches in modern networks have
largely replaced hubs.

human-computer interaction (HCI) A description of the relation-
ship between computers and the people who use them to perform
business-related tasks. HCI concepts apply to everything from a PC
desktop to the main menu for a global network.

identity management Controls and procedures necessary to identify
legitimate users and system components.

identity theft The stealing of personally identifying information
online.

IEEE 802.11i A security standard for Wi-Fi wireless networks that
uses the WPA2 protocol, currently the most secure encryption method
for Wi-Fi networks.

incremental backup Saving a copy of only the files that have changed
since the last full backup.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

460 Glossary

inference rules Instructions that direct a knowledge management
system to identify data patterns and relationships.

informal structure An organization based on interpersonal relation-
ships, which can develop from previous work assignments, physical
proximity, unofficial procedures, or personal relationships.

information Data that has been changed into a useful form of output.

information system A combination of information technology, peo-
ple, and data to support business requirements. The five key
components are hardware, software, data, processes, and people.

information technology (IT) A combination of hardware, software,
and telecommunications systems that support business operations,
improve productivity, and help managers make decisions.

infrastructure mode A wireless network configuration in which a
central wireless device called an access point is used to serve all wire-
less clients; also called BSS.

inheritance A type of object relationship. Inheritance enables an
object to derive one or more of its attributes from another object (e.g.,
an INSTRUCTOR object may inherit many traits from the
EMPLOYEE object, such as hire date).

in-house software An information center or help desk within the IT
department responsible for providing user support and offering ser-
vices such as hotline assistance, training, and guidance to users who
need technical help.

input control The necessary measures to ensure that input data is
correct, complete, and secure. A systems analyst must focus on input
control during every phase of input design, starting with source docu-
ments that promote data accuracy and quality.

input mask Template or pattern that makes it easier for users to enter
data. Often used in automated forms to guide an unfamiliar user.

instance A specific member of a class.

Institute of Electrical and Electronics Engineers (IEEE) A profes-
sional organization that establishes standards for telecommunications.

intangible benefits Positive outcomes that are difficult to measure in
dollars. However, intangible benefits can be very important in the cal-
culation of economic feasibility. An example of an intangible benefit
might be a new website that improves a company’s image.

intangible costs Items that are difficult to measure in dollar terms,
such as employee dissatisfaction.

integrated development environment (IDE) A suite of integrated
tools to make it easier to plan, construct, and maintain a specific soft-
ware product. An IDE is designed to allow the easy integration of
system components with less time being spent on developing code for
interactive modules.

integrated development environments (IDE) An application for
building other software applications. Typically includes a visual code
editor, an integrated compiler, a debugger, a configuration management
system, and a test framework.

integration testing The testing of two or more programs that depend
on each other.

integrity One of the three main elements of system security: confiden-
tiality, integrity, and availability (CIA). Integrity prevents unauthorized
users from creating, modifying, or deleting information.

International Organization for Standardization (ISO) A network
of national standards institutes from over a hundred countries working
in partnership with international organizations, governments, indus-
tries, and business and consumer representatives. The ISO acts as a
bridge between public and private sectors.

Internet business services (IBSs) Services that provide powerful
web-based support for transactions such as order processing, billing,
and customer relationship management.

The Internet-of-Things (IOT) Devices connected to one another over
a computer network.

Internet operating system Part of the Web 2.0 model, an online
computing environment created by online communities and services,

based on layers of shared information that can contain text, sound
bytes, images, and video clips.

interview A planned meeting during which information is obtained
from another person.

ISO 9000-3:2014 A set of guidelines established and updated by the ISO
to provide a QA framework for developing and maintaining software.

iteration cycle An agile development cycle that includes planning,
designing, coding, and testing one or more features based on user stories.

iteration planning meeting In agile development, a meeting held at
the beginning of each iteration cycle to break down user stories into
specific tasks that are assigned to team members.

iteration The completion of a process step that is repeated until a
specific condition changes.

iterative An adaptive method typically uses a spiral development
model, which builds on a series of iterations.

java database connectivity (JDBC) A standard that enables Java
applications to exchange data with any database that uses SQL state-
ments and is ODBC-compliant.

joint application development (JAD) A systems development tech-
nique that uses a task force of users, managers, and IT professionals
who work together to gather information, discuss business needs, and
define the new system requirements.

just-in-time (JIT) The exchange or delivery of information when and
where it is needed. For example, just-in-time inventory systems rely on
computer-to-computer data exchange to minimize unnecessary inventory.

Kbps (kilobits per second) A bandwidth or throughput measurement.

key fields Used during the systems design phase to organize, access,
and maintain data structures. The four types of key fields are primary
keys, candidate keys, foreign keys, and secondary keys.

keystroke logger A device that can be inserted between a keyboard
and a computer to record keystrokes.

knee of the curve A performance characteristic of a client/server
computing environment. Client/server response times tend to increase
gradually and then rise dramatically as the system nears its capacity.
The point where response times increase dramatically.

knowledge base A popular systems development technique that uses
a group of users, managers, and IT professionals who work together to
gather information, discuss business needs, and define the new system
requirements.

leading questions Queries that suggest or favor a particular reply.

legacy data The data associated with an older, less technologically
advanced legacy system.

legacy system An older system that is typically less technologically
advanced than currently available systems.

leveling The process of drawing a series of increasingly detailed dia-
grams to reach the desired level of detail.

library module In a structure chart, a library module is a module that
is reusable and can be invoked from more than one point in the chart.

lifeline In a sequence diagram, a lifeline is used to represent the time
during which the object above it is able to interact with the other
objects in the use case. An X marks the end of a lifeline.

limit check Occurs when a validation check involves a minimum or a
maximum value, but not both. Checking that a payment amount is
greater than zero, but not specifying a maximum value, is an example
of a limit check.

list box An output mechanism that displays a list of choices that the
user can select.

local area network (LAN) A network design that allows the sharing
of data and hardware, such as printers and scanners. Advances in data
communication technology have made it possible to create powerful
networks that use satellite links, high-speed fiber-optic lines, or the
Internet to share data.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

461 Glossary

log Record typically kept by operating systems and applications that
documents all events, including dates, times, and other specific infor-
mation. Logs can be important in understanding past attacks and
preventing future intrusions.

logic error Mistakes in the underlying logic that produce incorrect results.

logical design The definition of an information system’s functions and
features, and the relationships among its components.

logical model Shows what a system must do, regardless of how it will
be implemented physically.

logical record A logical record contains field values that describe a
single person, place, thing, or event. Application programs see a logical
record as a set of fields, regardless of how or where the data is stored
physically.

logical storage Refers to information as seen through a user’s eyes,
regardless of how or where that information is organized or stored.

logical structure See control structure.

logical topology A view of a network that describes the way the compo-
nents interact, rather than the actual network cabling and connections.

loop In a structure chart, a loop indicates that one or more modules
are repeated.

looping Refers to a process step that is repeated until a specific condition
changes. For example, a process that continues to print paychecks until it
reaches the end of the payroll file is looping. Also known as repetition.

loosely coupled Modules that are relatively independent. Loosely
coupled modules are easier to maintain and modify, because the logic
in one module does not affect other modules.

M:N A type of entity relationship. A many-to-many relationship,
abbreviated M:N, exists when one instance of the first entity can
be related to many instances of the second entity, and one instance
of the second entity can be related to many instances of the first
entity.

machine learning An application of computer science and artificial
intelligence that uses automated approaches to pattern recognition and
predictive analytics based on large datasets.

mainframe architecture A system design where the server performs
all the processing.

maintenance activities Changing programs, procedures, or docu-
mentation to ensure correct system performance. Adapting the system
to changing requirements, and making the system operate more effi-
ciently. Those needs are met by corrective, adaptive, perfective, and
preventive maintenance.

maintenance agreement A specification of the conditions, charges,
and time frame for users to contact the vendor for assistance when
they have system problems or questions.

maintenance expenses Costs that vary significantly during the system’s
operational life and include spending to support maintenance activities.

maintenance release A formal release of a new system version that
contains a number of changes.

maintenance release methodology A system of numbered releases
used by organizations (especially software vendors) that helps organize
maintenance changes and updates.

maintenance team One or more systems analysts and programmers
working on product maintenance issues together.

make or buy The choice between developing in-house software and pur-
chasing software often is called a make or buy, or build or buy, decision.

malware Malicious software that might jeopardize the system’s secu-
rity or privacy.

managed hosting An operation is managed by the outside firm, or
host. Another term for IBSs.

management information system (MIS) A computer-based infor-
mation system used in business planning, control, decision making, and
problem solving.

many-to-many relationship See M:N.

market basket analysis A type of analysis that can detect patterns
and trends in large amounts of data.

megabits per second (Mbps) A bandwidth or throughput measurement.

menu bar A set of user-selectable software application options, usu-
ally located across the top of the screen.

mesh network A network design in which each node connects to
every other node. While this design is very reliable, it is also expensive
to install and maintain.

message An O-O command that tells an object to perform a certain
method.

method Defines specific tasks that an object must perform. Describes
what and how an object does something.

methods In a class diagram, methods represent program logic.

metrics Workload measurements, also called metrics, include the
number of lines printed, the number of records accessed, and the num-
ber of transactions processed in a given time period.

middleware Software that connects dissimilar applications and
enables them to communicate and exchange data. For example,
middleware can link a departmental database to a Web server that can
be accessed by client computers via the Internet or a company intranet.
See also glueware.

milestone A reference point that marks a major occurrence. Used to
monitor progress and manage a project. See also event.

mission statement A document or statement that describes the com-
pany for its stakeholders and briefly states the company’s overall
purpose, products, services, and values.

mission-critical system An information system that is vital to a com-
pany’s operations.

mitigation One of four risk control strategies. Mitigation reduces the
impact of a risk by careful planning and preparation. For example, a
company can prepare a disaster recovery plan to mitigate the effects of
a natural disaster should one occur.

mnemonic code Ciphers using a specific combination of letters that
are easy to remember. Many three-character airport codes are mne-
monic codes. For example, LAX represents Los Angeles.

mobile device Smartphones, tablets, and other computing devices
that are not permanently tethered to a desk. They connect to the net-
work wirelessly.

mock-up When designing a report, a sample report is prepared, which
is a mock-up, or prototype, for users to review. The sample should
include typical field values and contain enough records to show all the
design features.

model-based systems engineering (MBSE) An approach to systems
engineering that relies on domain models, rather than traditional docu-
ments, to design large-scale systems and convey information between
engineers.

modeling A process that produces a graphical representation of a con-
cept or process that systems developers can analyze, test, and modify.

modular design A design that can be broken down into logical
blocks. Also known as partitioning or top-down design.

module A module consists of related program code organized into
small units that are easy to understand and maintain. A complex pro-
gram could have hundreds or even thousands of modules.

Moore’s law A prediction that computing power would double every
18 to 24 months due to increased miniaturization of electronic compo-
nents.

multipath design A network design that relies on multiple data paths
to increase bandwidth and range, using MIMO technology.

multiple input/multiple output (MIMO) A wireless networking tech-
nology incorporated in the IEEE 802.11n and 802.11ac standards that
uses multiple data streams and multiple antennas to achieve higher
transmission speeds and substantially increase wireless range over ear-
lier standards.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

462 Glossary

multivalued key Sometimes it is necessary for a primary key to con-
sist of a combination of fields. In that case, the primary key is called a
combination key, composite key, concatenated key, or multivalued key.

natural language A software feature that allows users to type com-
mands or requests in normal English (or other language) phrases.

net-centric computing A distributed environment where applications
and data are downloaded from servers and exchanged with peers
across a network on an as-needed basis.

net present value (NPV) The total value of the benefits minus the
total value of the costs, with both the costs and benefits being adjusted
to reflect the point in time at which they occur.

network Two or more devices that are connected for the purpose of
sending, receiving, and sharing data.

network diagram A PERT chart also is referred to as a network diagram.

network interface A combination of hardware and software that
allows the computer to interact with the network.

network intrusion detection system (NIDS) Software that monitors
network traffic to detect attempted intrusions or suspicious network
traffic patterns and sends alerts to network administrators. Can be
helpful in documenting the efforts of attackers and analyzing network
performance.

network topology The way a network is configured. LAN and WAN
networks typically are arranged in one of four common patterns: hier-
archical, bus, star, and ring.

node A physical device, wired or wireless, that can send, receive, or
manage network data.

nondiscretionary projects Where management has no choice in
implementing a project, they are called nondiscretionary. For example,
adding a report required by a new federal law.

non-functional requirements A statement of operational system
constraints.

nonkey field Any field that is not a primary key or a candidate key is
called a nonkey field.

normalization A process by which analysts identify and correct inher-
ent problems and complexities in their record designs.

NoSQL databases Database systems that use a flat, nontabular (non-
relational) structure to store and process large-scale datasets.

n-tier design A multilevel design or architecture. For example, three-
tier designs also are called n-tier designs, to indicate that some designs
use more than one intermediate layer.

object In object-oriented analysis or programming, an object repre-
sents a real person, place, event, or transaction.

object model Describes objects, which combine data and processes.
Object models are the end product of O-O analysis.

object-oriented (O-O) analysis The act of understanding an infor-
mation system by identifying things called objects. An object represents
a real person, place, event, or transaction. Object-oriented analysis is a
popular approach that sees a system from the viewpoint of the objects
themselves as they function and interact with the system.

object-oriented development (OOD) The process of translating an
object model directly into an O-O programming language.

observation A fact-finding technique where an analyst sees a system in
action. Observation allows the verification of statements made in interviews.

offshore outsourcing The practice of shifting IT development, sup-
port, and operations to other countries.

offshoring See offshore outsourcing.

offsiting The practice of storing backup media away from the main
business location, in order to mitigate the risk of a catastrophic disas-
ter such as a flood, fire, or earthquake.

one-to-many relationship See 1:M.

one-to-one relationship See 1:1.

online data entry A data entry method used for most business activ-
ity. The online method offers major advantages, including the
immediate validation and availability of data.

online documentation Provides immediate help when users have
questions or encounter problems.

online system Handling transactions when and where they occur and
providing output directly to users. Because it is interactive, online pro-
cessing avoids delays and allows a constant dialog between the user
and the system.

open database connectivity (ODBC) An industry-standard protocol
that makes it possible for software from different vendors to interact
and exchange data.

open source Software that is supported by a large group of users and
developers. The source code is made freely available.

Open Systems Interconnection (OSI) model Describes how data
actually moves from an application on one computer to an application
on another networked computer. The OSI consists of seven layers, and
each layer performs a specific function.

open-ended questions Queries that allow for a range of answers.
They encourage spontaneous and unstructured responses and are use-
ful in understanding a larger process.

operational costs Expenses that are incurred after a system is imple-
mented and continue while the system is in use. Examples include
system maintenance, supplies, equipment rental, and annual software
license fees.

operational environment The environment for the actual system
operation. It includes hardware and software configurations, system
utilities, and communications resources. Also called the production
environment.

operational feasibility A system that that will be used effectively after
it has been developed.

operational security Concerned with managerial policies and con-
trols that ensure secure operations. Also called procedural security.

operations documentation Contains all the information needed for
processing and distributing online and printed output.

option button Radio buttons that represent groups of options. The
user can select only one option at a time; a selected option contains a
black dot. See also radio button.

orphan An unassociated or unrelated record or field. An orphan could
be created if a customer order was entered in an order table where that
customer did not already exist in the customer table. Referential integ-
rity would prevent the creation of this orphan.

output control Methods to maintain output integrity and security.
For example, every report should include an appropriate title, report
number or code, printing date, and time period covered. Reports
should have pages that are numbered consecutively, identified as Page
xx of xx, and the end of the report should be labeled clearly.

output security Output security protects privacy rights and shields
the organization’s proprietary data from theft or unauthorized access.

outsourcing The transfer of information systems development, opera-
tion, or maintenance to an outside firm that provides these services, for
a fee, on a temporary or long-term basis.

page footer Appears at the bottom of the page and is used to display
the name of the report and the page number.

page header Appears at the top of the page and includes the column
headings that identify the data.

pair programming A practice in XP in which two programmers work
on the same task on the same computer; one drives (programs) while
the other navigates (watches).

parallel operation The parallel operation changeover method
requires that both the old and the new information systems operate
fully for a specified period. Data is input into both systems, and output
generated by the new system is compared with the equivalent output
from the old system.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

463 Glossary

parent In inheritance, a parent is the object from which the other
object, the child, derives one or more attributes.

parent diagram The higher or more top-level diagram in an exploded
DFD.

Pareto chart A vertical bar graph named for a nineteenth century
economist. The bars, which represent various causes of a problem, are
arranged in descending order, so the team can focus on the most
important causes.

partitioning The breaking down of overall objectives into subsystems
and modules.

patch Replacement code that is applied to fix bugs or security holes in
software.

payback analysis A determination of how long it takes an informa-
tion system to pay for itself through reduced costs and increased
benefits.

perfective maintenance Changes to a system to improve efficiency.

permissions User-specific privileges that determine the type of access
a user has to a database, file, or directory. Also called user rights.

personal digital assistant A program that responds to user requests
through a natural interface, such as regular speech, to provide assis-
tance to general-purpose queries. Often embedded in devices such as
Internet-connected speakers and smartphones.

personal information manager (PIM) A tool that helps manage
tasks and schedules. Many handheld devices also include this function.

person-day The amount of work that one person can complete in one
day.

PERT/CPM The Program Evaluation Review Technique (PERT) was
developed by the U.S. Navy to manage very complex projects, such
as the construction of nuclear submarines. At approximately the
same time, the Critical Path Method (CPM) was developed by pri-
vate industry to meet similar project management needs. The
important distinctions between the two methods have disappeared
over time, and today the technique is called either PERT, CPM, or
PERT/CPM.

phased operation The phased operation method allows a new system
to be implemented in stages, or modules.

physical design A plan for the actual implementation of the system.

physical model A model that describes how a system will be con-
structed.

physical storage Information storage mechanism that is strictly hard-
ware related, because it involves the process of reading and writing
binary data to physical media, such as a hard drive, flash drive, or
DVD.

physical topology The connection structure of an actual network’s
cabling.

pilot operation The pilot operation changeover method involves
implementing the complete new system at a selected location of the
company.

pilot site In a pilot operation, the group that uses the new system first
is called the pilot site.

plain text Data that is not encrypted.

platform A specific hardware and software configuration that sup-
ports IT business goals such as hardware connectivity and easy
integration of future applications. Also called an environment.

podcast A web-based broadcast that allows a user to receive audio or
multimedia files using music player software such as iTunes, and listen
to them on a PC or download them to a portable MP3 player or smart
phone.

point-of-sale (POS) The part of an information system that handles
daily sales transactions and maintains the online inventory file.

polymorphism The concept that a message gives different meanings
to different objects (e.g., a GOOD NIGHT message might produce
different results depending if it is received by a child or the family dog).

pool The overall diagram in BPMN.

port A positive integer that is used for routing incoming traffic to the
correct application on a computer.

port scan An attempt to detect the services running on a computer by
trying to connect to various ports and recording the ports on which a
connection was accepted.

portal An entrance to a multifunction website. After entering a portal,
a user can navigate to a destination, using various tools and features
provided by the portal designer.

post-implementation evaluation An assessment of the overall qual-
ity of the information system. The evaluation verifies that the new
system meets specified requirements, complies with user objectives, and
achieves the anticipated benefits. In addition, by providing feedback to
the development team, the evaluation also helps improve IT develop-
ment practices for future projects.

power-on password See BIOS-level password.

predecessor task A single prior task upon which two or more con-
current tasks depend.

preliminary investigation An initial analysis to clearly identify the
nature and scope of the business opportunity or problem. Also called a
feasibility study.

pretexting Obtaining personal information under false pretenses.

preventive maintenance Changes to a system to reduce the possibil-
ity of future failure.

primary key A field or combination of fields that uniquely and mini-
mally identifies a particular member of an entity. For example, in a
customer table the customer number is a unique primary key because
no two customers can have the same customer number. That key also is
minimal because it contains no information beyond what is needed to
identify the customer.

private key encryption A common encryption technology called
PKE. The private key is one of a pair of keys, and it decrypts data that
has been encrypted with the second part of the pair, the public key.

private network A dedicated connection, similar to a leased
 telephone line.

privilege escalation attack An unauthorized attempt to increase
 permission levels.

probable-case estimate The most likely outcome is called a
 probable-case estimate.

procedural security Concerned with managerial policies and controls
that ensure secure operations. Also called operational security.

process Procedure or task that users, managers, and IT staff members
perform. Also, the logical rules of a system that are applied to trans-
form data into meaningful information. In data flow diagrams, a
process receives input data and produces output that has a different
content, form, or both.

process 0 In a DFD, process 0 (zero) represents the entire information
system but does not show the internal workings.

process description A documentation of a functional primitive’s
details, which represents a specific set of processing steps and business
logic.

process improvement The framework used to integrate software and
systems development by a new SEI model, CMMI.

product baseline Describes the system at the beginning of operation.
The product baseline incorporates any changes made since the allo-
cated baseline and includes the results of performance and acceptance
tests for the operational system.

product lifecycle management (PLM) See application lifecycle
management (ALM).

production environment The environment for the actual system
operation. It includes hardware and software configurations, system
utilities, and communications resources. Also called the operational
environment.

productivity software Applications such as word processing, spread-
sheet, database management, and presentation graphics programs.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

464 Glossary

product-oriented Companies that manufacture computers, routers,
or microchips.

program documentation Preparation of program documentation
starts in the systems analysis phase and continues during systems
implementation. Systems analysts prepare overall documentation, such
as process descriptions and report layouts, early in the SDLC.
Programmers provide documentation by constructing modules that are
well supported by internal and external comments and descriptions
that can be understood and maintained easily.

Program Evaluation Review Technique (PERT) See PERT/CPM.

programmer/analyst A designation for positions that require a com-
bination of systems analysis and programming skills.

project coordinator The person who handles administrative respon-
sibilities for the development team and negotiates with users who
might have conflicting requirements or want changes that would
require additional time or expense.

project creep The process by which projects with very general scope
definitions expand gradually, without specific authorization.

project leader The person charged with leading a project from a
technical perspective.

project management The process of planning, scheduling, monitor-
ing, controlling, and reporting upon the development of an
information system.

project manager The person charged with managing a project from
an administrative perspective.

project monitoring Guiding, supervising, and coordinating the proj-
ect team’s workload.

project planning Identifying project tasks and estimating completion
time and costs.

project reporting Providing regular progress reports to management,
users, and the project team itself.

project scheduling The creation of a specific timetable to facilitate
completion of a project. Also involves selecting and staffing the project
team and assigning specific tasks to team members.

project scope A specific determination of a project’s boundaries or
extent.

project triangle The three major components of a project: cost,
scope, and time. A project manager tries to find the optimal balance
among these factors.

properties In object-oriented (O-O) analysis, characteristics that
objects inherit from their class or possess on their own.

prototype An early, rapidly constructed working version of the pro-
posed information system.

prototyping The method by which a prototype is developed. It
involves a repetitive sequence of analysis, design, modeling, and testing.
It is a common technique that can be used to design anything from a
new home to a computer network.

proxy server A networking device that provides Internet connectivity
for internal LAN users.

pseudocode A technique for representing program logic in semi-
structured prose.

public key encryption (PKE) A common encryption technique. Each
user on the network has a pair of keys: a public key and a private key.
The public key encrypts data that can be decrypted with the private
key.

qualitative risk analysis Evaluating risk by estimating the probability
that it will occur and the degree of impact.

quality assurance (QA) A process or procedure for minimizing errors
and ensuring quality in products. Poor quality can result from inaccu-
rate requirements, design problems, coding errors, faulty
documentation, and ineffective testing. A QA team reviews and tests all
applications and systems changes to verify specifications and software
quality standards.

quality attributes See non-functional requirements.

quantitative risk analysis Evaluating risk in terms of the actual
impact in terms of dollars, time, project scope, or quality.

query by example (QBE) A language allows the user to provide an
example of the data requested.

query language Allows a user to specify a task without specifying
how the task will be accomplished. Some query languages use natural
language commands that resemble ordinary English sentences.

questionnaire A document containing a number of standard ques-
tions that can be sent to many individuals. Also called a survey.

radio button Buttons that represent groups of options. The user can
select only one option at a time; a selected option contains a black dot.
See also option button.

radio frequency identification (RFID) Technology that uses high-
frequency radio waves to track physical objects.

radio frequency identification (RFID) tag An input device used in
source data automation.

random sample A selection taken in a random, unplanned manner.
For example, a random sample might be a sample that selects any 20
customers.

range check A type of data validation check that tests data items to
verify that they fall between a specified minimum and maximum value.
The daily hours worked by an employee, for example, must fall within
the range of 0 to 24.

range-of-response questions Closed-ended questions that ask the
person to evaluate something by providing limited answers to specific
responses or on a numeric scale.

rapid application development (RAD) A team-based technique that
speeds up information systems development and produces a function-
ing information system. RAD is similar in concept to JAD but goes
further by including all phases of the SDLC.

reasonableness check A type of data validation check that identifies
values that are questionable but not necessarily wrong. For example,
input payment values of $0.05 and $5,000,000.00 both pass a simple
limit check for a payment value greater than zero, and yet both values
could be errors.

record A set of related fields that describes one instance, or member
of an entity, such as one customer, one order, or one product. A record
might have one or dozens of fields, depending on what information is
needed. Also called a tuple.

records retention policy Rules designed to meet all legal require-
ments and business needs for keeping records.

recovery The process of restoring data and restarting a system after
an interruption.

recovery procedure Process for restoring data and restarting a sys-
tem after an interruption. Recovery procedures can be used to restore a
file or database to its current state at the time of the last backup.

redundant array of independent disks (RAID) A RAID system may
be part of an organization’s backup and recovery plans. A RAID sys-
tem mirrors the data while processing continues. RAID systems are
called fault-tolerant, because a failure of any one disk does not disable
the system.

referential integrity A type of validity check. Referential integrity is a
set of rules that avoids data inconsistency and quality problems.

relational database A database in which tables are related by com-
mon fields, creating a unified data structure that provides improved
data quality and access.

relational model A model used in relational databases. The relational
model was introduced during the 1970s and became popular because it
was flexible and powerful.

relationships Enable objects to communicate and interact as they
perform the business functions and transactions required by a system.
Relationships describe what objects need to know about each other,
how objects respond to changes in other objects, and the effects of
membership in classes, superclasses, and subclasses.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

465 Glossary

release plan In agile development, a plan that specifies when user
stories will be implemented and the timing of the releases. Releases are
relatively frequent, and each release is treated as a system prototype
that can be tested and modified as needed.

remote control software Applications that allow IT staff to take
over a user’s workstation and provide support and troubleshooting.

repeating group A set of one or more fields that can occur any number
of times in a single record, with each occurrence having different values.

report footer Appears at the end of the report, can include grand
totals for numeric fields and other end-of-report information.

report header Appears at the beginning of a report and identifies the
report as well as the report title, date, and other necessary information.

request for proposal (RFP) A written list of features and specifica-
tions given to prospective vendors before a specific product or package
has been selected.

request for quotation (RFQ) Used to obtain a price quotation or bid
on a specific product or package.

requirements definitions A description of the system requirements
from the user’s point of view.

requirements elicitation The process of gathering requirements. See
fact-finding.

requirements engineering Used in the systems planning phase of the
SDLC. It involves using various fact-finding techniques, such as inter-
views, surveys, observation, and sampling, to describe the current
system and identify the requirements for the new system.

requirements planning phase A phase that combines elements of the
systems planning and systems analysis phases of the SDLC.

requirements specifications A description of the system require-
ments from the analyst or engineering team’s point of view.

research An important fact-finding technique that includes the review
of journals, periodicals, and books to obtain background information,
technical material, and news about industry trends and developments.

response time The overall time between a request for system activity
and the delivery of the response. In the typical online environment,
response time is measured from the instant the user presses the ENTER
key or clicks a mouse button until the requested screen display appears
or printed output is ready.

retention period Backups are stored for a specific retention period
after which they are either destroyed or the backup media is reused.

return on investment (ROI) A percentage rate that measures profit-
ability by comparing the total net benefits (the return) received from a
project to the total costs (the investment) of the project. ROI = (total
benefits − total costs)/total costs.

ring network A network resembling a circle of computers that com-
municate with each other. A ring network often is used when
processing is performed at local sites rather than at a central location.

risk An event that could affect the project negatively.

risk assessment Measures the likelihood and impact of risks.

risk control Develops safeguards that reduce the likelihood and
impact of risks.

risk identification Listing each risk and assessing the likelihood that
it could affect a project.

risk management The process of identifying, evaluating, tracking,
and controlling risks to minimize their impact.

risk management plan Includes a review of the project’s scope, stake-
holders, budget, schedule, and any other internal or external factors
that might affect the project. The plan should define project roles and
responsibilities, risk management methods and procedures, categories
of risks, and contingency plans.

risk response plan A proactive effort to anticipate a risk and describe
an action plan to deal with it. An effective risk response plan can reduce
the overall impact by triggering a timely and appropriate action.

roaming A process that allows wireless clients to move from one
access point to another, automatically associating with the stronger
access point and allowing for uninterrupted service.

router A device that connects network segments, determines the most
efficient data path, and guides the flow of data.

sampling A process where an analyst collects examples of actual doc-
uments, which could include records, reports, or various forms.

scalability A characteristic of a system, implying that the system can
be expanded, modified, or downsized easily to meet the rapidly chang-
ing needs of a business enterprise.

scalable The ability of a system to expand to meet new business
requirements and volumes.

scaling on demand The ability to match network resources to needs
at any given time; a feature of cloud computing. For example, during
peak loads, additional cloud servers might come on line automatically
to support increased workloads.

scatter diagram A tool used by system analysts to graphically show
the correlation between two variables. Also called an XY chart.

scenarios In an agile project, a real-world example of how users will
interact with the system.

schedule feasibility A project can be implemented in an acceptable
time frame.

schema The complete definition of a database, including descriptions
of all fields, records, and relationships.

scroll bar In user interface design, a scroll bar allows the user to move
through the available choices for an input field.

Scrum A popular technique for agile project management. Derived
from a rugby term. In Scrum, team members play specific roles and
interact in intense sessions.

second normal form (2NF) A record design is in 2NF if it is in 1NF and
if all fields that are not part of the primary key are dependent on the entire
primary key. If any field in a 1NF record depends on only one of the fields
in a combination primary key, then the record is not in 2NF. A 1NF record
with a primary key that is a single field is automatically in 2NF.

secondary key A field or combination of fields that can be used to
access or retrieve records. Secondary key values are not unique. For
example, to access records for only those customers in a specific postal
code, the postal code field could be used as a secondary key.

security Hardware, software, and procedural controls that safeguard
and protect a system and its data from internal or external threats.

security hole Created by a combination of one or more improperly
configured services.

security policy A plan that addresses the three main elements of sys-
tem security: confidentiality, integrity, and availability.

security token A physical device that authenticates a legitimate user,
such as a smart card or keychain device.

selection A control structure in modular design, it is the comple-
tion of two or more process steps based on the results of a test or
condition.

semantic web An evolution of the web where the documents shared
on the Internet have semantics (meaning) and not just syntax (HTML
markup). Sometimes called Web 3.0.

sequence The completion of steps in sequential order, one after
another.

sequence check A type of data validation check that is used when the
data must be in some predetermined sequence. If the user must enter
work orders in numerical sequence, for example, then an out-of-
sequence order number indicates an error. If the user must enter
transactions chronologically, then a transaction with an out-of-
sequence date indicates an error.

sequence code Numbers or letters assigned in a specific order.
Sequence codes contain no additional information other than an indi-
cation of order of entry into a system.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

466 Glossary

sequence diagram A UML diagram that shows the timing of transac-
tions between objects as they occur during system execution.

server Computer in a client/server design that supplies data, process-
ing, and services to client workstations.

service An application that monitors, or listens on, a particular port.

service desk A centralized resource staffed by IT professionals that
provides users with the support they need to do their jobs. Also called
help desk.

service pack A maintenance release supplied by commercial software
suppliers.

service provider A firm that offers outsourcing solutions. Two popu-
lar outsourcing options involve ASPs and firms that offer IBSs.

service-oriented A company that primarily offers information or
services or sells goods produced by others.

significant digit code Cipher that distinguishes items by using a series
of subgroups of digits. U.S. Postal Service zip codes, for example, are
significant digit codes.

simulation A dress rehearsal for users and IT support staff. Organiza-
tions typically include all procedures, such as those that they execute
only at the end of a month, quarter, or year, in their simulations.

sink An external entity that receives data from an information system.

site visit A trip to a physical location to observe a system in use at
another location.

slack time The amount of time by which an event can be late without
delaying the project. The difference between latest completion time
(LCT) and earliest completion time (ECT).

social engineering An intruder uses social interaction to gain access
to a computer system.

soft skills Communications, interpersonal skills, perceptive abilities,
and critical thinking are soft skills. IT professionals must have soft
skills as well as technical skills.

software A program run by computers for a specific function or task.

Software as a Service (SaaS) A model of software delivery in which
functionality is delivered on demand as a network-accessible service,
rather than as a traditional software application that is downloaded
and installed on the customer’s computer.

software engineering A software development process that stresses
solid design, effective structure, accurate documentation, and careful
testing.

software license A legal agreement that gives users the right to use
the software under certain terms and conditions.

software package Software that is purchased or leased from another
firm. A commercially produced software product, or family of products.

software reengineering Uses analytical techniques to identify poten-
tial quality and performance improvements in an information system.

software vendor Company that develops software for sale.

source An external entity that supplies data to an information system.

source data automation A popular online input method that com-
bines online data entry and automated data capture using input devices
such as magnetic data strips or swipe scanners.

source document A form used to request and collect input data, trig-
ger or authorize an input action, and provide a record of the original
transaction. During the input design stage, you develop source docu-
ments that are easy to complete and inexpensive.

spiral model A development model with a series of iterations, or revi-
sions, based on user feedback.

spontaneous generation An unexplained generation of data or infor-
mation. With respect to DFDs, processes cannot spontaneously
generate data flows—they must have an input to have an output.

stakeholder Anyone who is affected by the company’s performance,
such as customers, employees, suppliers, stockholders, and members of
the community.

stand-alone When personal computers first appeared in large num-
bers in the 1990, users found that they could run their own word
processing, spreadsheet, and database applications, without assistance
from the IT group, in a mode called stand-alone computing.

standard notation format A representation that makes designing tables
easier as it clearly shows a table’s structure, fields, and primary key.

star network A network design with a central device and one or more
workstations connected to it in a way that forms a star pattern.

start day/date The day or date when a task is scheduled to begin.

state An adjective that describes an object’s current status (e.g., a
student could be a CURRENT, FUTURE, or PAST student).

state transition diagram Shows how an object changes from one
state to another, depending on the events that affect the object.

status flag In structured application development, an indicator that
allows one module to send a message to another module.

storyboard In an agile project, a simple graphic organizer that helps
systems analysts visualize the status of a project.

strategic planning The process of identifying long-term organiza-
tional goals, strategies, and resource.

strategic plans The long-range plans that define the corporate mis-
sion and goals. Typically defined by top management, with input from
all levels.

stratified sample A set metric is collected across functional areas. For
example, a certain percentage of transactions from every work shift, or
five customers from each of four zip codes, could be a stratified sample.

structure chart A top-down representation of business functions and
processes. Also called an FDD.

structured analysis A traditional systems development technique that
uses phases to plan, analyze, design, implement, and support an infor-
mation system. Processes and data are treated as separate components.

structured brainstorming A group discussion where each participant
speaks when it is his or her turn or passes.

structured English A subset of standard English that describes logical
processes clearly and accurately.

Structured Query Language (SQL) A query language that allows
PC users to communicate with servers and mainframe computers.

structured walk-through A review of a project team member’s work
by other members of the team. Generally, systems analysts review the
work of other systems analysts, and programmers review the work of
other programmers, as a form of peer review. Structured walk-throughs
should take place throughout the SDLC and are called requirements
reviews, design reviews, code reviews, or testing reviews, depending on
the phase in which they occur.

stub testing A form of testing where the programmer simulates each
program outcome or result and displays a message to indicate whether
or not the program executed successfully. Each stub represents an entry
or exit point that will be linked later to another program or data file.

subclass A further division of objects in a class. Subclasses are more
specific categories within a class.

subordinate module A lower-level module in a structure chart.

subschema A view of the database used by one or more systems or
users. A subschema defines only those portions of the database that a
particular system or user needs or is allowed to access.

subscription model A service model that charges a variable fee for an
application based on the number of users or workstations that have
access to the application.

successor task Each of the concurrent tasks of a predecessor task.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

467 Glossary

summary report A report used by individuals at higher levels in the
organization that includes less detail than reports used by lower-level
employees.

superclass A more generalized category to which objects may belong
(e.g., a NOVEL class might belong to a superclass called BOOK).

superuser account A login account that allows essentially unre-
stricted access to the application.

supply chain A traditional systems development technique that uses
phases to plan, analyze, design, implement, and support an information
system. Processes and data are treated as separate components.
supply chain management (SCM) The coordination, integration,
and management of materials, information, and finances as they move
from suppliers to customers, both within and between companies. In a
totally integrated supply chain, a customer order could cause a produc-
tion planning system to schedule a work order, which in turn could
trigger a call for certain parts from one or more suppliers.
survey A document containing a number of standard questions that
can be sent to many individuals. Also called a questionnaire.

swim lanes In a business process diagram, the overall diagram is
called a pool and the designated customer areas are called swim
lanes.

switch Central networking device in a star network, which manages
the network and acts as a conduit for all network traffic.
switchboard The use of command buttons in a user interface to
enable users to navigate a system and select from groups of related
tasks.

SWOT analysis An examination of a company’s strengths (S), weak-
nesses (W), opportunities (O), and threats (T).

syntax error Programming language grammar error.

SysML A dialect of UML 2, used for representing requirements (and
other things), primarily in MBSE applications.

system A set of related components that produces specific results.

system administrator A person who is responsible for the CM and
maintenance of an organization’s computer networks.

system architecture A translation of the logical design of an infor-
mation system into a physical structure that includes hardware,
software, network support, and processing methods.

system boundary Shows what is included and excluded from a sys-
tem. Depicted by a shaded rectangle in use case diagrams.

system changeover The process of putting the new information sys-
tem online and retiring the old system. Changeover can be rapid or
slow, depending on the method.

system design specification A document that presents the complete
design for the new information system, along with detailed costs, staff-
ing, and scheduling for completing the next SDLC phase, systems
implementation. Also called the technical design specification or the
detailed design specification.

system documentation A description of a system’s functions and
how they are implemented. The analyst prepares most of the system
documentation during the systems analysis and systems design phases.
System documentation includes data dictionary entries, DFDs, object
models, screen layouts, source documents, and the systems request that
initiated the project.

system prototyping Producing a full-featured, working model of the
information system being developed.

system requirement A characteristic or feature that must be included
in an information system to satisfy business requirements and be
acceptable to users.

system requirements document A document that contains the
requirements for the new system, describes the alternatives that were
considered, and makes a specific recommendation to management. It is
the end product of the systems analysis phase.

system software Programs that control the computer, including the
operating system, device drivers that communicate with hardware, and
low-level utilities.

system testing A form of testing involving an entire information sys-
tem and includes all typical processing situations. During a system test,
users enter data, including samples of actual or live data, perform que-
ries, and produce reports to simulate actual operating conditions. All
processing options and outputs are verified by users and the IT project
development team to ensure that the system functions correctly.

systematic sample A sample that occurs at a predetermined periodic-
ity. For example, every tenth customer record might be selected as a
systematic sample for review.

systems analysis and design The process of developing information
systems that effectively use hardware, software, data, processes, and
people to support the company’s business objectives.

systems analysis phase The second SDLC phase. The purpose of this
phase is to build a logical model of the new system.

systems analyst A person who plans, analyzes, and implements infor-
mation systems. They may work internally within a company’s IT
department or be hired by a company as an independent consultant.

systems design phase The third SDLC phase. The purpose of systems
design is to create a blueprint for the new system that will satisfy all
documented requirements, whether the system is being developed in-
house or purchased as a package.

systems development life cycle (SDLC) Activities and functions
that systems developers typically perform, regardless of how those
activities and functions fit into a particular methodology. The SDLC
model includes five phases: (1) systems planning, (2) systems analysis,
(3) systems design, (4) systems implementation, and (5) systems sup-
port and security.

systems implementation phase The fourth phase of the SDLC. Dur-
ing this phase, the new system is constructed—programs are written,
tested, and documented, and the system is installed.

systems planning phase The first phase of the SDLC. During this
phase, the systems project gets started. The project proposal is evalu-
ated to determine its feasibility. The project management plan is
formulated, with the help of CASE tools where appropriate.

systems programmer A person who concentrates on operating sys-
tem software and utilities.

systems request A formal appeal to the IT department that
describes problems or desired changes in an information system or
business process. It might propose enhancements for an existing
system, the correction of problems, or the development of an entirely
new system.

systems request A formal request to the IT department that describes
problems or desired changes in an information system or business pro-
cess. It might propose enhancements for an existing system, the
correction of problems, or the development of an entirely new system.

systems review committee A group of key managers and users
responsible for evaluating systems requests. The term computer
resources committee is sometimes also used.

systems support and security phase During the systems support and
security phase of the SDLC, the IT staff maintains, enhances, and pro-
tects the system.

table Each file or table contains data about people, places, things, or
events that interact with the information system.

table design Specifies the fields and identifies the primary key in a
particular table or file.

tamper-evident case A case designed to show any attempt to open or
unlock the case.

tangible benefits Positive outcomes that can be measured in dollars.
They can result from a decrease in expenses, an increase in revenues, or
both.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

468 Glossary

tangible costs Expenses that have a specific dollar value. Examples
include employee salaries and hardware purchases.

task Any work that has a beginning and an end and requires the use
of company resources including people, time, and/or money. Examples
include conducting a series of interviews, designing a report, selecting
software, waiting for the delivery of equipment, and training users. See
also activity.

task box A component of a PERT/CPM chart that contains important
scheduling and duration information about a task. Each task in a proj-
ect is represented by its own task box in the PERT/CPM chart.

task group A task that represents several activities.

task ID A number or code that uniquely identifies a task.

task name A brief descriptive name for a task, which does not have to
be unique in the project. For example, a task named Conduct Inter-
views might appear in several phases of the project.

task pattern A logical sequence of tasks in a WBS. Can involve
sequential tasks, multiple successor tasks, and multiple predecessor
tasks.

technical feasibility When an organization has the resources to
develop or purchase, install, and operate the system.

technical support Technical support is necessary to support the wide
variety of IT systems and users. It includes six main functions: applica-
tion development, systems support, user support, database
administration, network administration, and web support. These func-
tions overlap considerably and often have different names in different
companies.

terminator A DFD symbol that indicates a data origin or final desti-
nation. Also called an external entity.

test data The data used in unit testing. Test data should contain both
correct data and erroneous data and should test all possible situations
that could occur.

test-driven development (TDD) An XP concept that unit tests are
designed before code is written, focusing on end results and preventing
programmers from straying from their goals.

test environment The environment that analysts and programmers
use to develop and maintain programs.

test plan A plan designed by a systems analyst that includes test steps
and test data for integration testing and system testing.

testing review See structured walk-through.

thick client A system design that locates most or all of the application
processing logic at the client. Also called a fat client design.

third normal form (3NF) A record design is in 3NF if it is in 2NF
and if no nonkey field is dependent on another nonkey field. A nonkey
field is a field that is not a candidate key for the primary key.

third-party software An application that is not developed in-house.

threat In risk management, an internal or external or external entity
that could endanger an asset.

three-tier design In a three-tier design, the user interface runs on the
client and the data is stored on the server, just as in a two-tier design. A
three-tier design also has a middle layer between the client and server
that processes the client requests and translates them into data access
commands that can be understood and carried out by the server.

throughput A measurement of actual system performance under spe-
cific circumstances and is affected by network loads and hardware
efficiency. Throughput, like bandwidth, is expressed as a data transfer
rate, such as Kbps, Mbps, or Gbps.

throwaway prototyping See design prototyping.

tightly coupled If modules are tightly coupled, one module refers to
internal logic contained in another module.

toggle button A GUI element used to represent on or off status.
Clicking the toggle button switches to the other status.

toolbar A GUI element that contains icons or buttons that represent
shortcuts for executing common commands.

top-down approach A design approach, also called modular design,
where the systems analyst defines the overall objectives of the system
and then breaks them down into subsystems and modules. This
breaking-down process also is called partitioning.

total cost of ownership (TCO) A number used in assessing costs,
which includes ongoing support and maintenance costs, as well as
acquisition costs.

totals zone If a form has data totals, they will appear in this section
of the form.

traceability The ability to follow a requirement backward to its ori-
gins and forward through the SDLC to link design documents, code
fragments, and test artifacts.

training plan A successful information system requires training for
users, managers, and IT staff members. The entire systems development
effort can depend on whether or not people understand the system and
know how to use it effectively. The training plan is a document that
details these requirements.

train-the-trainer A strategy where one group of users has been
trained and can assist others. Users often learn more quickly from
coworkers who share common experience and job responsibilities.

transaction model A service model that charges a variable fee for an
application based on the volume of transactions or operations per-
formed by the application. Also called a usage model.

transaction processing (TP) systems Operational systems used to
process day-to-day recurring business transactions, such as customer
billing.

transference One of four risk control strategies. In transference, risk
is shifted to another asset or party, such as an insurance company.

transparent A network is transparent if a user sees the data as if it
were stored on his or her own workstation.

transparent interface A user interface that users don’t really notice—
a user-friendly interface that does not distract the user and calls no
attention to itself.

tunnel A secure network connection established between the client
and the access point of the local intranet.

tuple A tuple (rhymes with couple), or record, is a set of related fields
that describes one instance, or member of an entity, such as one cus-
tomer, one order, or one product. A tuple might have one or dozens of
fields, depending on what information is needed.

turnaround document Output document that is later entered back
into the same or another information system. A telephone or utility
bill, for example, might be a turnaround document printed by the
company’s billing system. When the bill is returned with payment, it is
scanned into the company’s accounts receivable system to record the
payment accurately.

turnaround time A measure applied to centralized batch processing
operations, such as customer billing or credit card statement process-
ing. Turnaround time measures the time between submitting a request
for information and the fulfillment of the request. Turnaround time
also can be used to measure the quality of IT support or services by
measuring the time from a user request for help to the resolution of the
problem.

tutorial A series of online interactive lessons that present material and
provide a dialog with users.

two-tier design A network design where the user interface resides on
the client, all data resides on the server, and the application logic can
run either on the server or on the client or be divided between the cli-
ent and the server.

unencrypted Data that is not encrypted.

Unicode A relatively recent coding method that represents characters
as integers. Unlike EBCDIC and ASCII, which use eight bits for each

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

469 Glossary

character, Unicode requires 16 bits per character, which allows it to
represent more than 65,000 unique characters.

Unified Modeling Language (UML) A widely used method of visual-
izing and documenting software systems design. UML uses
object-oriented design concepts, but it is independent of any specific
programming language and can be used to describe business processes
and requirements generally.

uninterruptible power supply (UPS) Battery-powered backup power
source that enables operations to continue during short-term power
outages and surges.

unit testing The testing of an individual program or module. The
objective is to identify and eliminate execution errors that could cause
the program to terminate abnormally and logic errors that could have
been missed during desk checking.

Universal Security Slot (USS) Can be fastened to a cable lock or
laptop alarm.

unnormalized A record that contains a repeating group, which means
that a single record has multiple occurrences of a particular field, with
each occurrence having different values.

unstructured brainstorming A group discussion where any partici-
pant can speak at any time.

usability In user interface design, includes user satisfaction, support
for business functions, and system effectiveness.

usability metrics Data that interface designers can obtain by using
software that can record and measure user interactions with the system.

usage model See transaction model.

use case description A description in UML that documents the name
of the use case, the actor, a description of the use case, a step-by-step
list of the tasks required for successful completion, and other key
descriptions and assumptions.

use case diagram A visual representation that illustrates the interac-
tion between users and the information system in UML.

use case Represents the steps in a specific business function or process
in UML.

user application Programs that utilize standard business software,
such as Microsoft Office, which has been configured in a specific man-
ner to enhance user productivity.

user design phase In this phase, users interact with systems analysts
and develop models and prototypes that represent all system processes,
outputs, and inputs.

user documentation Instructions and information to users who will
interact with the system. Includes user manuals, help screens, and
tutorials.

user interface (UI) The mechanism through which the user interacts
with the system. The interface can be graphical, textual, aural, or a
combination of different modes of interaction.

user interface Includes screens, commands, controls, and features
that enable users to interact more effectively with an application.

user productivity systems Applications that provide employees of all
levels a wide array of tools to improve job performance. Examples
include email, word processing, graphics, and company intranets.

user rights User-specific privileges that determine the type of access a
user has to a database, file, or directory. Also called permissions.

user stories In an agile project, a set of more refined requirements
derived from features.

user story In agile development, a short, simple requirements defini-
tion provided by the customer. Programmers use user stories to
determine a project’s requirements, priorities, and scope.

user training package The main objective of a user training package
is to show users how the system can help them perform their jobs.

user-centered A term that indicates the primary focus is upon the
user. In a user-centered system, the distinction blurs between input,
output, and the interface itself.

users Stakeholders inside and outside the company who will interact
with the system.

validity check A type of data validation check that is used for data
items that must have certain values. For example, if an inventory sys-
tem has 20 valid item classes, then any input item that does not match
one of the valid classes will fail the check.

validity rules Checks that are applied to data elements when data is
entered to ensure that the value entered is valid. For example, a validity
rule might require that an employee’s salary number be within the
employer’s predefined range for that position.

value-added reseller (VAR) A firm that enhances a commercial pack-
age by adding custom features and configuring it for a particular
industry.

version control The process of tracking system releases.

vertical application A software package that has been developed to
handle information requirements for a specific type of business.

vertical system A system designed to meet the unique requirements
of a specific business or industry, such as a web-based retailer or auto-
supply store.

virtual private network (VPN) Uses a public network to connect
remote users securely. Allows a remote client to use a special key
exchange that must be authenticated by the VPN.

vulnerability A security weakness or soft spot.

waterfall model The traditional model of software development. A
graph that depicts the result of each SDLC phase flowing down into
the next phase.

Web 2.0 A second generation of the web that enables people to col-
laborate, interact, and share information much more dynamically,
based on continuously available user applications rather than static
HTML web pages. Interactive experience is a hallmark of Web 2.0.

webcast A one-way transmission of information or training materials,
such as a Webinar session, available on demand or for a specific period
to online participants.

web-centric A strategy or approach that emphasizes a high degree of
integration with other web-based components. A web-centric architec-
ture follows Internet design protocols and enables a company to
integrate the new application into its e-commerce strategy.

webinar An Internet-based training session that provides an interac-
tive experience. The word webinar combines the words web and
seminar.

weight An important multiplier that managers factor into estimates so
they can be analyzed.

what-if analysis A feature of business support systems that allows
analysis to define and account for a wide variety of issues (including
issues not completely defined).

wide area network (WAN) A network spanning long distances that
can link users who are continents apart.

Wi-Fi Alliance A nonprofit international association formed in 1999
to certify interoperability of wireless network products based on IEEE
802.11 specifications.

Wi-Fi Protected Access (WPA) A common method used to secure a
wireless network. This approach requires each wireless client be con-
figured manually to use a special, pre-shared key, rather than key pairs.
The most recent and more secure version is WPA2.

wiki A web-based repository of information that anyone can access,
contribute to, or modify.

Wi-Max IEEE 802.16 specifications, which are expected to enable
wireless multimedia applications with a range of up to 30 miles.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

470 Glossary

Wired Equivalent Privacy (WEP) One of the earliest methods used
to secure a wireless network, superseded by WPA and WPA2.

wireless access point (WAP) A central wireless device that
provides network services to wireless clients. Also called an access
point.

wireless fidelity (Wi-Fi) Family of popular IEEE LAN wireless net-
working standards, also known as 802.11, including 802.11a, b, g, and
n. 802.11n is the most recent standard. 802.11ac and 802.11ad are
proposed new standards.

wireless local area network (WLAN) A wireless network that is
relatively inexpensive to install and is well suited to workgroups and
users who are not anchored to a specific desk or location.

work breakdown structure (WBS) A project broken down into a
series of smaller tasks. See also Gantt chart; PERT/CPM chart.

worst-case estimate The most pessimistic outcome.

WPA2 A wireless security standard based on 802.11i that provides a
significant increase in protection over WEP and WPA.

XY chart A tool used by system analysts to graphically show the cor-
relation between two variables. Also called a scatter diagram.

Y2K issue A problem faced by many firms in the year 2000 because
their computer systems used only two digits to represent the year; most
dates now use a four-digit format for the year (YYYYMMDD).

Yourdon A type of symbol set that is used in DFDs. Processes, data
flows, data stores, and external entities each have a unique symbol in
the Yourdon symbol set.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

471

1:1, 280
1:M, 280
1NF. See first normal form (1NF)
2NF. See second normal form (2NF)
3NF. See third normal form (3NF)
4GL. See fourth-generation language (4GL)
802.11, 338
802.11ac, 339
802.11b, 338
802.11i, 427
802.11n, 338

A
abbreviation codes, 298
absolute date, 304
acceptance, 421
acceptance tests, 372
access point, 339
action codes, 299
activity, 78. See also task
activity diagram, 193–194
actor, 187
adaptive maintenance, 404, 406
administrator account, 430
agile methods, 17, 18, 22–24, 113–114. See also

agile methods
advantages and disadvantages, 114
application development, 357, 367–369

Airbnb, 8
Alexa (Amazon.com), 15
alias, 164
allocated baseline, 414
ALM. See application life cycle management (ALM)
alphabetic codes, 298
Amazon.com, 15, 53
Amazon Echo Dot, 15
app, 8
Apple, 15, 207, 229–230, 425
Apple Keynote, 386
Apple’s Find My iPhone app, 425
Apple’s iOS, 232
Apple’s Mac OS X, 415
Apple Xcode, 370
application, 319

logic, 147, 325
security, 429–432

server, 325
software, 5
systems architecture, 319

application development, 356–359
agile, 357, 367–369
object-oriented, 364–367
structured, 356–357, 359–364
system design review, 356
tasks, 356–357
tools, 357–359

application lifecycle management (ALM), 24
application service provider (ASP), 208–209,

331
applications programmer, 408
Apptivo, 89
archived, 412
Ars Technica, 126
artificial intelligence, 15
ASCII, 303
ASP. See application service provider (ASP)
asset, 420
associative entity, 282
ASTQB foundation level certification, 441
ATM. See automatic teller machine (ATM)
attack, 421
attributes, 183, 276, 365
audit fields, 305
audit log files, 305
audit trails, 245, 257
authorization zone, 246
automated fax, 253
automatic teller machine (ATM), 254, 332
automatic update service, 430
availability, 419
avoidance, 421

B
B2C (business-to-consumer), 8
back door attack, 422
backup, 305, 435–437
backup media, 435
backup policy, 435–436
balancing, 159, 160–163
bandwidth, 329, 416–417
baseline, 414
Basic Service Set (BSS), 339

INDEX

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

472 Index

batch, 254
batch controls, 244
batch input, 254
batch processing, 333
BCP. See business continuity plan (BCP)
benchmark, 218–219
benchmark testing, 416
best-case estimate, 79
Big Ten University, 163
binary storage format, 303
biometric scanning systems, 423–424
BIOS-level password, 424
bits, 303
Bizagi Modeler, 194
black box, 147, 184
black hole, 149
Blockchain technology, 52
block sequence codes, 298
blogs, 252
Bluetooth, 339
body zone, 246
Boehm, Barry, 24
Boeing, 11
Bologva, E., 232
boot-level password, 424
bottom-up technique, 77
BPM. See business process model (BPM)
BPMN. See business process modeling notation

(BPMN)
BPO. See business process outsourcing (BPO)
brainstorming, 125
bring your own device (BYOD), 34
Brooks, Frederick, Jr., 94
Brooks’ law, 94
BSS. See Basic Service Set (BSS)
budget issues, 95
bug tracking software, 374
build or buy, 203
business, 8–9

B2B, 9
B2C, 8
case, 47–48
continuity, 436–437
information systems, 11–15
Internet model, 8
logic, 147, 325
modeling business operations, 9–11
process, 9
profile, 9
rules, 19, 147

skills, systems analysts, 30
support systems, 12–13

business continuity plan (BCP), 437
business issues, 95
business model, 9
business process diagrams, 130
business process model (BPM), 9, 130, 194
business process modeling notation (BPMN),

10, 130
business process outsourcing (BPO), 208
business profile, 9
bus network, 336
byte, 303

C
C#, 201, 367
C++, 22, 181, 367
calendar control, 240
Calendar view, Microsoft Project, 92
Cameo Systems Modeler, 26
candidate key, 278
Capability Maturity Model (CMM)®, 353
Capability Maturity Model Integration (CMMI)®,

353
capacity planning, 417–419
cardinality, 190, 283
cardinality notation, 283
career opportunities, systems analysts, 32–33
Carnegie Mellon University Software Engineering

Institute, 353
CASE. See computer-aided software engineering

(CASE); computer-aided systems engineering
(CASE)

case for action, 68
CASE tools, 24, 47

ERDs, 283
UML, 195

category codes, 298
CC. See change control (CC)
certification, 31, 441
change control (CC), 411
character-based report, 248
characters, 303
child, 185
child diagram, 157
CIA triangle, 419
cipher codes, 299
Cisco Systems, 377

certification, 442

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

473 Index

class, 21, 184–185
class diagram, 190–191
clicks to close, 302
clickstream storage, 302
clients, 321
client/server architecture, 323–327

client’s role, 324–325
cost-benefit issues, 326–327
middleware, 326
overview, 323–324
performance issues, 327
tiers, 325–326

closed-ended questions, 118
cloud computing, 33–34, 202, 328–329

impact, 439
CM. See configuration management (CM)
CMM. See Capability Maturity Model (CMM)
CMMI. See Capability Maturity Model Integration

(CMMI)
CNET, 126
Codd, Edgar, 284
code, 297–300

designing, 299–300
overview, 297
reviews, 87, 370
types, 298–299

coding, 369–370
cohesion, 361–362

object-oriented development, 366–367
combination check, 244
combination key, 276
command button, 239
common field, 271, 276
communication

skills, systems analysts, 30
company’s financial status, 51
company size, 32
competitors, 53
composite key, 276
computer-aided software engineering, 24. See also

CASE tools
computer-aided systems engineering (CASE), 24.

See also CASE tools
computer resources committee, 54
concatenated key, 276
concurrent task, 83
condition, 361
confidentiality, 419
configuration management (CM), 411–412
constraint, 63–64

construction phase, 111
context diagram, 154–155
context-sensitive, 236
continuous backup, 435, 436
control

break, 248
break report, 248
couple, 360
data, 305
field order, 248
module, 360
risk, 421
structures, 169
user interface design, 255–257
zone, 246

corporate culture, 32
systems architecture, 317

corporate organization, systems architecture,
317

corporate portal, 320
corrective maintenance, 404–406
cost

intangible, 57
operational, 403
ownership, total, 57, 318–319
tangible, 57

cost-benefit analysis, 67, 212–213
checklist, 213
software acquisition process, 219
system architecture, 326–327

couples, structure charts, 363–364
coupling, 362

object-oriented development, 366–367
CPM. See Critical Path Method (CPM)
credentials, 441–442
critical path, 85–87

calculating, 85–87
tasks and, 87

Critical Path Method (CPM), 77. See also
PERT/CPM chart

critical risks, 421
critical success factors, 45
Critical Thinking Community, 30
critical thinking skills, 30, 442
CRM. See customer relationship management

(CRM)
crow’s foot notation, 283
customer relationship management (CRM), 53
customers, 53, 367. See also customer relationship

management (CRM)

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

474 Index

cutover phase, 111
CyberEthics, 442
cyberterrorist, 422

D
data, 3, 5

analysis, preliminary investigation, 65–67
control, 305
conversion, 382–383
couple, 360
frames, 337
item, 303
legacy, 6, 324
mart, 301
mining, 302
normalization, 284–297
processing center, 321
security, 257
structure, 269
test, 371
type check, 244
validation rule, 243–245
warehouse, 301
web-based, design, 274–275

data and process modeling, 144–176
data dictionaries, 164–168
DFDs. See data flow diagram (DFD)
process description tools, 169–175

database administration, 28
database administrator (DBA), 272
database management system (DBMS),

271–274
components, 272–274

database programmer, 408
data center, 5
data design, 268–307

codes, 297–300
concepts, 269–272
data control, 305
data storage and access, 301–304
DBMSs, 271–274
entity-relationship diagrams, 280–284
example, 269–271
normalization. See normalization
terminology, 275–279
web-based, 274–275

data dictionary, 164–168
documenting data flows, 165–166

documenting data stores, 166
documenting entities, 167
documenting processes, 167
documenting records, 167–168
reports, 168
structure charts, 363

data element, 164, 303
data entry screen, user interfaces,

240–243
data flow, 147–149

diverging, 157
data flow diagrams (DFDs), 19, 131,

146–152
drawing, 152–154
drawing structure charts, 362–363
examples in creating, 154–158
symbols, 146–152
using symbols, 152

data item, 164
data manipulation language (DML), 273
data replication, 437
data repository, 164. See also data dictionary
data store, 149. See also data dictionary
data store symbol, DFDs, 149–151
data structures, 164
dates, storing, 304
DBA. See database administrator (DBA)
DBMS. See database management system

(DBMS)
DDBMS. See distributed database management

 system (DDBMS)
DDOS. See distributed denial of service

(DDOS)
decision table, 170–174, 358–359

multiple outcomes, 172–174
one condition, 170
three conditions, 171–172
two conditions, 171

decision tree, 175, 358–359
decomposing, 159
default value, 165, 236
defect tracking software, 374
deliverable, 19
denial of service (DoS), 422, 428
dependent task, 83
derivation codes, 299
design prototyping, 259
design reviews, 87
desk checking, 370
desktop computer, security, 424

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

475 Index

detail report, 251
development strategy, 200–223

cost and benefit analysis, 212–213
evolving trends, 202–203
in-house software development options,

203–208
offshoring, 210
outsourcing, 208–210
selecting, 211–214
software acquisition process, 214–219
Software as a Service (SaaS), 211
system analyst’s role, 212
systems analysis task completion, 219–222
transition to systems design, 221–222

DFD. See data flow diagram (DFD)
diagram 0, 155–158
diagrams, 129–131

business process, 130
data flow, 131
functional decomposition, 129–130
sequence, 132–133
use case, 132

dialog box, 239
differential backup, 435, 436
digital assistant, 15
digital output, 253
dimensions, 301
direct cutover, 379–381
disaster recovery plan, 435
discretionary projects, 60
diskless workstation, 256
distributed database management system

(DDBMS), 327
distributed denial of service (DDOS),

422, 428
distributed systems, 322
diverging data flow, 157
DML. See data manipulation language (DML)
documentation, 373–378

online, 376–378
operations, 375
program, 374
reviewing in preliminary investigation, 65
system, 374
user, 375–376
user interface design, 234

documenting interviews, 120–121
document review, 122
domain, 165
dumpster diving, 422, 434

duration, 82
factors affecting, 80–81

dynamic priorities, 59

E
EBCDIC, 303
e-commerce (electronic commerce), 8

architecture, 329–332
economic feasibility, 57–58, 67
economy, 53
economy of scale, 272
EDI. See electronic data interchange (EDI)
education, systems analysis, 31
EHRs. See electronic health records

(EHRs)
electronic commerce (e-commerce), 8
electronic data interchange (EDI), 9, 52
electronic health records (EHRs), 232
electronic product code (EPC), 52
electronic proof of delivery (EPOD), 53
email, 252
empowerment, 17
encapsulation, 184
encryption, 257, 305, 431

network traffic, 426
engaged listening, 120
enhancement, 406
enterprise applications, 5
enterprise computing, 11
enterprise resource planning (ERP), 11,

317–318
entity, 151, 276

documenting, 167
symbol in DFDs, 151

entity-relationship diagram (ERD), 280–284,
356, 358

cardinality, 283
drawing, 280
relationship types, 280–282

EPC. See electronic product code (EPC)
epic, 127
EPOD. See electronic proof of delivery (EPOD)
ERD. See entity-relationship diagram (ERD)
ERP. See enterprise resource planning (ERP)
error(s)

human, 420
logic, 370
syntax, 370

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

476 Index

espionage, 420
ethical issues, 35, 69, 96, 176, 195, 222, 260, 306,

343, 391, 443
evaluating interview, 121
evaluation

model, 215
post-implementation, 388–390
and selection team, 212

events, 78
Evernote, 135
Excel (Microsoft), 47, 93, 170, 207, 417
exception report, 251
existence check, 244
existing systems and data, 51
exploding, 159
exploit, 421
Extended Service Set (ESS), 339
extensibility, 319
extortion, 420
Extreme Programming (XP), 24, 357

F
Facebook, 202, 329
fact-finding (collecting information)

business case analysis, 64–67
gathering requirements, 114–115

fat client, 324
fault management, 414–415
fault tolerant, 435
faxback, 253
FDD. See functional decomposition

diagram (FDD)
feasibility

economic, 57–58, 67
evaluating, 67–68
operational, 57, 67
schedule, 58–59, 67–68
study, 20, 56
systems requests, 56–59
technical, 58, 67

features, 127
fee, outsourcing, 209
feedback, user interface design, 233,

236–237
field, 164, 276

audit, 305
common, 271, 276
key, 276–279
nonkey, 278

file, 269, 276
processing system, 270
security, 431–432

file-oriented systems, 270
fill-in form, 124
financial analysis. See cost-benefit analysis
finish day/date, 83
firewall, 429
first normal form (1NF), 286–287
fishbone diagram, 62
fixed fee model, 209
Florida Institute of Technology, 297
flowchart, 358
foreign key, 278
form filling, 240
form layout, 246
forums, 217
four-model approach, 145
full backup, 435, 436
functional baseline, 414
functional decomposition diagram (FDD),

129–130, 232
functionally dependent, 287
functional primitive, 157
functional requirement, 105

G
Gane and Sarson, 146
Gantt, Henry L., 76–77
Gantt chart, 76–77

Microsoft Project, 91
GanttProject, 89
garbage in, garbage out (GIGO), 246
Gardner, Elizabeth, 232
Gartner Inc., 210
gateway, 337
gathering requirements, 114–115

in agile projects, 127–128
through interviews, 116–121
using other techniques, 121–127

Gbps (gigabits per second), 416
gigabits per second (Gbps), 338
GIGO. See garbage in, garbage out (GIGO)
globalization, impact, 439
global outsourcing, 210
glueware, 326
Google, 425

Assistant, 15
Docs, 136
Groups, 217

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

477 Index

GoToMyPC (Citrix), 401
government, 53
graphical user interface (GUI), 229
gray hole, 149
Greening, Dan R., 302
Groups (Google), 217
groupware, 14
GUI. See graphical user interface (GUI)

H
hacker, 422
hacktivist, 422
hardening, 430
hardware, 5
hardware failure, 420
hash totals, 245
Hawthorne Effect, 122–123
HCI. See human-computer interaction (HCI)
heading zone, 246
help desk, 28, 401–402
Hewlett-Packard (HP), 213
hierarchical network, 335–336
Hilltop Motors, 189
Hilton Hotels, 11
histogram, 135
Hollerith, Herman, 3
horizontal application, 203
horizontal system, 6
hot site, 437
HP. See Hewlett-Packard (HP)
HTML/XML, 370
HTTP/2, 327
hub, 337
human-computer interaction (HCI), 230–232
human error, 420

I
IBM (International Business Machines),

3–4, 52
DB2, 273
Rational DOORS, 136
Rational toolset, 370
ring network technology, 336
on user interfaces, 231
WebSphere Commerce, 331

IBS. See Internet business services (IBS)
IC. See information center (IC)

IDE. See integrated development
environment (IDE)

identity management, 432
identity theft, 433
IEEE. See Institute of Electrical and Electronics

 Engineers (IEEE)
IEEE 802.11i, 427
incremental backup, 435, 436
inference rules, 13
informal structures, 116
information, 5

organizational models, 16–17
information center (IC), 243
information system, 4–8

evaluating requirements, software acquisition
process, 214–216

information technology (IT), 3–4
changing nature of, 3
department, 51
trends in, 33–35

InfoWorld, 126
infrastructure mode, 339
inheritance, 185
in-house software, 203, 204–205
input

control, 256–257
mask, 241
security, 256–257
technology, 254–255

installation, 378–391
data conversion, 382–383
operational and test environments,

378–379
post-implementation tasks, 387–390
system changeover, 379–382
training, 383–384

instance, 184
instant messaging (IM), 252
Institute of Electrical and Electronics Engineers

(IEEE), 338
802.11ac specification, 339
802.11b specification, 338–339
802.11g specification, 338
802.11n specification, 338
802.11 specifications, 338, 427

instruction zone, 246
intangible benefits, 58
intangible costs, 57
integrated development environment (IDE),

24, 370

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

478 Index

integration testing, 372
integrity, 419
interactive training, 387
interface

DBMSs, 272–274
user. See graphical user interface (GUI); user

interface
International Organization for Standardization

(ISO), 304, 355
Internet

cloud computing, 202
commerce, 331
information delivery, 252
mobile devices, 203
operating system, 329
SaaS, 328
system architecture, 327–329
traditional vs, web-based systems development,

201
Web 2.0, 202

Internet business services (IBS), 209
Internet-of-Things (IOT), 52
interview, 116

conducting, 120
determining people to, 116–117
developing questions, 117
documenting, 120–121
establishing objectives, 117
evaluating, 121
gathering requirements through, 116–121
preparing for, 118–120
process, 116
questionnaires compared, 124–125

ISO. See International Organization for
 Standardization (ISO)

ISO 9000-3:2014, 355
IT. See information technology (IT)
IT department, role of, 46–47
iteration, 169

cycle, 369
planning meeting, 369
and releases, 369

iterative, 22

J
JAD. See joint application development (JAD)
Java, 22, 181, 367
JDBC (Java database connectivity), 274

JIT. See just-in-time (JIT)
job titles, 32
Joint application development (JAD), 109–110

advantages and disadvantages, 110
participants and roles, 109–110
user involvement, 109

just-in-time (JIT), 52

K
Kbps (kilobits per second), 416
key fields, 276–279
keystroke logger, 424
knee of the curve, 327
knowledge base, 13
knowledge management, 13–14

L
LAN. See local area network (LAN)
layout, user interface design, 237–238
leading questions, 117
LearnCode.academy, 377
legacy data, 324
legacy systems, 6, 319–320
length, 165
leveling, 158, 159–160
library module, 360
lifeline, 192
limit check, 244
LinkedIn, 202, 329
list boxes, 240
listening, engaged, 120
local area network (LAN), 322
log, 431
logical design, 221–222
logical model, 145
logical record, 303
logical storage, 302–303
logical structures, 169
logical topology, 335
logic errors, 370
loop, 361, 363–364
looping, 169
loosely coupled, 362

M
machine learning, 15
magnetic data strips, 255

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

479 Index

mail bombing, 422
maintenance, 403–414

activities, 403
adaptive, 404, 406
agreement, 219
baselines, 414
configuration management,

411–412
corrective, 404–406
expenses, 403
maintenance team, 408–409
perfective, 404, 406–407
preventive, 404, 407
priorities, 410–411
release methodology, 412
requests, 409–410
version control, 412–413

make or buy (build or buy) decision, 203
malicious code, 422
malware, 430
managed hosting, 209
management

final report to, 390
system requirement, 220–221

management information system (MIS), 13
managing for success, 94–96

budget issues, 95
business issues, 95
schedule issues, 96

man in the middle attack, 422
many-to-many relationship, 281
market basket analysis, 302
Mbps (megabits per second), 338, 416
megabits per second (Mbps), 338
menu bars, 239
mesh network, 337
messages, 22, 183–184
methods, 22, 183
metrics, 416
Microsoft, 331

certification, 442
information resource, 217
.NET, 370
network diagrams, 77
project triangles, 75–76
software applications, 207–208
on user interfaces, 231

Microsoft Access, 135, 273
input masks, 241, 242
reports, 248

Microsoft Excel, 47, 93, 170, 207, 417
Microsoft .NET, 201
Microsoft Office 365, 136
Microsoft OneNote, 121, 135
Microsoft Outlook, 134
Microsoft PowerPoint, 170, 386
Microsoft Project, 89

Calendar view, 92
critical path, 85–87
displaying WBSs, 81–82
Gantt charts, 91
network diagrams, 91–92
WBSs, 91

Microsoft Visio, 10, 136
Microsoft Windows, 232
Microsoft Word, 47, 170, 207
middleware, 202, 275, 326
milestones, 78
MIMO. See multiple input/multiple output

(MIMO)
MIS. See management information system (MIS)
mission-critical system, 5
mission statement, 45
mitigation, 421
M:N, 281
mnemonic codes, 298
mock-up, 248
modeling, 9

user interface design, 233
modular design, 169–170, 257, 359
modules, 257, 357, 360, 363

control, 360
MongoDB, 201
Monster.com, 4
Moore, Gordon, 5
Moore’s Law, 5
multipath design, 339
multiple input/multiple output (MIMO), 339
multivalued key, 276

N
National Institute of Standards and Technology

(NIST), 202
natural disasters, 420
natural language, 128–129, 235–236
.NET, 201, 370
net-centric computing, 325
net present value (NPV), 212

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

480 Index

network, 426
administration, 28
devices, 337–338
interface, 426
local area and wide area, 322–323
models, 334–338
private, 427
security, 426–429
topology, 335

network diagram, 77
Microsoft Project, 91–92

network intrusion detection system
(NIDS), 429

node, 319
nondiscretionary projects, 60
non-functional requirement, 105
nonkey field, 278
normalization, 284–297

first normal form, 286–287
real-world examples, 291–297
second normal form, 287–289
standard notation format NOT, 285–286
third normal form, 290–291

n-tier designs, 325

O
object model, 181
object modeling, 180–196. See also

object-oriented (O-O) analysis
attributes, 183
class, 184–185
messages, 183
methods, 183
objects, 181–182
relationships among objects and

classes, 186–187
tools, 195
UML. See Unified Modeling Language (UML)

object-oriented (O-O) analysis, 17, 21–22, 181
object-oriented development (OOD), 364–367

characteristics of, 365–366
cohesion and coupling, 366–367
implementation of designs, 366

objects, 21, 181–182
observation, 122–123
observing in preliminary investigation, 65
ODBC. See open database connectivity (ODBC)
offshore outsourcing, 210

offsiting, 435
OneNote (Microsoft), 121, 135
one-to-many relationship, 280
one-to-one relationship, 280
online data entry, 254
online system, 332
online training, 387
O-O. See object-oriented (O-O) analysis
OOD. See object-oriented development (OOD)
open database connectivity (ODBC), 274, 383
open-ended questions, 117–118
open-source, 89
Open Systems Interconnection model. See OSI

(Open Systems Interconnection) model
operational costs, 403
operational environment, 378–379
operational feasibility, 57, 67
operational security, 434
operations center security, 423–424
operations documentation, 375
option button, 240
Oracle Corporation, 273, 318

certification, 442
organizational information models, 16–17
organizational issues, 408–409
orphan, 279
OSI (Open Systems Interconnection) model, 334
output

control, 255–256
printed, design, 247–251
security, 255–256
technology, 252–254

outsourcing, 208–210
advantages and disadvantages, 403
fees, 209
growth, 208
issues and concerns, 210

P
page footer, 249
page header, 249
pair programming, 368
parallel operation, 381
parent, 185
parent diagram, 157
Pareto chart, 65
partitioning, 159, 359
password, 432

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

481 Index

password cracking, 422
patches, 374, 405
payback analysis, 212
perfective maintenance, 404, 406–407
performance. See also benchmark; system perfor-

mance management
system architecture, 327

Perl, 367
permissions, 305, 430
personal computer, impact on systems architecture,

322
personal digital assistant, 15
personal information manager (PIM), 134
person-day, 79
PERT/CPM chart, 77–78

maintaining schedule, 87
phased operation, 381–382
phishing, 422
physical design, 221–222
physical model, 145
physical security, 423
physical storage, 302–303
physical topology, 335
pilot operation, 381
pilot site, 381
PIM. See personal information

manager (PIM)
PKE. See public key encryption (PKE)
plain text, 426
platform, 317
plotters, 254
podcast, 253, 385
point-of-sale (POS), 333–334
point-of-sale terminal, 253
Polarion, 25
polymorphism, 183
pool, 130
port, 427
portable computer, security, 425–426
portal, 320
port scan, 427–428
POS. See point-of-sale (POS)
post-implementation tasks, 387–390

evaluation, 388–390
final report to management, 390

power-on password, 424
PowerPoint (Microsoft), 170
predecessor tasks, 79

multiple, 83–84

preliminary investigation, 20, 60–69
planning, 61
steps, 61–68
summarizing, 68

pretexting, 433
preventive maintenance, 404, 407
primary key, 276
printed output design, 247–251
printers, special-purpose, 254
priorities

dynamic, 59
fators affecting, 59–60
setting, 59–60

private key encryption, 426
private network, 427
privilege escalation attack, 422, 432
probable-case estimate, 79
Procedia Computer Science 100 (Bologva), 232
procedural security, 434
process, 7, 147

documenting, 167
improvement, 353
symbol in DFDs, 147

process 0, 154
process description, 169–175

decision tables, 170–174
decision trees, 175
modular design, 169–170
structured English, 170

processing systems requests, 54–55
product baseline, 414
production environment, 378–379
productivity software, 134
product lifecycle management (PLM), 24
product-oriented, 34
program documentation, 374
Program Evaluation Review Technique (PERT),

77–78. See also PERT/CPM chart
programmer/analyst, 408
Project (Microsoft). See Microsoft Project
project coordinator, 76
project creep, 62, 95
project leader, 76
project management, 18, 74–97

managing for success, 94–96
overview, 75–76
project monitoring and control, 87
reporting, 87–89
risk management, 93–94

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

482 Index

project management (Continued)
software, 89–92
task patterns, 82–85
work breakdown structures, 76–82, 91

project manager, 76
project monitoring, 76
project planning, 76
project reporting, 76
project scheduling, 76
project scope, 62–65
project status meeting, 88
project status report, 88
project triangle, 75–76
properties, 21
prototype, 24, 258

user interface design, 233
prototyping, 258–259
proxy server, 337
pseudocode, 170, 358
public key encryption (PKE), 426–427
Python, 181, 367, 387

Q
QA. See quality assurance (QA)
QBE. See query by example (QBE)
qualitative risk analysis, 93
quality assurance (QA), 28, 353–355
quality attributes, 105
quantitative risk analysis, 94
query by example (QBE), 273
query language, 273
questionnaire, 123–124

interviews compared, 124–125
questions

closed-ended, 118
developing interview, 117
leading, 117
open-ended, 117–118
range-of-response, 118

R
RAD. See rapid application development (RAD)
radio button, 240
radio frequency identification (RFID), 13

tags, 50, 53, 255
RAID (redundant array of independent disks), 435
random sample, 125

range check, 244
range-of-response questions, 118
rapid application development (RAD), 109, 111–112

advantages and disadvantages, 112
objectives, 112
phases and activities, 111–112

reasonableness check, 244
records, 164, 276

documenting, 167–168
records retention policy, 257
recovery, 435–437
recovery procedures, 305
Reddit, 217
redundant array of independent disks. See RAID

(redundant array of independent disks)
referential integrity, 244, 279
relational database, 271
relational model, 271
relationships, 185

structure charts, 363
release plan, 369
remote control software, 401
repeating group, 285
report

data dictionary, 168
design, 248–251
footer, 249
header, 249
system design presentation, 342–343

representing requirements, 128–133
diagrams, 129–131
models, 131–133
natural language, 128–129

request for proposal (RFP), 215
requirement(s). See also requirements engineering

challenges, 106–108
definitions, 105
elicitation, 114
functional, 105
gathering, 114–115
non-functional, 105
representing, 128–133
specifications, 105
system, 105
types of, 105–106
validating and verifying, 133–134

requirements engineering, 20, 104–138
gathering requirements, 114–128
representing requirements, 128–133
system requirements, 105–108

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

483 Index

team-based techniques, 108–114
tools, 134–137
validating and verifying requirements,

133–134
requirements planning phase, 111
research, 126–127
Resource Monitor (Windows), 415
response time, 416
responsible user(s), 165
responsive Web design, 258
retention period, 436
retirement, system, 437–438
return on investment (ROI), 212
RFID. See radio frequency identification (RFID)
RFID tags, 52, 53, 255

systems projects, 52, 53
RFP. See request for proposal (RFP)
RFQ. See request for quotation (RFQ)
ring network, 336
risk, 93, 421
risk assessment, 420, 421
risk control, 420, 421
risk identification, 93, 420–421
risk management, 93–94, 420–421
risk management plan, 93
risk response plan, 94
roaming, 339
router, 337
Ruby, 367

S
SaaS. See Software as a Service(SaaS)
salary, 32
salesforce

corporate culture, 32–33
sampling, 125–126
SAP, 11
scalability, 107, 271–272, 319
scalable, 21
scaling on demand, 328
scatter diagram, 66
scenarios, 127
schedule

analysis, 67
feasibility, 58–59, 67–68
maintaining, 87

schedule issues, 96
schema, 273

SCM. See supply chain management (SCM)
script kiddie, 422
scroll bar, 240
Scrum, 23, 113
SDLC. See systems development life cycle (SDLC)
secondary key, 278–279
second normal form (2NF), 287–289
security, 107, 165, 419–423

applications, 429–432
concepts, 419
file, 431–432
firewalls, 429
hole, 430
network, 426–429
NIDS, 429
operational, 434
operations center, 423–424
policy, 419
procedural, 434
risk management, 420–421
systems architecture, 320
token, 433
user, 432–434
user interface design, 255–257

SEI. See Software Engineering Institute (SEI)
selection, 169
semantic web, 329
sequence, 169
sequence check, 244
sequence codes, 298
sequence diagram, 132–133, 192
server, 321

application, 325
client/server architecture, 323–327
proxy, 337
security, 424

service, 427
desk, 207–208, 401–402
failure, 420
packs, 412
provider, 208–209
security, 430

service desk, 207–208, 401–402
service-oriented companies, 34
service provider, 208–209
Sherwin-Williams, 9
significant digit codes, 298–299
simulation, 387
sink, 151
site visit, 127

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

484 Index

slack time, 87
sniffing, 423
social engineering, 423, 432–433
social networking site, 329
soft skills, 442
software, 5–6

acquisition process, 214–219
application, 5
attack, 420
bug tracking, 374
defect tracking, 374
engineering, 353
failure, 420
license, 219
logs, 431
reengineering, 406
remote control, 401
requirements specification, 21, 219–220
system software, 5
third-party, 430
workgroup, 14

Software as a Service (SaaS), 211, 328
Software Engineering Institute (SEI), 353, 354
software package, 203

customizing, 206–207
purchasing, 205–206

software vendors, 203
identifying, 217

source, 151, 165
source data automation, 254–255
source document, 246
spam, 423
special-purpose printers, 254
spiral model, 23
spontaneous generation, 149
spoofing, 423
spy, 422
SQL (Structured Query Language), 273, 326
stakeholder, 7
stand-alone computing, 322
standard notation format, 285–286
star network, 337
start day/date, 83
state, 183
state transition diagram, 192–193
status flag, 360
storyboards, 127, 233
strategic plan, 50
strategic planning, 45, 440–441

tools, 47

stratified sample, 125
structure chart, 360–361, 362–364
structured analysis, 17, 18–22
structured application development, 356–357,

359–364
structured brainstorming, 125
Structured English, 170
structured walk-through, 87, 370
stub testing, 371
subclasses, 184
subordinate module, 360
subschema, 273
subscription model, 209
successor task, 83, 85
summary report, 251
Sun Microsystems, 325
superclass, 184
superuser account, 430
suppliers, 52
supply chain, 9
supply chain management (SCM), 9,

53, 318
surveys, 123–124

interviews compared, 124–125
preliminary investigation, 65

swim lanes, 130
switch, 337
switchboard, 238
SWOT analysis, 45–46
syntax errors, 370
SysML, 131
system, 4
system administrator, 408
system architecture, 316–345

client/server architecture, 323–327
corporate organization and culture, 317
corporate portals, 320
ecommerce, 329–332
ERP, 317–318
impact of Internet, 327–329
impact of personal computer, 322
initial cost and TCO, 318–319
legacy systems, 319–320
mainframe architecture, 321–322
network evolution, 322–323
network models, 334–338
processing methods, 332–334
processing options, 320
scalability, 319
security issues, 320

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

485 Index

systems design completion, 341–343
web integration, 319
wireless networks, 338–340

systematic sample, 125
system boundary, 189
system changeover, 379

direct cutover, 379–381
parallel operation, 381
phased operation, 381–382
pilot operation, 381

system design review, 356
system design specification, 21, 341–342
system documentation, 374
system performance management, 414–419

capacity planning, 417–419
fault management, 414–415
performance and workload management, 416

system prototyping, 259
system requirement, 105

document, 20, 219–220
systems analysis, 103–223. See also data and process

modeling; object modeling; requirements
 engineering

and design, 4
phase, 20

systems analysts, 4, 28–34
career opportunities, 32–33
certification, 31
knowledge, skills, and education, 29–31
maintenance team member, 408
role, 28–29
role in systems development process, 212

systems design, 227–343. See also data design;
 system architecture; systems analysis; user
 interface design

goal, 227
logical and physical, 221–222
review, 356
transition to, 221–222

systems design phase, 21
systems development, 17–26
systems development life cycle (SDLC),

19, 36
systems implementation phase, 21, 352–393

coding, 369–370
documentation, 373–378
installation, 378–391
quality assurance, 353–355
testing, 370–373

systems integration, 15
system software, 5
systems planning phase, 20
systems programmer, 408
systems projects

external factors, 52–53
internal factors, 50–51

systems requests, 20
feasibility, 56–59
forms, 54
processing, 54–55
tools, 54

systems review committee, 54
systems support and security phase, 21, 27, 399–445

backup and recovery, 435–437
future challenges and opportunities, 438–442
maintenance management, 408–414
maintenance tasks, 403–407
security. See security
system performance management, 414–419
system retirement, 437–438
user support, 401–403

system testing, 372–373

T
table, 269
table design, 284
tamper-evident cases, 424
tangible benefits, 58
tangible costs, 57
task, 78

box, 82
concurrent, 83
dependent, 83, 85
estimating duration, 79–80
group, 77
ID, 82
name, 82
predecessor, 79, 83–84, 85
successor, 83, 85
WBSs, 78–80

task pattern, 82–85
types, 83–84
working with complex, 84–85

TCO. See total cost of ownership (TCO)
TDD. See test-driven development (TDD)
TechCrunch, 126
technical feasibility, 58, 67

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

486 Index

technical knowledge, systems analysts, 29–30
technical obsolescence, 420
technical support, 26–27
technology, 52
technology integration, impact, 439
terminals, 253
terminators, 151
test data, 371
test-driven development (TDD), 368
test environment, 378
testing reviews, 87
testing the system, 370–373

integration testing, 372
system testing, 372–373
unit testing, 370–371

test plan, 371, 436
theft, 420
thick client, 324
thin client, 325
third normal form (3NF), 290–291
third-party software, 430
threat, 421
three-tier design, 325
throughput, 416
throwaway prototyping, 259
tightly coupled, 362
toggle button, 239
toolbar, 239
top-down approach, 359
top managers, 50
total cost of ownership (TCO), 57, 108, 213

systems architecture, 318–319
totals zone, 246
TP. See transaction processing (TP) systems
TPC. See Transaction Processing Performance

 Council (TPC)
traceability, 136
trade-offs, 259–260
training

interactive, 387
online, 387
outside resources, 385
plan, 383–384
podcasts, 385
tips, 386–387
tutorials, 385
user, 401
vendor, 384
webminars, 385

train-the-trainer, 387

Train the Trainers, Inc., 191
transaction model, 209
Transaction Processing Performance Council

(TPC), 218
transaction processing (TP) systems, 11–12
transference, 421
transparent, 322
transparent interface, 230
TravelBiz, 181
trespass, 420
tunnel, 427
tuple, 276
turnaround documents, 248
turnaround time, 417
Turnkey Services, 211
tutorial, 385

online, 387
Twitter, 202, 329
two-tier design, 325
type, 165

U
UML. See Unified Modeling Language (UML)
unencrypted, 426–429
Unicode, 303–304
Unified Modeling Language (UML), 131, 181, 187–

194, 283
activity diagram, 193–194
class diagrams, 190–191
sequence diagrams, 192
state transition diagrams, 192–193
use case diagrams, 189–190
use case modeling, 187–189

uninterruptible power supply (UPS), 424
United States Computer Emergency Readiness Team

(US-CERT), 428
unit testing, 370–371
Universal Security Slot (USS), 425
unnormalized table, 285–286
unstructured brainstorming, 125
UPS. See uninterruptible power supply (UPS)
up.time, Idera, 419
US-CERT. See United States Computer Emergency

Readiness Team (US-CERT)
usability, 229

analysis, 67
metrics, 233
user interface design, 233

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

487 Index

usage model, 209
use case, 187
use case description, 188
use case diagram, 132, 189–190
use case modeling, 187–189
user, 6

application, 207–208
approval of system design, 342
considering in user interface design, 233
DBMSs, 273
design phase, 111
groups, 431–432
ID, 305
interface, 207
manual, 378
productivity systems, 14
resistance to security, 433
rights, 305, 430
security, 432–434
story, 369
support, 28
training package, 401

user-centered system, 230
user design phase, 111
user documentation, 375–376
user interface, 229–230. See also graphical user

interface (GUI)
user interface design

basic principles, 232–234
emerging trends, 257–260
guidelines, 234–246
printed output, 248–251
security and control issues, 255–257
source document and form design, 246–247
technology issues, 251–255

user requests, 51
user-selected help, 236
user stories, 127
user survey, conducting, 65

V
validation, input, 430
validity check, 244
validity rules, 165
value-added reseller (VAR), 203
vandalism, 420
VAR. See value-added reseller (VAR)
vendor training, 384

version control, 412–413
vertical application, 203
vertical system, 6
virtual private network (VPN), 427
Visible Analyst (Visible Systems Corporation)

CASE tool, 283
documentation, data dictionary, 166

Visio (Microsoft), 10
Visual Basic, 201, 370
VPN. See virtual private network (VPN)
VRBO, 8
vulnerability, 421

W
Walmart, 11, 13, 52
WAN. See wide area network (WAN)
WAP. See wireless access point (WAP)
waterfall model, 19
WBS. See work breakdown structure (WBS)
web

support, 28
systems architecture, 319
web-based design, 274–275

Web 2.0, 202, 329
webcast, 252, 385
web-centric architecture, 319
web-connected device, portable, 253
webinar, 385
weight, 79
WEP. See Wired Equivalent Privacy (WEP)
Western Electric Company, 122
what-if analysis, 417
wide area network (WAN), 322–323
Wi-Fi Alliance, 339
Wi-Fi Protected Access (WPA), 427
wiki, 329
Wired Equivalent Privacy (WEP), 427
wireless access point (WAP), 339
wireless devices, 253
wireless fidelity (Wi-Fi), 339
wireless local area network (WLAN), 338–340

standards, 338–339
topologies, 339
trends, 339–340

WolframAlpha, 13–14
Word (Microsoft). See Microsoft Word
work breakdown structure (WBS), 76–82. See also

Gantt chart; PERT/CPM chart

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

488 Index

work breakdown structure (WBS) (Continued)
displaying, 81–82
factors affecting duration, 80–81
identifying tasks, 78–80
Microsoft Project, 91

workgroup software, 14
workplace, impact, 439
worst-case estimate, 79
WPA. See Wi-Fi Protected Access (WPA)
WPA2, 428

X
XP. See Extreme Programming (XP)
XY chart, 66

Microsoft Excel, 93

Y
Y2K issue, 304
Yourdon, 146

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

Copyright 2020 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.

	Cover
	Brief Contents
	Table of Contents
	Preface
	Features
	About the Author
	Acknowledgments
	Phase 1: Systems Planning
	Chapter 1: Introduction to Systems Analysis and Design
	1.1 Information Technology
	1.2 Information Systems
	1.3 Internet Business Strategies
	1.4 Modeling Business Operations
	1.5 Business Information Systems
	1.6 Organizational Information Models
	1.7 Systems Development
	1.8 The Information Technology Department
	1.9 The Systems Analyst
	1.10 Summary
	Key Terms
	Exercises

	Chapter 2: Analyzing the Business Case
	2.1 Strategic Planning
	2.2 Strategic Planning Tools
	2.3 The Business Case
	2.4 Systems Requests
	2.5 Factors Affecting Systems Projects
	2.6 Processing Systems Requests
	2.7 Assessing Request Feasibility
	2.8 Setting Priorities
	2.9 The Preliminary Investigation
	2.10 Summary
	Key Terms
	Exercises

	Chapter 3: Managing Systems Projects
	3.1 Overview of Project Management
	3.2 Creating a Work Breakdown Structure
	3.3 Task Patterns
	3.4 The Critical Path
	3.5 Project Monitoring and Control
	3.7 Project Management Software
	3.8 Risk Management
	3.9 Managing for Success
	3.10 Summary
	Key Terms
	Exercises

	Phase 2: Systems Analysis
	Chapter 4: Requirements Engineering
	4.1 System Requirements
	4.2 Team-Based Techniques
	4.3 Gathering Requirements
	4.4 Gathering Requirements through Interviews
	4.5 Gathering Requirements Using Other Techniques
	4.6 Gathering Requirements in Agile Projects
	4.7 Representing Requirements
	4.8 Validating and Verifying Requirements
	4.9 Tools
	4.10 Summary
	Key Terms
	Exercises

	Chapter 5: Data and Process Modeling
	5.1 Logical versus Physical Models
	5.2 Data Flow Diagrams
	5.3 Data Flow Diagram Symbols
	5.4 Drawing Data Flow Diagrams
	5.5 Drawing a Context Diagram
	5.6 Drawing a Diagram 0 DFD
	5.7 Drawing Lower-Level DFDs
	5.8 Data Dictionary
	5.9 Process Description Tools in Modular Design
	5.10 Summary
	Key Terms
	Exercises

	Chapter 6: Object Modeling
	6.1 Object-Oriented Analysis
	6.2 Objects
	6.3 Attributes
	6.4 Methods
	6.5 Messages
	6.6 Classes
	6.7 Relationships among Objects and Classes
	6.8 The Unified Modeling Language (UML)
	6.9 Tools
	6.10 Summary
	Key Terms
	Exercises

	Chapter 7: Development Strategies
	7.1 Traditional versus Web-Based Systems Development
	7.2 Evolving Trends
	7.3 In-House Software Development Options
	7.4 Outsourcing
	7.5 Offshoring
	7.6 Software as a Service
	7.7 Selecting a Development Strategy
	7.8 The Software Acquisition Process
	7.9 Completion of Systems Analysis Tasks
	7.10 Summary
	Key Terms
	Exercises

	Phase 3: Systems Design
	Chapter 8: User Interface Design
	8.1 User Interfaces
	8.2 Human-Computer Interaction
	8.3 Seven Habits of Successful Interface Designers
	8.4 Guidelines for User Interface Design
	8.5 Source Document and Form Design
	8.6 Printed Output
	8.7 Technology Issues
	8.8 Security and Control Issues
	8.9 Emerging Trends
	8.10 Summary
	Key Terms
	Exercises

	Chapter 9: Data Design
	9.1 Data Design Concepts
	9.2 DBMS Components
	9.3 Web-Based Design
	9.4 Data Design Terms
	9.5 Entity-Relationship Diagrams
	9.6 Data Normalization
	9.7 Codes
	9.8 Data Storage and Access
	9.9 Data Control
	9.10 Summary
	Key Terms
	Exercises

	Chapter 10: System Architecture
	10.1 Architecture Checklist
	10.2 The Evolution of System Architecture
	10.3 Client/Server Architecture
	10.4 The Impact of the Internet
	10.5 E-Commerce Architecture
	10.6 Processing Methods
	10.7 Network Models
	10.8 Wireless Networks
	10.9 Systems Design Completion
	10.10 Summary
	Key Terms
	Exercises

	Phase 4: Systems Implementation
	Chapter 11: Managing Systems Implementation
	11.1 Quality Assurance
	11.2 Application Development
	11.3 Structured Development
	11.4 Object-Oriented Development
	11.5 Agile Development
	11.6 Coding
	11.7 Testing
	11.8 Documentation
	11.9 Installation
	11.10 Summary
	Key Terms
	Exercises

	Phase 5: Systems Support and Security
	Chapter 12: Managing Systems Support and Security
	12.1 User Support
	12.2 Maintenance Tasks
	12.3 Maintenance Management
	12.4 System Performance Management
	12.5 System Security
	12.6 Security Levels
	12.7 Backup and Recovery
	12.8 System Retirement
	12.9 Future Challenges and Opportunities
	12.10 Summary
	Key Terms
	Exercises

	Glossary
	Index

